
REVISTA INVESTIGACIÓN OPERACIONAL VOL. 39, NO. 3, 283-302, 2018

INVITED PAPER
VARIATIONAL ANALYSIS AND

OPTIMIZATION OF SWEEPING PROCESSES

WITH CONTROLLED MOVING SETS
Boris S. Mordukhovich∗

Department of Mathematics, Wayne State University, Detroit, Michigan, USA.

ABSTRACT

This paper briefly overviews some recent and very fresh results on a rather new class of dynamic

optimization problems governed by the so-called sweeping (Moreau) processes with controlled moving

sets. Uncontrolled sweeping processes have been known in dynamical systems and applications

starting from 1970s while control problems for them have drawn attention of mathematicians, applied

scientists, and practitioners quite recently. We discuss here such problems and major results achieved

in their theory and applications.
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RESUMEN

Los procesos de barrido (Moreau) con conjuntos de control dinámicos son un área de reciente desar-

rollo. Este trabajo presenta un sumario de algunos de los más recientes y muy novedosos resultados

que se han obtenidos en esta área. Desde los años 70s se han estudiado los procesos de barrido no

controlados como un problema de sistema dinámicos, mientras que, solo recientemente, el proceso

controlado ha atraido la atención de la comunidad cient́ıfica. En esta contribución se presentan

resultados teóricos y sus aplicaciones.

PALABRAS CLAVE: Análisis variacional, optimización dinámica, procesos de barrido, control

optimal, aproximaciones discretas, diferenciación generalizada.

1. INTRODUCTION AND INITIAL DISCUSSIONS

The basic sweeping process (“processus du rafle”) was introduced by Jean-Jacques Moreau in the 1970s

to describe some quasistatic mechanical problems; see [34] and the book [27] for more details. Besides

the original motivations, models of this type have found significant applications to elastoplasticity [19],

hysteresis [24, 23], electric circuits [1], traffic equilibria [26, 38], and various other areas of applied

sciences and operations research. For its own sake, sweeping process theory has become an important
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area of nonlinear and variational analysis with numerous mathematical achievements and challenging

open questions; see, e.g., [15, 25] and the references therein.

The basic sweeping process is described by the dissipative differential inclusion

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], (1.1)

where N(x; Ω) stands for the normal cone to a convex set Ω ⊂ Rn at x defined by

N(x; Ω) :=

{ {
v ∈ Rn

∣∣ 〈v, u− x〉 ≤ 0 for all u ∈ Ω
}

if x ∈ Ω,

∅ otherwise,
(1.2)

and where the convex variable set C(t) continuously evolves in time. It has been realized that the

Cauchy problem x(0) = x0 ∈ C(0) for (1.1) admits a unique solution (see, e.g., [15]), and hence there

is no sense to consider optimization problems for the sweeping differential inclusion (1.1). This is

totally different from the well-developed optimal control theory for Lipschitzian differential inclusions

of the type

ẋ(t) ∈ F
(
x(t)

)
a.e. t ∈ [0, T ], (1.3)

which arises from the classical one for controlled differential equations

ẋ(t) = f
(
x(t), u(t)

)
, u(t) ∈ U a.e. t ∈ [0, T ] (1.4)

with F (x) := f(x, U) = {y ∈ Rn| y = f(x, u) for some u ∈ U} in (1.3); see, e.g., the books [29, 39]

with the references therein as well as more recent publications devoted to optimal control of (1.3).

To the best of our knowledge, there are three approaches in the literature to introduce control actions in

the sweeping process frameworks and then to conduct optimization with respect to these controls and

the corresponding sweeping trajectories. The first approach considers controls in additive perturbations

on the right-hand side of (1.1) without changing the moving set C(t). The results obtained in this

direction mostly concern existence theorems and relaxation procedures while not optimality conditions;

see [18] and the recent papers [3, 11] with the references therein. The second approach developed in [6]

and then partly extended in [2] introduces controls in an ordinary differential equation associated with

the sweeping process over a given set C(t) ⊂ Rn. The obtained results provide necessary optimality

conditions for the continuous-time problem in [6] and for the approximating finite-difference systems

in [2].

The third approach to optimal control of the sweeping process (1.1), as well as its modifications and

extensions, employs a control parametrization directly in the sweeping set C(t) making it dependent

on control actions. It has been initiated in [12] for the case of a controlled hyperplane C(t) and then

has been developed in a number of subsequent publications. The author has been strongly involved in

this line of research, which applies the method of discrete approximations accomplished in [28, 30] for

optimal control of Lipschitzian differential inclusions. Developing this method in order to cover highly

non-Lipschitzian ones associated with the sweeping dynamics has been a challenging goal of our ap-

proach, which makes a bridge between finite-dimensional and infinite-dimensional optimization as well

as between static and dynamic expects of optimization and control. It is largely based on employing

powerful tools of first-order and second-order variational analysis and generalized differentiation.

The current paper is mostly devoted to discussions, implementations, and applications of the major

results obtained in this direction. It is organized as follows. In Section 2. we present some preliminaries
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from variational analysis and generalized differentiation needed for the further material. Section 3.

concerns optimization of sweeping processes with moving controlled sets given by polyhedra. We

also discuss there optimal control models containing control actions in both moving sets and external

perturbations.

Section 4. deals with optimal control problems for nonconvex sweeping processes described via uni-

formly prox-regular moving sets. The results presented there are motivated by applications to op-

timization of the crowd motion model, which is well recognized in traffic equilibria and operations

research. In Section 5. we discuss new results on necessary optimality conditions in the extended

Euler-Lagrange and Hamiltonian forms for controlled sweeping processes with moving sets given by

inverse images.

Section 6. is devoted to applications to selected practical models arising in crowd motions, elastoplas-

ticity, and hysteresis. In the concluding Section 7. we discuss some challenging open problems.

Throughout the paper we use standard notation of variational analysis and control theory; see, e.g.,

[29, 36, 39]. Recall that N := {1, 2, . . .}, that A∗ stands for the transposed/adjoint matrix to A, and

that B denotes the closed unit ball of the space in question.

2. PRELIMINARIES FROM GENERALIZED DIFFERENTIATION

Employing the geometric approach to generalized differentiation [29, 31], we start with our basic

concept of the normal cone to a locally closed set that induces the corresponding generalized differen-

tiability notions for nonsmooth functions and (single-valued and set-valued) mappings. Note that our

discrete approximation technique requires considering normals to nonconvex sets even in the case of

sweeping processes generated by convex moving sets as in (1.1). The (basic, limiting, Mordukhovich)

normal cone to an arbitrary locally closed set Ω ⊂ Rn at x̄ ∈ Rn is defined by

N(x̄; Ω) :=

{ {
v ∈ Rn

∣∣ ∃xk → x̄, αk ≥ 0, wk ∈ Π(xk; Ω), αk(xk − wk)→ v if x̄ ∈ Ω,

∅ otherwise,
(2.1)

where Π(x; Ω) stands for the Euclidean projector of x onto Ω. When Ω is convex, the normal cone (2.1)

reduces to the one (1.2) in the sense of convex analysis, but in general the multifunction x→→ N(x; Ω)

is nonconvex-valued while satisfying a full calculus together with the associated subdifferential of

extended-real-valued functions and coderivative of set-valued mappings considered below. Such a

calculus is due to variational/extremal principles of variational analysis; see [29, 31, 36] for more

details.

Given a set-valued mapping F : Rn →→ Rq and a point (x̄, ȳ) ∈ gphF from its graph

gphF :=
{

(x, y) ∈ Rn × Rq
∣∣ y ∈ F (x)

)}
,

the coderivative D∗F (x̄, ȳ) : Rq →→ Rn of F at (x̄, ȳ) is defined by

D∗F (x̄, ȳ)(u) :=
{
v ∈ Rn

∣∣ (v,−u) ∈ N
(
(x̄, ȳ); gphF

)}
, u ∈ Rq, (2.2)

where ȳ is omitted in the notation if F : Rn → Rq is single-valued. If furthermore F is C1-smooth

around x̄ (or merely strictly differentiable at this point), we have D∗F (x̄)(v) = {∇F (x̄)∗v} via the
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adjoint Jacobian matrix. In general, the coderivative (2.2) is a positively homogeneous multifunc-

tion satisfying comprehensive calculus rules and providing complete characterizations of major well-

posedness properties in variational analysis related to Lipschitzian stability, metric regularity, and

linear openness; see [29, 36].

For an extended-real-valued function φ : Rn → R := (∞,∞] finite at x̄, i.e., with x̄ ∈ dimφ, the

(first-order) subdifferential of φ at x̄ is defined geometrically by

∂φ(x̄) := {v ∈ Rn
∣∣ (v,−1) ∈ N

(
(x̄, φ(x̄)); epiφ

)}
(2.3)

via the normal cone (2.1) to the epigraphical set epiφ := {(x, α) ∈ Rn+1| α ≥ φ(x)}. If φ(x) := δΩ(x),

the indicator function of a set Ω that equals to 0 for x ∈ Ω and to∞ otherwise, we get ∂φ(x̄) = N(x̄; Ω).

Given further v̄ ∈ ∂φ(x̄), the second-order subdifferential (or generalized Hessian) ∂2φ(x̄, v̄) : Rn →→ Rn

of φ at x̄ relative to v̄ is defined as the coderivative of the first-order subdifferential by

∂2φ(x̄, v̄)(u) := (D∗∂φ)(x̄, v̄)(u), u ∈ Rn, (2.4)

where v̄ = ∇φ(x̄) is omitted when φ is differentiable at x̄. If φ is C2-smooth around x̄, then (2.4)

reduces to the classical (symmetric) Hessian matrix

∂2φ(x̄)(u) =
{
∇2φ(x̄)u

}
for all u ∈ Rn.

For applications in this paper we also need partial versions of the above subdifferential constructions

for functions of two variables φ : Rn×Rm → R. Consider the partial first-order subdifferential mapping

(x,w) 7→ ∂xφ(x,w) for ϕ(x,w) with respect to x by

∂xφ(x,w) :=
{

set of subgradients v ∈ Rn of φw := φ(·, w) at x
}

= ∂φw(x)

and then, picking (x̄, w̄) ∈ domφ and v̄ ∈ ∂xφ(x̄, w̄), define the partial second-order subdifferential of

φ with respect to x at (x̄, w̄) relative to v̄ by

∂2
xφ(x̄, w̄, v̄)(u) :=

(
D∗∂xφ)(x̄, w̄, v̄)(u) for all u ∈ Rn. (2.5)

If φ is C2-smooth around (x̄, w̄), we have the representation

∂2φ(x̄, w̄)(u) =
{(
∇2
xxφ(x̄, w̄)∗u,∇2

xwφ(x̄, w̄)∗u
)}

for all u ∈ Rn.

Consider further the parametric constraint system

S(w) :=
{
x ∈ Rn

∣∣ ψ(x,w) ∈ Θ
}
, w ∈ Rm, (2.6)

generated by a vector function ψ : Rn × Rm → Rs and a set Θ ⊂ Rs. We associate with (2.6) the

normal cone mapping N : Rn × Rm →→ Rn by

N (x,w) := N
(
x;S(w)

)
for x ∈ S(w). (2.7)

It is easy to see that the mapping N in (2.7) admits the composite representation

N (x,w) = ∂xφ(x,w) with φ(x,w) :=
(
δΘ ◦ ψ

)
(x,w) (2.8)
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via ψ and the indicator function δΘ of the set Θ. It follows directly from (2.8) due to the second-order

subdifferential construction (2.5) that

∂2
xφ(x̄, w̄, v̄)(u) = D∗N (x̄, w̄, v̄)(u) for any v̄ ∈ N (x̄, w̄) and u ∈ Rn.

The following second-order chain rule can be derived from [33, Theorem 3.1] applied to the composition

in (2.8). It plays an important role in the subsequent applications to controlled sweeping processes.

Theorem 2.1. (second-order subdifferential chain rule). Let ψ be C2-smooth around (x̄, w̄)

with the partial Jacobian matrix ∇xψ(x̄, w̄) of full rank. Then for each v̄ ∈ N (x̄, w̄) there is a unique

vector p̄ ∈ NΘ(ψ(x̄, w̄)) := N(ψ(x̄, w̄); Θ) satisfying

∇xψ(x̄, w̄)∗p̄ = v̄

and such that the coderivative of the normal cone mapping is computed for all u ∈ Rn by

D∗N (x̄, w̄, v̄)(u) =

[
∇2
xx〈p̄, ψ〉(x̄, w̄)

∇2
xw〈p̄, ψ〉(x̄, w̄)

]
u+∇ψ(x̄, w̄)∗D∗NΘ

(
ψ(x̄, w̄), p̄

)(
∇xψ(x̄, w̄)u

)
.

Thus Theorem 2.1. reduces the calculation of D∗N to that of D∗NΘ, which has been computed via

the given data for broad classes of sets Θ; see, e.g., [20, 31, 32, 33] for more details and references.

3. SWEEPING PROCESSES WITH MOVING CONTROLLED POLYHEDRA

In this section we discuss two different classes of optimal control problems of a polyhedral type.

The first class contains control actions changing both normal directions and positions of polyhedra,

while the other one employs actions controlling boundaries of polyhedra as well as additive external

perturbations of the sweeping dynamics. Both models admit (and are largely motivated by) valuable

applications.

3.1. Optimization over Shapes of Polyhedra

This part is based on [14], where the following optimal control problem (P ) is considered. Given an

extended-real-valued terminal cost function ϕ : Rn → R and a running cost ` : [0, T ]×R2(n+nm+m) →
R, minimize the Bolza-type functional

J [x, u, b] : = ϕ
(
x(T )

)
+

∫ T

0

`
(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt (3.1)

over the controlled sweeping dynamics described by

.
x(t) ∈ −N

(
x(t);C(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0) (3.2)

with the inequality and equality constraint defined by

C(t) :=
{
x ∈ Rn

∣∣ 〈ui(t), x〉 ≤ bi(t), i = 1, . . . ,m
}

(3.3)

with ‖ui(t)‖ = 1 for all t ∈ [0, T ], i = 1, . . . ,m, (3.4)
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where the controls actions u(·) =
(
u1(·), . . . , um(·)

)
and b(·) =

(
b1(·), . . . , bm(·)

)
are absolutely con-

tinuous on [0, T ], the final time T is fixed, and the absolutely continuous trajectories x(·) of the

differential inclusion are understood in the standard sense of Carathéodory. It follows from the nor-

mal cone definition (1.2) that the sweeping inclusion (3.2) automatically yields the (implicit) state

constraints

x(t) ∈ C
(
u(t), b(t)

)
for all t ∈ [0, T ]. (3.5)

A particular case of problem (P ) in (3.1)–(3.4) was partially investigated in [12] for the sweeping

process generated by a moving affine hyperplane whose normal direction and boundary were acting

as control functions. The study in [12] was confined to considering cost functionals independent of

time, control, and control velocities with imposing a rather restrictive assumption on the uniform

Lipschitzian continuity of feasible controls needed there for the truncation to bounded differential

inclusions.

Paper [14] also addresses the following parametric perturbation (P τ ) of the original problem (P ) with

the control constraints in (3.4) replaced by

‖ui(t)‖ = 1 on [τ, T − τ ] and
1

2
≤ ‖ui(t)‖ ≤

3

2
on [0, τ) ∪ (T − τ, T ], i = 1, . . . ,m,

where the time endpoint perturbation parameter τ > 0 is arbitrarily small, and so (P τ ) is not much

different from (P ). The purpose of the equality constraint relaxation on the small intervals adjacent

to the time endpoints is to avoid degeneracy of necessary optimality conditions, which otherwise may

hold for all the feasible solutions under some choice of nontrivial dual elements. Such a degeneracy

phenomenon for necessary optimality conditions of the Pontryagin Maximum Principle type has been

discovered and well investigated in control theory with inequality state constraints; in particular, for

Lipschitzian and compact-valued differential inclusions as in [5, 39].

Both problems (P ) and (P τ ) are highly nonstandard in optimal control theory while dealing with

controlled differential equations and Lipschitzian differential inclusions. To proceed with deriving

necessary optimality conditions, we develop in [13, 14] a new version of the method of discrete approx-

imations, which significantly modifies the Lipschitzian ones in [28, 30], establishes the W 1,2-strong

convergence of discrete optimal solutions piecewise linearly extended to [0, T ], and reduces discrete-

time approximation problems to those in nonsmooth mathematical programming with many geometric

constraints. Then we apply powerful techniques of variational analysis, based on the extremal prin-

ciple and generalized differential calculus, to derive necessary optimality condition in the obtained

mathematical programming and discrete-time optimization problems, and finally derive necessary op-

timality conditions for local minimizers in the original sweeping optimal control problems by passing

to the limit from those for discrete approximations. To efficiently implement this scheme, we em-

ploy second-order computations of (2.4) and (2.5) for mappings associated with the sweeping process

that are given in terms of its original data. Second-order calculus rules as in Theorem 2.1. and its

modifications play a crucial role in our implementations.

This approach allows us to establish necessary optimality conditions in the extended Euler-Lagrange

form for the so-called intermediate local minimizers of the sweeping control problems formulated

above. We refer the reader to [14] for the all the details on this development. The results of the
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aforementioned type will be presented in Subsection 5.2. for a more general version of problem (P )

from (3.1)–(3.5).

3.2. Polyhedral Sweeping Process with Controlled Perturbations

The main goal of [7, 8] is to study a parametric family of sweeping optimal control problems with

controls acting in both polyhedral moving sets and additive perturbations. Consider the problem:

minimize J [x, u, a] := ϕ
(
x(T )

)
+

∫ T

0

`
(
t, x(t), u(t), a(t), ẋ(t), u̇(t), ȧ(t)

)
dt (3.6)

over control pairs (u(·), a(·)) with u(·) ∈W 1,2([0, T ];Rn), a(·) ∈W 1,2([0, T ];Rd) and the corresponding

trajectories x(·) ∈W 1,2([0, T ];Rn) of the differential inclusion

−ẋ(t) ∈ N
(
x(t);C(t)

)
+ f

(
x(t), a(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0), (3.7)

where x0 ∈ Rn and T > 0 are fixed, and where the moving convex set C(t) is given by

C(t) := C + u(t) with C :=
{
x ∈ Rn

∣∣ 〈x∗i , x〉 ≤ 0 for all i = 1, . . . ,m
}

(3.8)

with the fixed generating vectors x∗i of the convex polyhedron C in (3.8). Besides the dynamic

constraints (3.7), we consider the pointwise constraints on u-controls defined by{
‖u(t)‖ = r for all t ∈ [τ, T − τ ],

r − τ ≤ ‖u(t)‖ ≤ r + τ for all t ∈ [0, τ) ∪ (T − τ, T ]
(3.9)

with the parameter τ ∈ [0, τ ] depending on τ := min{r, T} and fixed r > 0. Note that by definition

(1.2) the differential inclusion in (3.7) yields the pointwise constraints of another type〈
x∗i , x(t)− u(t)

〉
≤ 0 for all t ∈ [0, T ] and i = 1, . . . ,m. (3.10)

The parametric family of problems (3.6)–(3.10) is different from the problems in Subsection 3.1,

but it can also be investigated by the appropriate version of the method of discrete approximations

developed in [7, 8]. In this way we obtain in [7] the W 1,2-strong convergence of well-posed discrete

approximations with deriving necessary optimality conditions for discrete-time problems by using tools

of variational analysis and generalized differentiation. The passage to the limit accomplished in [8]

gives us necessary optimality conditions in the extended Euler-Lagrange form for the continuous-time

sweeping process with applications to the controlled corridor version of the crowd motion model; see

Subsection 6.1.

4. PERTURBED PROX-REGULAR SWEEPING PROCESSES

The polyhedral description of the controlled moving set in (3.8) allows us to apply the obtained

optimality conditions only to the corridor version of the crowd motion model. Among our main

motivations for further developments in [9] was to perform optimal control for the more realistic

planar version of the crowd motion model. In this case, the corresponding controlled moving sets can

be adequately described in the nonconvex (and hence nonpolyhedral) form as

C(t) := C + u(t) =

m⋂
i=1

Ci + u(t) with Ci :=
{
x ∈ Rn

∣∣ gi(x) ≥ 0
}

for all i = 1, . . . ,m (4.1)
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defined by some convex and C2-smooth functions gi : Rn → R. Such a description implies that

the set C(t) in (4.1) is uniformly prox-regular, which is the concept well understood in variational

analysis and geometric measure theory; see, e.g., [15] and the references therein. The optimal control

problem considered in [9] is formulated as follows: minimize the cost (3.6) over the control actions

u(·) ∈ W 1,2([0, T ];Rn) and a(·) ∈ W 1,2([0, T ];Rd) generating the corresponding trajectories x(·) ∈
W 1,2([0, T ];Rn) of the sweeping inclusion (3.7) with the controlled moving set (4.1) under the pointwise

constraints on the controls

r1 ≤ ‖u(t)‖ ≤ r2 for all t ∈ [0, T ] with 0 < r1 ≤ r2,

where the normal cone to the nonconvex set (4.1) in (3.7) is understood in the sense of (2.1). Similarly

to the previous models, we have the implicit mixed (control-state) constraints

gi
(
x(t)− u(t)

)
≥ 0 for all t ∈ [0, T ] and i = 1, . . . ,m.

Developing a suitable version of the method of discrete approximations married to machinery of

variational analysis and generalized differentiation leads us to verifiable necessary optimality conditions

obtained in [9] in the extended Euler-Lagrange form; see Theorem 5.1. for the results of this type.

5. EXTENDED EULER-LAGRANGE AND HAMILTONIAN FORMALISMS

The results of this section are mostly based on the brand new paper [22], which is devoted to a general

class of controlled sweeping processes with moving sets given as inverse images of closed subsets of

finite-dimensional spaces under nonlinear differentiable mappings dependent on both state and control

variables. Among other areas, our investigation of such problems is motivated by applications to rate-

independent systems arising in hysteresis and related areas.

5.1. Problem Formulation and Standing Assumptions

We address here the sweeping control systems modeled as

ẋ(t) ∈ f
(
t, x(t)

)
−N

(
g(x(t));C(t, u(t))

)
a.e. t ∈ [0, T ], x(0) = x0 ∈ C

(
0, u(0)

)
, (5.1)

where the controlled moving set is given by

C(t, u) :=
{
x ∈ Rn

∣∣ ψ(t, x, u) ∈ Θ
}
, (t, u) ∈ [0, T ]× Rm, (5.2)

with f : [0, T ] × Rn → Rn, g : Rn → Rn, ψ : [0, T ] × Rn × Rm → Rs, and Θ ⊂ Rs. The problem (P )

under consideration consists of minimizing the cost functional

minimize J [x, u] := ϕ
(
x(T )

)
+

∫ T

0

`
(
t, x(t), u(t), ẋ(t), u̇(t)

)
dt (5.3)

over absolutely continuous control actions u(·) and the corresponding absolutely continuous trajecto-

ries x(·) of the sweeping differential inclusion (5.1) generated by the controlled moving set (5.2). It

follows from (5.1) due to (2.1) that the optimal control problem (P ) intrinsically contains the pointwise

constraints on both state and control functions given by

ψ
(
t, g(x(t)), u(t)

)
∈ Θ for all t ∈ [0, T ].
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Our standing assumptions are as follows:

(H1) There exits Lf > 0 such that ‖f(t, x) − f(t, y)‖ ≤ Lf‖x − y‖ for all x, y ∈ Rn, t ∈ [0, T ] and

the mapping t 7→ f(t, x) is a.e. continuous on [0, T ] for each x ∈ Rn.

(H2) There exits Lg > 0 such that ‖g(x)− g(y)‖ ≤ Lg‖x− y‖ for all x, y ∈ Rn.

(H3) For each (t, u) ∈ [0, T ]×Rm, the mapping ψt,u(x) := ψ(t, x, u) is C2-smooth around the reference

points with the surjective derivative ∇ψt,u(x) satisfying

‖∇ψt,u(x)−∇ψt,v(x)‖ ≤ Lψ‖u− v‖

with the uniform Lipschitz constant Lψ. Furthermore, the mapping t 7→ ψ(t, x) is a.e. continuous on

[0, T ] for each x ∈ Rn and u ∈ Rm.

(H4) There are a number τ > 0 and a mapping ϑ : Rn × Rn × Rn × Rm → Rm locally Lipschitz

continuous and uniformly bounded on bounded sets such that for all t ∈ [0, T ], v̄ ∈ N(ψ(t,ū)(x̄); Θ), and

x ∈ ψ−1
(t,u)(Θ) with u := ū+ϑ(x−x̄, x, x̄, ū) there exists v ∈ N(ψ(t,u)(x); Θ) satisfying ‖v−v̄‖ ≤ τ‖x−x̄‖.

(H5) The cost functions ϕ : Rn → R := [−∞,∞) and `(t, ·) : R2(n+m) → R in (5.3) are bounded from

below and lower semicontinuous around a given feasible solution to (P ) for a.e. t ∈ [0, T ], while the

integrand ` is a.e. continuous in t and is uniformly majorized by a summable function on [0, T ].

(H6) The set Θ in (5.2) is locally closed around the reference points.

Assumption (H4) is technical and seems to be the most restrictive. As shown in [22], it holds auto-

matically in the polyhedral setting of [14] as well as in rather standard nonconvex settings.

5.2. Extended Euler-Lagrange Conditions

The method of discrete approximations allows us to derive necessary optimality conditions of the

extended Euler-Lagrange type for two types of local minimizers in problem (P ) formulated in Subsec-

tion 5.1. The first type treats the trajectory and control components of the optimal pair (x̄(·), ū(·))
in the same way and reduces in fact to the intermediate W 1,2-minimizers introduced in [28] in the

general framework of differential inclusions and then studied in [7]–[9], [12]–[14], [30], [39], and other

publications. The second type seems to be new in control theory; it treats control and trajectory

components differently and applies to problems (P ) whose running costs do not depend on control

velocities.

Definition 5.1. (local minimizers for controlled sweeping processes). Let the pair (x̄(·), ū(·))
be feasible to problem (P ) under the standing assumptions made.

(i) We say that (x̄(·), ū(·)) be a local W 1,2 ×W 1,2-minimizer for (P ) if x̄(·) ∈ W 1,2([0, T ];Rn),

ū(·) ∈W 1,2([0, T ];Rm), and

J [x̄, ū] ≤ J [x, u] for all x(·) ∈W 1,2([0, T ];Rn) and u(·) ∈W 1,2([0, T ];Rm) (5.4)

sufficiently close to (x̄(·), ū(·)) in the norm topology of the corresponding spaces in (5.4).

(ii) Let the running cost `(·) in (3.1) do not depend on u̇. We say that the pair (x̄(·), ū(·)) be a local

W 1,2 × C-minimizer for (P ) if x̄(·) ∈W 1,2([0, T ];Rn), ū(·) ∈ C([0, T ];Rm), and

J [x̄, ū] ≤ J [x, u] for all x(·) ∈W 1,2([0, T ];Rn) and u(·) ∈ C([0, T ];Rm) (5.5)

sufficiently close to (x̄(·), ū(·)) in the norm topology of the corresponding spaces in (5.5).
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It has been well recognized in the calculus of variations and optimal control, starting with pioneering

studies by Bogolyubov and Young, that limiting procedures of dealing with continuous-time dynamics

involving time derivatives require a certain relaxation stability, which means that the value of cost

functionals does not change under the convexification of the dynamics and running cost with respect

to velocity variables; see, e.g., [17, 31, 39] for more details and references. In sweeping control theory,

such issues have been investigated in [18, 37] for controlled sweeping processes somewhat different

from (P ).

To consider an appropriate relaxation of our problem (P ), denote

F = F (t, x, u) := f(t, x)−N
(
g(x);C(t, u)

)
(5.6)

and formulate the relaxed optimal control problem (R) as a counterpart of (P ) with the replacement

of the cost functional (3.1) by the convexified one

minimize Ĵ [x, u] := ϕ
(
x(T )

)
+

∫ T

0

̂̀
F

(
t, x(t), u(t), ẋ(t), u̇(t)

)
dt,

where ̂̀(t, x, u, ·, ·) is defined as the largest l.s.c. convex function majorized by `(t, x, u, ·, ·) on the

convex closure of the set F in (5.6) with ̂̀ :=∞ otherwise. Then we say that the pair (x̄(·), ū(·)) is a

relaxed local W 1,2 ×W 1,2-minimizer for (P ) if in additions to the conditions of Definition 5.1.(i) we

have J [x̄, ū) = Ĵ [x̄, ū]. Similarly we define a relaxed local W 1,2×C-minimizer for (P ) in the setting of

Definition 5.1.(ii). Note that, in contrast to the original problem (P ), the convexified structure of the

relaxed problem (R) provides an opportunity to the establish the existence of global optimal solutions

in the prescribed classes of controls and trajectories. It is not a goal of this paper, but we refer the

reader to [9, Theorem 4.1] and [37, Theorem 4.2] for some particular settings of controlled sweeping

processes in the classes of W 1,2 ×W 1,2 and W 1,2 × C feasible pairs (x̄(·), ū(·)), respectively.

There is clearly no difference between the problems (P ) and (R) if the normal cone in (5.6) is convex

and the integrand ` in (3.1) is convex with respect to velocity variables. On the other hand, the

measure continuity/nonatonomicity on [0, T ] and the differential inclusion structure of the sweeping

process (5.1) create the environment where any local minimizer of the types under consideration is

also a relaxed one. Without delving into details here, we just mention that the possibility to derive

such a local relaxation stability from [37, Theorem 4.2] for strong local (in the C-norm) minimizers of

(P ), provided that the controlled moving set C(t, u) in (5.2) is convex and continuously depends on

its variables.

The following major result is derived by passing to the limit from discrete approximations and employ-

ing second-order calculus rules as in Theorem 2.1. We refer the reader to the proof of [22, Theorem 4.3]

and the previous results therein for precise arguments. For simplicity the theorem is formulated in

the case of (P ) where g(x) := x, f := 0 while ψ and ` do not depend on t.

Theorem 5.1. (extended Euler-Lagrange optimality conditions). Let (x̄(·), ū(·)) be a local

minimizer for problem (P ) of the types specified below. In addition to the standing assumptions, sup-

pose that ψ = ψ(x, u) is C2-smooth with respect to both variables while ϕ and ` are locally Lipschitzian

around the corresponding components of the optimal solution. The following assertions hold:
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(i) If (x̄(·), ū(·)) is a relaxed local W 1,2 ×W 1,2-minimizer, then there exist a multiplier λ ≥ 0, an

adjoint arc p(·) = (px, pu) ∈W 1,2([0, T ];Rn×Rm), a signed vector measure γ ∈ C∗([0, T ];Rs), as well

as pairs (wx(·), wu(·)) ∈ L2([0, T ];Rn × Rm) and (vx(·), vu(·)) ∈ L∞([0, T ];Rn × Rm) with(
wx(t), wu(t), vx(t), vu(t)

)
∈ co ∂`

(
x̄(t), ū(t), ˙̄x(t), ˙̄u(t)

)
a.e. t ∈ [0, T ] (5.7)

satisfying the collection of necessary optimality conditions:

• Primal-dual dynamic relationships:

ṗ(t) = λw(t) +

[
∇2
xx

〈
η(t), ψ

〉(
x̄(t), ū(t)

)
∇2
xw

〈
η(t), ψ

〉(
x̄(t), ū(t)

) ] (− λvx(t) + qx(t)
)

a.e. t ∈ [0, T ], (5.8)

qu(t) = λvu(t) a.e. t ∈ [0, T ], (5.9)

where η(·) ∈ L2([0, T ];Rs) is a uniquely defined vector function determined by the representation

˙̄x(t) = −∇xψ
(
x̄(t), ū(t)

)∗
η(t) a.e. t ∈ [0, T ] (5.10)

with η(t) ∈ N(ψ(x̄(t), ū(t)); Θ), and where q : [0, T ]→ Rn ×Rm is a function of bounded variation on

[0, T ] with its left-continuous representative given, for all t ∈ [0, T ] except at most a countable subset,

by

q(t) = p(t)−
∫

[t,T ]

∇ψ
(
x̄(τ), ū(τ)

)∗
dγ(τ). (5.11)

• Measured coderivative condition: Considering the t-dependent outer limit

Lim sup
|B|→0

γ(B)

|B|
(t) :=

{
y ∈ Rs

∣∣∣ ∃ sequence Bk ⊂ [0, 1] with t ∈ Bk, |Bk| → 0,
γ(Bk)

|Bk|
→ y

}
(5.12)

over Borel subsets B ⊂ [0, 1] with the Lebesgue measure |B|, for a.e. t ∈ [0, T ] we have

D∗NΘ

(
ψ(x̄(t), ū(t)), η(t)

)(
∇xψ(x̄(t), ū(t))(qx(t)− λvx(t))

)
∩ Lim sup
|B|→0

γ(B)

|B|
(t) 6= ∅. (5.13)

• Transversality condition at the right endpoint:

−
(
px(T ), pu(T )

)
∈ λ
(
∂ϕ(x̄(T )), 0

)
+∇ψ

(
x̄(T ), ū(T )

)
NΘ

(
(x̄(T ), ū(T )

)
. (5.14)

• Measure nonatomicity condition: Whenever t ∈ [0, T ) with ψ(x̄(t), ū(t)) ∈ int Θ there is a

neighborhood Vt of t in [0, T ] such that γ(V ) = 0 for any Borel subset V of Vt.

• Nontriviality condition:

λ+ sup
t∈[0,T ]

‖p(t)‖+ ‖γ‖ 6= 0 with ‖γ‖ := sup
‖x‖C([0,T ]=1

∫
[0,T ]

x(s)dγ. (5.15)

(ii) If (x̄(·), ū(·)) is a relaxed local W 1,2×C-minimizer, then all the conditions (5.8)–(5.15) in (i) hold

with the replacement of the quadruple (wx(·), wu(·), vx(·), vu(·)) in (5.7) by the triple (wx(·), wu(·), vx(·)) ∈
L2([0, T ];Rn)× L2([0, T ];Rm)× L∞([0, T ];Rn) satisfying the inclusion(

wx(t), wu(t), vx(t)
)
∈ co ∂`

(
x̄(t), ū(t), ˙̄x(t)

)
a.e. t ∈ [0, T ].
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(iii) Suppose in addition that η(T ) is well defined and that θ = 0 is the only vector for which

θ ∈ D∗NΘ

(
ψ(x̄(T ), ū(T )), η(T )

)
(0), ∇ψ

(
x̄(T ), ū(T )

)∗
θ ∈ ∇ψ

(
x̄(T ), ū(T )

)
NΘ

(
x̄(T ), ū(T )

)
.

Then the above necessary optimality conditions hold with the enhanced nontriviality

λ+ mes
{
t ∈ [0, T ]

∣∣ q(t) 6= 0
}

+ ‖q(0)‖+ ‖q(T )‖ > 0.

5.3. New Hamiltonian Formalism and Maximum Principle

Note that the necessary optimality conditions obtained in Theorem 5.1. as well as in our previous

papers do not contain the formalism of the Pontryagin Maximum Principle (PMP) [35] (i.e., the

maximization of the corresponding Hamiltonian function) established in classical optimal control of

(1.4) and then extended to optimal control problems for Lipschitzian differential inclusions of type

(1.3).

To the best of our knowledge, necessary optimality conditions involving the maximization of the

corresponding Hamiltonian were first obtained for sweeping control systems in [6], where the authors

considered a sweeping process with a strictly smooth, convex, and solid set C(t) ≡ C in (1.1) while

with control functions entering linearly an adjacent ordinary differential equation. Further results

with the maximum condition for global (as in [6]) minimizers were derived in [4] for the sweeping

control system

ẋ(t) ∈ f
(
x(t), u(t)

)
−N

(
x(t);C(t)

)
a.e. t ∈ [0, T ], (5.16)

where measurable controls u(t) enter the additive smooth term f while the uncontrolled moving set

C(t) is compact, uniformly prox-regular regular, and possesses a C3-smooth boundary for each t ∈ [0, T ]

under some other assumptions. The very recent paper [16] also concerns a (generally nonautonomous)

sweeping control system in form (5.16) and derives necessary optimality conditions of the PMP type

for global minimizers provided that the convex, solid, and compact set C(t) ≡ C therein is defined

by C := {x ∈ Rn| ψ(x) ≤ 0} via a C2-smooth function ψ under other assumptions, which are partly

differ from [4]. The penalty-type approximation methods developed in [4], [6], and [16] are different

from each other, significantly based on the smoothness of uncontrolled moving sets while being totally

distinct from the method of discrete approximations employed in our previous papers and in what

follows.

The next result is the first in the literature on the validity of a PMP counterpart in optimal control

of sweeping processes with control-dependent moving sets. It addresses the above problem (P ) with

Θ = h−1(Rl−) :=
{
z ∈ Rs

∣∣ h(z) ∈ Rl−
}

(5.17)

in (5.2) defined via a smooth mapping h : Rs → Rl and is based on the precise computation of the

second-order construction D∗NRs
−

taken from [32]. Consider the index set

I(x, u) :=
{
i ∈ {1, . . . , s}

∣∣ ψi(x, u) = 0
}
.

It follows from assumption (H3) that for each v ∈ −N(x;C(u)) there is a unique collection {αi}i∈I(x,u)

with αi ≤ 0 and v =
∑
i∈I(x,u) αi[∇xψ(x, u)]i. Given ν ∈ Rs, define the vector [ν, v] ∈ Rn by

[ν, v] :=
∑

i∈I(x,u)

νiαi
[
∇xψ(x, u)

]
i
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and introduce the (new) modified Hamiltonian function

Hν(x, u, p) := sup
{〈

[ν, v], p
〉∣∣ v ∈ −N(x;C(u)

)}
, (x, u, p) ∈ Rn × Rm × Rn. (5.18)

Note that if h(z) := Az − b in (5.17), the full Jacobian rank assumption in (H3) corresponds to

the classical linear independence constraint qualification (LICQ). In this linear case of h(·), we can

improve the LICQ condition in the aforementioned coderivative evaluation by the weaker positive

LICQ (PLICQ) meaning that arbitrary linear combinations of gradients in LICQ are replaced by

those with nonnegative coefficients. Now we are ready to formulate a PMP counterpart for (P ) via

the new Hamiltonian (5.18).

Theorem 5.2. (maximum principle in sweeping optimal control). Consider the control prob-

lem (P ) in the frameworks of Theorem 5.1. with the set Θ given by (5.17), where h : Rs → Rl is

C2-smooth around the local optimal solution z̄(t) := (x̄(t), ū(t)) for all t ∈ [0, T ]. Suppose that either

∇h(z̄(t)) is surjective, or h(·) is linear and the PLICQ assumption is fulfilled at z̄(t) on [0, T ]. Then,

in addition to the necessary optimality conditions of Theorem 5.1, the maximum condition〈[
ν(t), ˙̄x(t)

]
, qx(t)− λvx(t)

〉
= Hν(t)

(
x̄(t), ū(t), qx(t)− λvx(t)

)
= 0 a.e. t ∈ [0, T ].

holds with a measurable vector function ν : [0, T ]→ Rs satisfying the inclusion

ν(t) ∈ D∗NRs
−

(
h(ψ(x̄(t), ū(t))), µ(t)

)(
∇xψ(x̄(t), ū(t))(qx(t)− λvx(t))

)
∩ Lim sup
|B|→0

γ(B)

|B|
(t)

for a.e. t ∈ [0, T ], where Lim sup is defined in (5.12), and where µ : [0, T ]→ Rl is measurable with

µ(t) ∈ NRl
−

(
h(ψ(x̄(t), ū(t))

)
and η(t) = ∇h

(
ψ(x̄(t), ū(t)

)∗
µ(t) a.e. t ∈ [0, T ].

As shown in [22], a conventional form of the maximum principle with replacing the new Hamiltonian

function (5.18) by the standard Hamiltonian

H(x, u, p) := sup
{〈
p, v
〉∣∣ v ∈ −N(x;C(u)

)}
, (x, u, p) ∈ Rn × Rm × Rn.

fails as a necessary optimality condition even for global minimizers of (P ).

6. SELECTED APPLICATIONS

This section briefly discusses some recent applications of the obtained necessary optimality conditions

for controlled sweeping processes to dynamical models of practical interest. We start with a class

of optimal control problems for the crowd motion model in a corridor, which can be completely

solved by using the results for polyhedral sweeping processes with controlled perturbations outlined

in Subsection 3.2.

6.1. Optimal Control of Crowd Motions: Corridor Model

The original motivation for the crowd motion model relates to the study of local interactions between

participants in order to describe the dynamics of pedestrian traffic. By now this model has been suc-

cessfully used to investigate more general classes of problems in operations research, socioeconomics,

etc.
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The microscopic form of the crowd motion model is based on the following two postulates. On one

hand, each individual has a spontaneous velocity that he/she intends to implement in the absence of

other participants. On the other hand, the actual velocity must be taken into account. The latter one is

incorporated via a projection of the spontaneous velocity into the set of admissible/feasible velocities,

i.e., those which do not violate certain nonoverlapping constraints. A mathematical description of the

uncontrolled microscopic crowd motion model is given [26, 38] in the sweeping process form with the

subsequent usage therein for numerical simulations and various applications.

In the corridor version of the crowd motion model the crucial nonoverlapping condition is written as

Q0 =
{
x = (x1, . . . , xn) ∈ Rn, xi+1 − xi ≥ 2R

}
, (6.1)

where n ≥ 2 indicates the number of participants identified with rigid disks of the same radius R in

a corridor. The actual velocity field is described via the projection operator by

ẋ(t) = Π
(
U(x);Cx

)
for a.e. t ∈ [0, T ], x(0) = x0 ∈ Q0,

with spontaneous velocities U(x) = (U0(x1), . . . , U0(xn)), x ∈ Q0, satisfying

U(x) ∈ Nx + ẋ(t) for a.e. t ∈ [0, T ], x(0) = x0,

where Nx stands for the normal cone to Q0 at x. Since all the participants exhibit the same behavior

and want to reach the exit by the shortest path, their spontaneous velocities can be represented as

U(x) =
(
U0(x1), . . . , U0(xn)

)
with U0(x) = −s∇D(x)

with D(x) denoting the distance between the position x = (x1, . . . , xn) ∈ Q0 and the exit and with

s ≥ 0 standing for the speed. By taking this into account the aforementioned postulate that in

the absence of other participants each participant tends to remain his/her spontaneous velocity until

reaching the exit, the (uncontrolled) perturbations in this model are described by

f(x) = −(s1, . . . , sn) ∈ Rn for all x = (x1, . . . , xn) ∈ Q0,

where si denotes the speed of the participant i ∈ {1, . . . , n}. To control the actual speed of all the

participants in the presence of the nonoverlapping condition (6.1), we suggest in [8] to involve control

functions a(·) = (a1(·), . . . , an(·)) into perturbations as follows:

f
(
x(t), a(t)

)
=
(
s1a1(t), . . . , snan(t)

)
, t ∈ [0, T ].

To optimize the sweeping dynamics by using controls a(·), consider the cost functional

minimize J [x, a] :=
1

2

(
‖x(T )‖2 +

∫ T

0

‖a(t)‖2dt
)

(6.2)

the meaning of which is to minimize the distance of all the participants to the exit at the origin

together with minimizing the energy of feasible controls a(·).
The given description of the controlled crowd motion model falls into the category of the sweeping

optimal control problems (3.6)–(3.10) discussed in Subsection 3.2. Applying the necessary optimality

conditions for such problems obtained in [8] allows us to develop an efficient algorithmic procedure to

determine optimal controls and trajectories in the general case of finitely many participants and solve

the problem analytically in the cases where n = 2, 3.
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6.2. Optimal Control of Crowd Motions: Planar Model

The planar version of the microscopic crowd motion model [26, 38] is more realistic in practice while

much more challenging mathematically in comparison with the corridor version of Subsection 6.1. In

contrast to (6.1), the overlapping condition is not polyhedral anymore while being represented by

Q :=
{
x ∈ R2n

∣∣ Dij(x) ≥ 0 for all i 6= j
}
,

where Dij(x) := ‖xi− xj‖− 2R is the signed distance between the disks i and j of the same radius R

identified with n ≥ 2 participants on the plane. The corresponding optimal control problem formulated

and investigated in [10] is described via the sweeping dynamics as follows: minimize the cost functional

(6.2) over the constrained controlled sweeping process{
−ẋ(t) ∈ N

(
x(t);C(t)) + f(x(t), a(t)

)
for a.e. t ∈ [0, T ],

C(t) := C + ū(t), ‖ū(t)‖ = r ∈ [r1, r2] on [0, T ], x(0) = x0 ∈ C(0),

where the initial data and constraints are given by

f
(
x(t), a(t)

)
:=
(
s1a1(t) cos θ1(t), s1a1(t) sin θ1(t), . . . , snan(t) cos θn(t), snan(t) sin θn(t)

)
,

ūi+1(t) = ūi(t) :=

(
r√
2n
,
r√
2n

)
, i = 1, . . . , n− 1,

C :=
{
x = (x1, . . . , xn) ∈ R2n

∣∣ gij(x) ≥ 0 for all i 6= j as i, j = 1, . . . , n
}

with the functions gij(x) := Dij(x) = ‖xi − xj‖ − 2R, and with

x(t)− ū(t) ∈ C for all t ∈ [0, T ].

This model falls into the category of optimizing controlled sweeping processes governed by prox-regular

moving sets that is discussed in Subsection 4. Applying the necessary optimality conditions for such

problems obtained in [9] leads us in [10] to a complete computation of optimal solutions in the case

of two participants with establishing efficient relationships to determine optimal parameters in the

general setting of finitely many participants in the crowd motion modeling.

6.3. Applications to Elastoplasticity and Hysteresis

Here we consider the model of this type discussed in [3], which can be described in the form of problem

(P ) from Section 5, where Z is a closed convex subset of the 1
2n(n+ 1)-dimensional vector space E of

symmetric tensors n×n with intZ 6= ∅. Using the notation of [3], define the strain tensor ε = {ε}i,j by

ε := εe + εp, where εe is the elastic strain and εp is the plastic strain. The elastic strain εe depends on

the stress tensor σ = {σ}i,j linearly, i.e., εe = A2σ, where A is a constant symmetric positive-definite

matrix. The principle of maximal dissipation says that〈
ε̇p(t), z

〉
≤
〈
ε̇p(t), σ(t)

〉
for all z ∈ Z. (6.3)

It is shown in [3] that the variational inequality (6.3) is equivalent to the sweeping process

ζ̇(t) ∈ −N
(
ζ(t);C(t)

)
, ζ(0) = Aσ(0)−A−1ε(0) ∈ C(0), (6.4)
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where ζ(t) := Aσ(t)−A−1ε(t) and C(t) := −A−1ε(t) +AZ. This model can be rewritten in the frame

of our problem (P ) with x := ζ, u := ε, ψ(x, u) := x + A−1u, and Θ := AZ. Thus we can apply

Theorem 5.1. and Theorem 5.2. to this class of hysteresis operators for the general elasticity domain

Z. Note that a similar model is considered in [21] but only for the von Mises yield criterion. The

results obtained in [22] give us the flexibility of applications to many different elastoplasticity models

including those with the Drucker-Prager, Mohr-Coulomb, Tresca, von Mises yield criteria, etc. More

details with precise computations, examples, and discussions can be found in [22].

7. CONCLUDING REMARKS AND OPEN QUESTIONS

The material presented in this paper aims to draw the reader’s attention to a rather new and highly

challenging class of optimal control problems governed by sweeping processes with controlled moving

sets. The available results discussed above demonstrate that the method of discrete approximations,

being combined with advanced tools of first-order and second-order variational analysis and general-

ized differentiation, provides efficient machineries to derive verifiable necessary conditions for optimal

sweeping solutions and to apply them to various models of practical interest. From numerical view-

points, our approach reduces complicated problems of infinite-dimensional optimization to much easier

finite-dimensional ones. It opens the gate to employ known and develop new numerical algorithms in

finite-dimensional optimization and operations research to solve optimal control problems for sweep-

ing processes. Efficient numerical implementations of this approach to optimize important classes

of problems with controlled sweeping dynamics constitute a huge open area of future research and

applications.

Besides this, let us mention some other very challenging and significant open questions in sweeping

optimal control and its applications. Needless to say that the given partial list is far from being

complete.

• Investigate controlled sweeping processes of type (5.1) that contains, along with control actions in

the moving set C(t, u), measurable controls v(·) in f under the pointwise constraints v(t) ∈ V for

a.e. t ∈ [0, T ]. This would allow us to unify the current sweeping control theory involving continuous

controls with the conventional framework of optimal control, where control functions are merely

measurable.

• Develop optimal control theory for sweeping processes with infinite-dimensional (mainly Hilbert)

state spaces x ∈ X. A major goal here is to include into consideration evolution systems governed by

variational and quasi-variational inequalities associated with partial differential equations.

• Investigate optimal control problems governed by rate-independent operators having the following

description. Given two functionals E : [0, T ] × Z → R and Ψ: Z × X → [0,∞) on a Banach (or

finite-dimensional) space Z, consider the doubly nonlinear evolution inclusion

0 ∈ ∂vΨ
(
z(t), ż(t)

)
+ ∂E

(
t, z(t)

)
a.e. t ∈ [0, T ].

If E is smooth, the inclusion above is equivalent to

ż(t) ∈ NC(z(t))

(
∇E(t, z(t))

)
a.e. t ∈ [0, T ],
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where {C(z)}z∈Z is the family of closed convex subsets of Z related to Ψ by the formula

Ψ(z, v) := sup
{

(σ, v)
∣∣ σ ∈ C(z)

}
for all z, v ∈ Z.

Such problems are particularly important for applications to practical hysteresis models, especially

those arising in problems of contact and nonsmooth mechanics.

• Develop applications of sweeping optimal control to socioeconomic modeling. The crowd motion

model relates to problems of this type, but there are other important models in this area that can be

investigated by using advanced tools of variational analysis and generalized differentiation.

• It has been recently realized that there are interesting models in robotics, which can be described

as sweeping processes. Thus developing applications of the obtained and future results in sweeping

optimal control to such models is a very challenging area of further research.
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