
REVISTA INVESTIGACIÓN OPERACIONAL VOL. 39, NO. 3, 303-325, 2018

EXTENDED REAL-VALUED FUNCTIONS-

A UNIFIED APPROACH.
Petra Weidner∗

HAWK Hochschule Hildesheim/Holzminden/Göttingen, Germany.

ABSTRACT

Extended real-valued functions are often used in optimization theory, but in different ways for in-

fimum problems and for supremum problems. We present an approach to extended real-valued

functions that works for all types of problems and into which one results of convex analysis can

be embedded. Our approach preserves continuity and the Chebyshev norm when extending a func-

tional to the entire space. The basic idea also works for other spaces than the extended set of real

numbers. Moreover, we characterize semicontinuity, convexity, linearity and related properties of

extended real-valued functions.
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RESUMEN

Es común el uso de funciones R-evaluadas extendidas en Optimización, aunque tiene distintos sig-

nificados si se trata de problemas de cálculo de infimo o de supremo. En este trabajo presentamos

una forma diferente de extender funciones R-evaluadas que funciona para todo tipo de problemas

y en el que resultan naturales varios resultados del análisis convexo. En particular se preserva la

continuidad y la norma de Chebyshev al extender la función al todo el espacio. La idea funciona

también para otros espacios diferentes. Además se caracteriza la semi-continuidad, la convexidad, la

linealidad y otras propiedades relacionadas.

PALABRAS CLAVE: Análisis convexo, funciones convexas, funciones lineales, semi-continuidad.

1. INTRODUCTION

In this paper, we present basic notations and properties for functions which attain values in R :=

R∪{−∞,+∞}, the extended set of real numbers. Of course, such a function may also be real-valued,

but infima, suprema, limits, improper integrals or some measure can result in function values −∞
or +∞. Such values can also result from the extension of a function to the entire space or from the

addition of an indicator function expressing certain restrictions in convex analysis.

Our approach differs from the usual one in convex analysis presented in [8] and [9], but results from

convex analysis can be embedded into our approach as we will show in Section 7. The main difference

is the replacement of +∞ if it is used as a symbol for infeasibility by a symbol which does not belong
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to R. This results in a unified calculus for extended real-valued functions that does not depend on the

convexity of the function or on whether the function is to be minimized or maximized. The necessity

for an alternative approach to extended real-valued functions came up when studying properties of

the function ϕA,k given by

ϕA,k(x) := inf{t ∈ R | x ∈ tk +A} (1.1)

for some set A ⊂ X and some k ∈ X \ {0} in a linear space X under assumptions which do not

guarantee that the functional is defined and real-valued on the entire space. Depending on the set A

and the vector k, ϕA,k may be convex, concave or neither (see [14], [13]). Moreover, ϕA,k may be of

interest in minimization and in maximization problems. If the function is convex (e.g. for X = R2,

A = {(x1, x2)T | x1 ≤ 0, x2 ≤ 0}, k = (1, 0)T), it is of importance for vector minimization problems.

If it is concave (e.g. for X = R2, A = {(x1, x2)T | 0 ≤ x2 ≤ ex1}, k = (−1, 0)T), it can be used in

economics as a utility function which has to be maximized.

Let us underline that it was not our aim to change the approach in convex analysis, but that we

wanted to find a way for extending functions to the entire space in order to use the tools of convex

analysis without fixing in advance whether the function would be minimized or maximized. One can

easily transfer results from convex analysis, especially from variational analysis, to functions which

are given according to our approach.

Beside the unified calculus, our extension of functions preserves continuity, semicontinuity, suprema

and infima of functionals. We get rid of the irritating inequality sup ∅ < inf ∅ and can apply the Cheby-

shev norm approximation immediately to extended real-valued functions which have been extended

to the entire space since, in our calculus, the expression

inf
y∈Y

sup
x∈X
|f(x)− g(x, y)|

makes sense for arbitrary extended real-valued functions f , g defined on spaces X and X × Y .

In the following section, we will discuss the way in which extended real-valued functionals are handled

in convex analysis. Here we will point out more in detail why we work with a unified approach

to extended real-valued functions instead of the standard approach of convex analysis. The unified

approach will be described in Section 3. Section 4 is devoted to continuity and semicontinuity, whereas

Section 5 deals with convexity of extended real-valued functions. In both sections, we also prove basic

facts about semicontinuity and convexity, which have to be adapted to our framework. Well known

results using the epigraph or sublevel sets will appear in a new light. In our proofs, we have to

take into consideration that +∞ can belong to the effective domain of the function, that we admit

a symbolic function value ν /∈ R and that results of other authors are sometimes based on wrong

rules for the calculation in R. Since in our theory convexity and concavity have not to be treated

separately, affinity and linearity of functions which are not finite-valued can be investigated. This will

be done in Section 6. Section 7 shows in which way results from convex analysis can be transferred

to the unified approach and vice versa and that there exists a one-to-one correspondence between

extended real-valued functions in convex analysis and a subset of the extended real-valued functions

in the unified approach. In the last section, we will point out that the unified approach can easily be

extended to other spaces than R.
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From now on, R, Z, N and Q will denote the sets of real numbers, of integers, of nonnegative integers

and of rational numbers, respectively. We define R+ := {x ∈ R | x ≥ 0}. Linear spaces will always be

assumed to be real vector spaces. A set C in a linear space is a cone iff it is nonempty and λc ∈ C
for all λ ∈ R+, c ∈ C. For a subset A of some linear space, icr(A) will denote the relative algebraic

interior of A. In a topological space X, N (x) is the set of all neighborhoods of x ∈ X and clA, intA

and bdA denote the closure, the interior and the boundary, respectively, of a subset A.

2. EXTENDED REAL-VALUED FUNCTIONS IN CONVEX ANALYSIS

Extended real-valued functions belong to the basics of convex analysis as they were presented by

Moreau [8] and Rockafellar [9] and have become standard when studying minimization problems

(see e.g. [1], [5], [2], [15], [3]), which includes the variational analysis for such problems ([10], [6],

[7]). Originally, the concept focused on the minimization of real-valued convex functions which are

extended to the complete space by the value +∞ and/or for which the barrier +∞ indicates the

violation of restrictions. When minimizing a function in the case that feasible solutions exist, the

function value +∞ does not alter the minimum.

The value +∞ serves as a symbol for a function value at points which are not feasible for the prob-

lem. If a function value +∞ exists—since, e.g., the function is defined via a supremum—the related

argument of the function is handled as if it would not belong to the domain of interest. Consequently,

the (effective) domain of a function g : X → R is defined as {x ∈ X | g(x) ∈ R ∪ {−∞}}.
Based on this classical approach, useful tools for convex optimization have been developed. We will

now point out drawbacks of the approach in convex analysis which will not appear in the unified

approach we are going to present in the next section.

(a) The way in which an extended real-valued function is handled in convex analysis depends on

whether it has to be minimized or to be maximized. Supremum problems are studied in an

analogous way as the infimum problems above, but with −∞ replacing +∞ and vice versa.

One consequence is the different definition of +∞ + (−∞) in both frameworks. The so-called

inf-addition

+∞+ (−∞) = (−∞) + (+∞) = +∞

is applied for minimization problems, whereas the sup-addition for maximization problems is

given by

+∞+ (−∞) = (−∞) + (+∞) = −∞.

Moreau [8] introduced both kinds of addition and, in connection with this, two different addition

operators on R.

The usual indicator function in convex analysis should not be added to functions which have to

be maximized.

(b) The extension of a convex function f : C → R, C being a proper convex subset of some

topological vector space X, to g : X → R by adding the function value +∞ outside C can

destroy the continuity and even the lower semicontinuity of f .
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Example 2.1. Consider the functional ϕ : R→ R given by

ϕ(x) =

{
x if x > 0,

+∞ if x ≤ 0.

ϕ is continuous on {x ∈ R | ϕ(x) ∈ R ∪ {−∞}}, but not lower semicontinuous on R.

(c) Multiplication of functions with real numbers and subtraction of functions are only possible

under certain assumptions (see [5, p.389]).

(d) In connection with extended real-valued functions in convex analysis, the definitions inf ∅ = +∞
and sup ∅ = −∞ are given. sup ∅ < inf ∅.

(e) If a function is extended to the entire space by +∞ or −∞ it cannot be handled like the original

function any more. This is, obviously, the case since the way of extension depends on the

purpose. The extended function does also not have a finite Chebyshev norm and the Chebyshev

norm approximation

inf
y∈Y

sup
x∈X
|f(x)− g(x, y)|

cannot be applied.

(f) In some optimization problems, a function cannot simply be extended to the entire space using

only one of the values +∞ or −∞. Consider the problem

inf
x∈X0

sup
y∈Y0

L(x, y), (2.2)

where Y0 is a proper subset of some space Y , X0 is a proper subset of some space X and L is

real-valued. In such a case, L is extended to a function ` which is defined on X × Y and for

which the problem

inf
x∈X

sup
y∈Y

`(x, y)

is equivalent to problem (2.2) in the following way [10, Example 11.52]:

`(x, y) =


L(x, y) if x ∈ X0 and y ∈ Y0,

−∞ if x ∈ X0 and y ∈ Y \ Y0,

+∞ if x ∈ X \X0.

Furthermore, examples in [12] illustrate that one cannot calculate with linear combinations, equations

and inequalities in R in the same way as in R.

3. UNIFIED APPROACH TO EXTENDED REAL-VALUED FUNCTIONS

We introduce the symbol ν as a function value in arguments which are not feasible otherwise. Keeping

this in mind, definitions of notions and properties for extended real-valued functions will emerge in a

natural way. For sets A ⊆ R, we define Aν := A ∪ {ν}.
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On subsets of a space X (X 6= ∅), we consider functions which can take values in R. If a function ϕ

is defined on a subset X0 ⊆ X, we extend the range of definition to the entire space X by defining

ϕ(x) := ν for all x ∈ X \X0. This yields a function ϕ : X → Rν . We call functions with values in Rν
extended real-valued functions and often refer to them simply as functionals.

Definition 3.1. Consider an extended real-valued function ϕ : X → Rν on some nonempty set X.

We define its (effective) domain as

domϕ := {x ∈ X | ϕ(x) ∈ R}.

ϕ is trivial iff domϕ = ∅. ϕ is called finite-valued on X0 ⊆ X iff ϕ(x) ∈ R for all x ∈ X0. ϕ is said to

be proper iff ϕ is nontrivial and finite-valued on domϕ. ϕ is called finite-valued iff ϕ is finite-valued

on X. In the case that ϕ is nontrivial, we introduce ϕeff : domϕ → R by ϕeff(x) = ϕ(x) for all

x ∈ domϕ and call it the effective part of ϕ.

Remark 3.1. Our definition of the effective domain essentially differs from the usual definition in

convex analysis since we use ν instead of +∞ and admit +∞ to be a function value that comes into

existence, e.g., by defining the function as some supremum, and may be of interest in problems which

depend on the function.

The finite-valued functionals are just the functions ϕ : X → R and are just the proper functionals

with domϕ = X. For finite-valued functionals, ϕeff = ϕ. The proper functions are the nontrivial

functions ϕ : X → Rν .

Each function and operation applied to ν has to result in ν if the function maps into Rν , and to result

in the empty set if the function value should be a set.

In Rν , the following rules are defined for the calculation with ν:

∀y ∈ R : ν 6≤ y, y 6≤ ν,
−ν = ν,

+∞+ (−∞) = −∞+ (+∞) = ν,

∀y ∈ Rν : y · ν = ν · y = ν,

∀y ∈ Rν : y + ν = ν + y = ν.

The above definitions extend the binary relations <, ≤, >, ≥, =, the binary operations + and · as

well as the unary operation − to Rν . Note that the relations 6<, 6≤, 6> and 6≥ coincide with ≥, >, ≤
and <, respectively, on R, but not on Rν . Take also into consideration that we have defined −y for

all y ∈ Rν as a unary operation, but that y + (−y) = ν 6= 0 for y ∈ {−∞,+∞, ν}. With this unary

operation, we can define the subtraction on Rν by y1− y2 := y1 + (−y2) for all y1, y2 ∈ Rν . Moreover,

we define

|+∞| = | −∞| = +∞ and |ν| = ν.

Now we can transfer these definitions to functions.
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For some nonempty set X, functions f, g : X → Rν and λ ∈ R, we define

−f : X → Rν by (−f)(x) = −f(x) for all x ∈ X,
λ · f : X → Rν by (λ · f)(x) = λ · f(x) for all x ∈ X,
f + g : X → Rν by (f + g)(x) = f(x) + g(x) for all x ∈ X,
f + λ : X → Rν by (f + λ)(x) = f(x) + λ for all x ∈ X,
λ+ f : X → Rν by λ+ f = f + λ.

Note that dom(f + g) = (dom f ∩ dom g) \ {x ∈ X | f(x) ∈ {−∞,+∞} and g(x) = −f(x)} and

dom(f + λ) = dom(λ+ f) = dom f \ {x ∈ X | f(x) = −λ} if λ ∈ {−∞,+∞}.
Extended real-valued functions can be used as indicator functions of sets.

Definition 3.2. For a subset A of a space X, the indicator function of A is the function ιA : X → Rν
defined by

ιA(x) :=

{
0 if x ∈ A,
ν if x ∈ X \A.

(3.3)

Remark 3.2. The usual definition of indicator functions in convex analysis uses +∞ instead of

ν. The indicator functions in measure theory are defined with values 1 and 0 instead of 0 and ν,

respectively.

The extension of functions to the whole space is not the only reason for the importance of extended

real-valued functions. Such functions also yield the possibility to replace an optimization problem

with side conditions by a free optimization problem. If we are looking for optimal values of some

function f : X → Rν on the set A ⊂ X, then this problem is equivalent to the calculation of optimal

values of the function g : X → Rν if g := f + ιA.

Since infima and suprema play a central role in optimization theory, we now extend these notions to

Rν .

Definition 3.3. A set A ⊆ Rν is called trivial iff A ⊆ {ν}. b ∈ R is a lower bound of a nontrivial

set A ⊆ Rν iff a 6< b for all a ∈ A. b ∈ R is an upper bound of a nontrivial set A ⊆ Rν iff a 6> b for

all a ∈ A. A nontrivial set A ⊆ Rν is bounded below or bounded above iff there exists some real lower

bound or some real upper bound, respectively, of A. It is bounded iff it is bounded below and bounded

above. The infimum inf A and the supremum supA of A ⊆ Rν are defined by

inf A :=

{
ν if A is trivial,

the largest lower bound of A otherwise,

supA :=

{
ν if A is trivial,

the smallest upper bound of A otherwise.

We say that A has a minimum minA iff inf A ∈ A ∩ R and define in this case minA := inf A. We

say that A has a maximum maxA iff supA ∈ A ∩ R and define in this case maxA := supA.

Obviously, −∞ is a lower bound and +∞ is an upper bound of each nontrivial set in Rν . If A ∩R =

{+∞}, then +∞ is also a lower bound of A. We get inf ∅ = sup ∅ = ν. For nonempty sets in R, the

above notions coincide with the usual ones.

Now we can define the Minkowski functional in our framework.
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Definition 3.4. Consider some subset A of a linear space X with 0 ∈ A. The Minkowski functional,

or the gauge, pA : X → Rν of A is defined by

pA(x) = inf{λ > 0 | x ∈ λA}.

Then the Minkowski functional of a cone is just its indicator function [8].

Let us adapt notions which are needed for dealing with differentiability and other properties of func-

tions to extended real-valued functions.

Definition 3.5. Assume that X is an arbitrary set and ϕ : X → Rν .

The infimum and the supremum of ϕ (on X) are defined by infx∈X ϕ(x) := inf{ϕ(x) | x ∈ X} and

supx∈X ϕ(x) := sup{ϕ(x) | x ∈ X}, respectively.

If {ϕ(x) | x ∈ X} has a minimum or maximum, we say that ϕ attains a (global) minimum or a

(global) maximum, respectively, on X and denote it by minx∈X ϕ(x) or maxx∈X ϕ(x), respectively.

Suppose now domϕ 6= ∅.
t ∈ R is called an upper bound or a lower bound of ϕ (on X) iff it is an upper or lower bound

of {ϕ(x) | x ∈ X}, respectively. ϕ is called bounded above, bounded below or bounded (on X) iff

{ϕ(x) | x ∈ X} is bounded above, bounded below or bounded, respectively.

Take into consideration that each nontrivial extended real-valued functional has an upper bound and

a lower bound, but that it is only bounded above or bounded below if there exists some real upper

bound or lower bound, respectively. For functions with values in R only, the above definition and the

next one are compatible with the usual notions.

Definition 3.6. Suppose that X is a topological space and ϕ : X → Rν .

If x0 ∈ cl domϕ and if there exists some g ∈ R such that for each neighborhood V of g there exists

some neighborhood U of x0 such that ϕ(x) ∈ V for all x ∈ U ∩ domϕ, then g is said to be the limit of

ϕ at x0. If x0 ∈ X \ cl domϕ or if there does not exist some limit of ϕ at x0 in R, then the limit of ϕ

at x0 is defined as ν. The limit of ϕ at x0 is denoted by limx→x0 ϕ(x).

For derivatives of functions, we also need limits of sequences.

Definition 3.7. A function mapping N into R is called an (extended real-valued) sequence. We will

denote such a sequence by (an), where an is the function value of n for each n ∈ N. The sequence

is bounded iff the mapping is bounded. A value g ∈ R is said to be a limit of (an)—denoted as

limn→+∞ an—iff, for each neighborhood V of g, there exists some n0 ∈ N such that an ∈ V for each

n ∈ N with n > n0. If the sequence does not have any limit in R, then ν is defined to be the limit of

the sequence.

A value g ∈ R is a cluster point of (an) iff each neighborhood of g contains an for an infinite number

of elements n ∈ N. Let C denote the set of cluster points of (an). supC is called the limit superior

lim sup an, inf C is called the limit inferior lim inf an of (an).

For real-valued sequences, the above notions work as usual.
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Definition 3.8. Suppose that X is a separated locally convex space with topological dual space X∗

and f : X → Rν . The (Fenchel) subdifferential ∂f(x0) of f at x0 ∈ X is the set

{x∗ ∈ X∗ | ∀x ∈ dom f : x∗(x− x0) ≤ f(x)− f(x0) } if f(x0) ∈ R,

and the empty set if f(x0) /∈ R.

The (Fenchel) conjugate of f is the function f∗ : X∗ → Rν defined by

f∗(x∗) := sup {x∗(x)− f(x) | x ∈ dom f} .

The support function σA : X∗ → Rν of a set A ⊆ X is defined by

σA(x∗) := sup {x∗(a) | a ∈ A} .

The set {x∗ ∈ X∗ | σA(x∗) ∈ R} is called the barrier cone barA of A.

4. CONTINUITY AND SEMICONTINUITY

We now extend the definition of continuity to functionals ϕ : X → Rν .

Definition 4.9. Let X be a topological space, ϕ : X → Rν . ϕ is continuous at x ∈ X iff x ∈ domϕ

and ϕeff is continuous at x. ϕ is continuous on the nonempty set D ⊆ X iff D ⊆ domϕ and ϕeff is

continuous on D. If domϕ is nonempty and closed, then we call ϕ a continuous functional iff ϕ is

continuous on domϕ.

Example 4.2. Consider the functional ϕ : R→ Rν given by

ϕ(x) =


tan(x) if −π2 < x < π

2 ,

−∞ if x = −π2 ,
+∞ if x = π

2 ,

ν if x < −π2 or x > π
2 .

domϕ = {x ∈ R | −π2 ≤ x ≤ +π
2 } is closed, and ϕ is a continuous functional.

In contrast to the usual approach in convex analysis, semicontinuity and continuity of a functional

cannot be destroyed by extending the function to the entire space using ν.

Let us now extend the usual definition of upper and lower semicontinuity to functionals with values

in Rν .

Definition 4.10. Let X be a topological space, ϕ : X → Rν .

ϕ is lower semicontinuous or upper semicontinuous at x ∈ X iff x ∈ domϕ and ϕeff is lower semicon-

tinuous or upper semicontinuous, respectively, at x. ϕ is lower semicontinuous or upper semicontin-

uous on the nonempty set D ⊆ X iff D ⊆ domϕ and ϕeff is lower semicontinuous or upper semicon-

tinuous, respectively, on D. If domϕ is nonempty and closed, then we call ϕ a lower semicontinuous

function or an upper semicontinuous function iff ϕ is lower semicontinuous or upper semicontinuous,

respectively, on domϕ.
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Immediately from the definitions we get the following statements.

Proposition 4.1. Let X be a topological space, ϕ : X → Rν , x ∈ domϕ.

(a) ϕ is upper semicontinuous at x if and only if −ϕ is lower semicontinuous at x.

(b) ϕ is continuous at x iff ϕ is lower semicontinuous and upper semicontinuous at x.

Corollary 4.1. Let (X, τ) be a topological space, ϕ : X → Rν , D ⊆ domϕ with D 6= ∅. Then the

following properties of ϕ are equivalent to each other:

(a) ϕ is lower semicontinuous on D.

(b) Each set {x ∈ D | ϕ(x) > t}, t ∈ R, is open in the topology induced by τ on D.

(c) Each set {x ∈ D | ϕ(x) ≤ t}, t ∈ R, is closed in the topology induced by τ on D.

The next propositions will connect semicontinuity of a functional ϕ with topological properties of the

sublevel sets and of the sets {x ∈ X | ϕ(x) > t} without referring explicitly to some induced topology.

Definition 4.11. Let R denote some binary relation on Rν , X be a nonempty set, ϕ : X → Rν .

Then we define levϕ,R(t) := {x ∈ X | ϕ(x)Rt} for t ∈ R.

Proposition 4.2. Let X be a topological space and ϕ : X → Rν be nontrivial.

(a) ϕ is lower semicontinuous on domϕ if the sets levϕ,>(t) are open for all t ∈ R.

(b) Assume that domϕ is open. Then ϕ is lower semicontinuous on domϕ if and only if the sets levϕ,>(t)

are open for all t ∈ R.

(c) If ϕ is bounded below, then:

The sets levϕ,>(t) are open for all t ∈ R if and only if domϕ is open and ϕ is lower semicontinuous

on domϕ.

Proof:

(a) results immediately from the definition of lower semicontinuity.

(b) Assume that domϕ is open and ϕ is lower semicontinuous on domϕ. Propose that there exists

some t0 ∈ R for which levϕ,>(t0) is not open. ⇒ ∃x0 ∈ levϕ,>(t0) ∀U ∈ N (x0) : U 6⊆ levϕ,>(t0).

Since ϕ is lower semicontinuous on domϕ, there exists some neighborhood V of x0 with V ⊆
levϕ,>(t0) ∪ (X \ domϕ). Consider some arbitrary neighborhood V0 of x0. V1 := V0 ∩ V ⊆
levϕ,>(t0) ∪ (X \ domϕ), but V1 6⊆ levϕ,>(t0). ⇒ ∃v1 ∈ V1 : v1 ∈ X \ domϕ. ⇒ ∀V0 ∈
N (x0) ∃v1 ∈ V0 : v1 ∈ X \domϕ.⇒ x0 ∈ cl(X \domϕ) = X \domϕ since domϕ is open. This

contradicts x0 ∈ levϕ,>(t0) and yields the assertion.

(c) Consider some lower bound c of ϕ. If levϕ,>(c− 1) is open, A := X \ levϕ,>(c− 1) = {x ∈ X |
ϕ(x) ≤ c− 1}∪ (X \ domϕ) = X \ domϕ has to be closed and thus domϕ is open. This implies

(c) because of (b). �
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Example 4.2. shows a continuous functional ϕ for which not all sets levϕ,>(t) are open.

Replacing the function value ϕ(π2 ) in Example 4.2. by ν, we get a functional ϕ which is continuous

on domϕ = {x ∈ R | −π2 ≤ x <
π
2 } and for which all sets levϕ,>(t), t ∈ R, are open, though domϕ is

not open.

Proposition 4.3. Let X be a topological space, ϕ : X → Rν nontrivial.

(a) ϕ is lower semicontinuous on domϕ if the sublevel sets levϕ,≤(t) are closed for all t ∈ R.

(b) Suppose that domϕ is closed. Then

ϕ is lower semicontinuous if and only if the sublevel sets levϕ,≤(t) are closed for all t ∈ R.

(c) If ϕ is bounded above, then:

The sublevel sets levϕ,≤(t) are closed for all t ∈ R if and only if domϕ is closed and ϕ is lower

semicontinuous on domϕ.

Proof:

(a) levϕ,≤(t) is closed if and only if A(t) := X \ levϕ,≤(t) = levϕ,>(t) ∪ (X \ domϕ) is open. If

A(t) is open for all t ∈ R, the lower semicontinuity of the functional on domϕ follows from the

definition of this property.

(b) The definition of lower semicontinuity of ϕ implies that the set A(t) is open for each t ∈ R for

which levϕ,>(t) is not empty. Thus the set A(t) is open for each t ∈ R if domϕ is closed. This

yields assertion (b).

(c) Consider some upper bound b of ϕ. If levϕ,≤(b) is closed, A := X \ levϕ,≤(b) = {x ∈ X | ϕ(x) >

b}∪ (X \domϕ) = X \domϕ has to be open and thus domϕ is closed. This implies (c) because

of (b). �

A function can be lower semicontinuous on its domain though not all sublevel sets levϕ,≤(t) are closed.

Example 4.3. Consider the functional ϕ : R→ Rν given by

ϕ(x) =

{
x if x > 0,

ν if x ≤ 0.

ϕ is continuous on domϕ, but levϕ,≤(t) is not closed if t > 0.

In the following example, the sublevel sets are closed, though ϕ is continuous on domϕ and domϕ is

not closed.

Example 4.4. Let ϕ : R→ Rν be given by

ϕ(x) =

{
1
|x| if x 6= 0,

ν if x = 0.

ϕ is continuous on domϕ, but domϕ is not closed. The sublevel sets levϕ,≤(t) are closed for all t ∈ R.
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For upper semicontinuity, analogous statements as in the previous two propositions follow with reverse

relations and reverse directions of boundedness from Proposition 4.1.

Let us now investigate the connection between lower semicontinuity and closedness of the epigraph.

Lemma 4.1. Let X be a topological space, ϕ : X → Rν .

epiϕ is closed in X × R if and only if the sublevel sets levϕ,≤(t) = {x ∈ X | ϕ(x) ≤ t} are closed for

all t ∈ R.

Proof:

(i) epiϕ = {(x, t) ∈ X × R | ϕ(x) ≤ t} is closed iff (X × R) \ epiϕ = {(x, t) ∈ X × R | ϕ(x) >

t} ∪ ((X \ domϕ)× R) is open. Then for each t ∈ R, {x ∈ X | ϕ(x) > t} ∪ (X \ domϕ) is open

and thus {x ∈ X | ϕ(x) ≤ t} is closed.

(ii) Suppose that levϕ,≤(t) is closed for each t ∈ R. Assume that epiϕ is not closed. Then (X×R)\
epiϕ is not open. ⇒ ∃(x, λ) ∈ (X × R) \ epiϕ ∀V ∈ N ((x, λ)) ∃(xV , tV ) ∈ V : (xV , tV ) ∈ epiϕ,

i.e., ϕ(xV ) ≤ tV . Consider an arbitrary ε > 0, Uε(λ) := {r ∈ R | λ − ε < r < λ + ε} and an

arbitrary U ∈ N (x). ⇒ Vε := U × Uε(λ) ∈ N ((x, λ)).⇒ ∃(xε, tε) ∈ Vε : ϕ(xε) ≤ tε < λ+ ε.⇒
∀U ∈ N (x) ∃xε ∈ U : xε ∈ levϕ,≤(λ + ε). ⇒ x ∈ cl(levϕ,≤(λ + ε)) = levϕ,≤(λ + ε). ⇒ ϕ(x) ≤
λ+ ε ∀ε > 0⇒ ϕ(x) ≤ λ, a contradiction to (x, λ) /∈ epiϕ. Thus epiϕ is closed. �

An analogous statement holds for hypoϕ and the superlevel sets levϕ,≥(t).

Proposition 4.3. implies because of Lemma 4.1.:

Proposition 4.4. Let X be a topological space, ϕ : X → Rν .

(a) ϕ is lower semicontinuous on domϕ if epiϕ is closed in X × R.

(b) If domϕ is closed, then

ϕ is lower semicontinuous ⇐⇒ epiϕ is closed in X × R.

(c) If ϕ is bounded above, then:

epiϕ is closed in X × R if and only if domϕ is closed and ϕ is lower semicontinuous on domϕ.

The function ϕ in Example 4.3. is lower semicontinuous on its domain though epiϕ is not closed. In

Example 4.4., epiϕ is closed in X × R, though ϕ is continuous on domϕ and domϕ is not closed.

For upper semicontinuity, we can prove an analogous statement as in Proposition 4.4. by replacing

the epigraph by the hypograph and changing the direction of boundedness.

Corollary 4.1. and Lemma 4.1. imply:

Corollary 4.2. Let X be a topological space, ϕ : X → R.

Then the following statements are equivalent:

(a) ϕ is lower semicontinuous.

(b) The sets levϕ,>(t) are open for all t ∈ R.

(c) The sublevel sets levϕ,≤(t) are closed for all t ∈ R.

(d) epiϕ is closed in X × R.
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Remark 4.3. The characterization of lower semicontinuity in Corollary 4.2. describes the ways in

which lower semicontinuity is defined in the classical framework, which works with +∞ instead of ν.

Rockafellar [9, Theorem 7.1] proved the equivalence between these conditions for ϕ : Rn → R. Moreau

[8] defined lower semicontinuity by property (c) and stated the equivalence with property (d) for X

being a topological space.

5. CONVEXITY

We will now study convexity of extended real-valued functions.

Definition 5.12. Let X be a linear space and ϕ : X → Rν .

ϕ is said to be convex iff domϕ and epiϕ are convex sets.

ϕ is concave iff domϕ and hypoϕ are convex sets.

Remark 5.4. The characterization of a real-valued convex function on some finite-dimensional vector

space by the epigraph of the function was given by Fenchel [4, p. 57].

If ϕ : X → Rν does not attain the value +∞, then convexity of epiϕ implies convexity of domϕ.

A continuous functional with a convex epigraph and a convex hypograph does not necessarily have a

convex domain.

Example 5.5. Define ϕ : R→ Rν by

ϕ(x) =


−∞ if x = −1,

+∞ if x = 1,

ν if x ∈ R \ {−1, 1}.

Then domϕ = {−1, 1} is closed, but not convex. ϕ is continuous. epiϕ = {−1} × R and hypoϕ =

{1} × R are closed convex sets.

We get immediately:

Lemma 5.2. Let X be a linear space and ϕ : X → Rν .

Then ϕ is concave on X if and only if −ϕ is convex on X.

Definition 5.12. is compatible with the usual definition of convex real-valued functions.

Theorem 5.1. Let X be a linear space and ϕ : X → Rν be proper.

Then ϕ is convex or concave if and only if domϕ is convex and

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2) or (5.4)

ϕ(λx1 + (1− λ)x2) ≥ λϕ(x1) + (1− λ)ϕ(x2), respectively,

holds for all x1, x2 ∈ domϕ, λ ∈ (0, 1).

Proof:
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(a) If ϕ is convex, then epi ϕ is a convex set. Consider arbitrary elements x1, x2 ∈ domϕ, λ ∈ (0, 1).

Because of (x1, ϕ(x1)), (x2, ϕ(x2)) ∈ epiϕ, we get: λ · (x1, ϕ(x1)) + (1− λ) · (x2, ϕ(x2)) ∈ epiϕ.

Hence ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2).

(b) Assume that domϕ is convex and ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2) for all x1, x2 ∈
domϕ, λ ∈ (0, 1). Consider (x1, t1), (x2, t2) ∈ epiϕ, i.e., x1, x2 ∈ domϕ with ϕ(x1) ≤ t1, ϕ(x2) ≤
t2. Then λx1+(1−λ)x2 ∈ domϕ and ϕ(λx1+(1−λ)x2) ≤ λϕ(x1)+(1−λ)ϕ(x2) ≤ λt1+(1−λ)t2

for all λ ∈ (0, 1). Hence λ · (x1, t1) + (1 − λ) · (x2, t2) ∈ epi ϕ for all λ ∈ (0, 1), i.e., epi ϕ is

convex.

Thus the assertion holds for convex functionals. This, together with Lemma 5.2., implies the statement

for the concave functional. �

Let us now characterize improper convex functionals.

A continuous convex functional can attain the value +∞.

Example 5.6. Let ϕ : R→ Rν be given by

ϕ(x) =


ν if x < 0,

+∞ if x = 0,
1
x if x > 0.

ϕ is a continuous convex functional.

Proposition 5.5. Let X be a linear space and ϕ : X → Rν be a convex functional.

(a) dom− ϕ := {x ∈ domϕ | ϕ(x) 6= +∞} is convex.

(b) If ϕ(x0) = −∞ for some x0 ∈ X, then ϕ(λx0 + (1− λ)x) = −∞ for all x ∈ dom− ϕ, λ ∈ (0, 1).

(c) If there exists some x0 ∈ X such that ϕ(x0) = −∞, then ϕ(x) = −∞ holds for all x ∈ icr(dom− ϕ).

(d) If {x,−x} ⊂ domϕ, ϕ(x) = −∞ and ϕ(0) 6= −∞, then ϕ(−λx) = +∞ for all λ ∈ (0, 1].

(e) Assume that X is a topological vector space, that ϕ is lower semicontinuous on dom− ϕ and attains

the value −∞. Then ϕ has no finite values.

Proof:

(a) Consider x1, x2 ∈ dom− ϕ, λ ∈ (0, 1), x := λx1 + (1 − λ)x2. There exist t1, t2 ∈ R such that

(x1, t1), (x2, t2) ∈ epiϕ. Since epi ϕ is convex, we get for x and t := λt1 + (1 − λ)t2 ∈ R that

(x, t) ∈ epiϕ. Hence x ∈ domϕ and ϕ(x) ≤ t, which implies x ∈ dom− ϕ.

(b) Assume x0 ∈ X with ϕ(x0) = −∞ and x1 ∈ dom− ϕ. ⇒ ∀λ ∈ (0, 1) : xλ := λx0 + (1−λ)x1 ∈
dom− ϕ because of (a). ∃t1 ∈ R : (x1, t1) ∈ epiϕ.

Consider an arbitrary λ ∈ (0, 1), tλ ∈ R. t := 1
λ tλ −

1−λ
λ t1 ∈ R. ⇒ tλ = λt + (1 − λ)t1.

⇒ (xλ, tλ) ∈ epiϕ, because (x0, t), (x1, t1) ∈ epiϕ and epiϕ is convex. Since (xλ, tλ) ∈ epiϕ for

each tλ ∈ R, we get {xλ} × R ⊆ epiϕ and ϕ(xλ) = −∞ for each λ ∈ (0, 1).
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(c) Assume x0 ∈ X with ϕ(x0) = −∞ and x1 ∈ icr(dom− ϕ). ⇒ ∃ε > 0 : x2 := x1 + ε(x1 − x0) ∈
dom− ϕ. x1 = λx2 + (1− λ)x0 with λ := 1

1+ε ∈ (0, 1). ϕ(x1) = −∞ follows from (b).

(d) Assume, under the assumptions of (d), that there exists some λ ∈ (0, 1] with ϕ(−λx) 6= +∞.

⇒ −λx ∈ dom− ϕ. ⇒ ϕ(0) = −∞ because of (b), a contradiction.

(e) Assume x0 ∈ X with ϕ(x0) = −∞ and x ∈ dom− ϕ. ⇒ ∀λ ∈ (0, 1) : xλ := λx0 + (1 − λ)x ∈
dom− ϕ and ϕ(xλ) = −∞ because of (b).

∀U ∈ N (x) ∃λ ∈ (0, 1) : xλ ∈ U . This results in ϕ(x) = −∞ because of the definition of lower

semicontinuity. �

Let us mention that dom− ϕ is the projection of epiϕ onto X.

Remark 5.5. Part (c) of the proposition can be found in [15], part (c) and (e) for X = Rn in [9],

but both authors define convexity with inequality (5.4) and refer to the classical framework, where +∞
is used instead of ν and points with function value +∞ are excluded from the effective domain.

6. LINEARITY AND RELATED ALGEBRAIC PROPERTIES

Usually, a linear function maps into a vector space. This is not the case for an extended real-valued

function.

Definition 6.13. Let X be a linear space.

ϕ : X → Rν is an affine functional iff ϕ is convex and concave.

ϕ : X → R is a linear functional iff ϕ is convex and concave and ϕ(0) = 0 holds.

Remark 6.6. Fenchel [4, p. 59] proved that real-valued affine functionals on finite-dimensional vector

spaces defined in the traditional way by an equality are just the functionals which are convex and

concave.

We get from Definition 6.13.:

Lemma 6.3. Let X be a linear space and ϕ : X → R.

ϕ is an affine functional with ϕ(0) ∈ R if and only if it is the sum of some linear functional ϕ` : X → R
and some real value.

An affine functional is not necessarily the sum of a linear functional and a constant value.

Example 6.7. Define ϕ : R→ R by

ϕ(x) =

{
−∞ if x ≤ 0,

+∞ if x > 0.

epiϕ = (−∞, 0]×R is convex and closed. hypoϕ = (0,+∞)×R is a convex set. ϕ is an affine lower

semicontinuous functional, but not the sum of a linear functional and some value c ∈ R.

A functional which is affine and lower semicontinuous on its domain is not necessarily continuous.
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Example 6.8. Define ϕ : R→ Rν by

ϕ(x) =


1 if x = 0,

+∞ if x ∈ (0, 1],

ν if x ∈ R \ [0, 1].

domϕ = [0, 1] is closed and convex. epiϕ = {0} × [1,+∞) is convex and closed. hypoϕ = ({0} ×
(−∞, 1])∪((0, 1]×R) is convex, but not closed. ϕ is an improper convex and concave functional which

is lower semicontinuous on its domain, but not continuous.

Let us now prove a statement (cp. [11]) which we will use in the next proposition.

Lemma 6.4. Assume that (X, τ) is a topological vector space, A ⊂ X, a ∈ A, x ∈ X \ clA.

(a) There exists some t ∈ (0, 1] such that ta+ (1− t)x ∈ bdA.

(b) There exists some t ∈ (0, 1] such that ta+ (1− t)x ∈ bdM A, where bdM A denotes the boundary of A

in the topology τM induced by τ on M := {ta+ (1− t)x | t ∈ [0, 1]}.

Proof:

(a) t0 := inf{t ∈ R+| ta+ (1− t)x ∈ A} = inf{t ∈ R+| x+ t(a− x) ∈ A} ≤ 1 since a ∈ A.

Assume t0 = 0. ⇒ ∀U ∈ N (x) ∃t ∈ R+ : x + t(a − x) ∈ A ∩ U . ⇒ x ∈ clA, a contradiction.

Thus t0 > 0.

b := t0a + (1 − t0)x. The definition of t0 implies: ∀V ∈ N (b) ∃t1 ≥ t0 ∃t2 < t0 : t1, t2 ∈
[0, 1], x+ t1(a− x) ∈ A ∩ V and x+ t2(a− x) ∈ V \A. Hence b ∈ bdA.

(b) can be proved in the same way as (a) when replacing the neighborhoods by their intersection

with M. �

Proposition 6.6. Let (X, τ) be a topological linear space and ϕ : X → Rν .

If ϕ is affine and continuous on its effective domain, then it is constant on domϕ or proper.

Proof: We consider a functional ϕ : X → Rν which is convex, concave and continuous on its effective

domain, but not proper. Hence part (e) of Proposition 5.5. implies that ϕ does not attain any real

value.

Assume that ϕ is not constant on domϕ. Then there exist x1, x2 ∈ domϕ with ϕ(x1) = −∞, ϕ(x2) =

+∞. M := {tx1 + (1− t)x2 | t ∈ [0, 1]} ⊆ domϕ since domϕ is convex. A := M ∩ dom− ϕ.

Since ϕ is continuous and dom− ϕ = {x ∈ domϕ | ϕ(x) = −∞}, there exists some U ∈ N (x2) with

U ∩ dom− ϕ = ∅. Thus x2 /∈ cl dom− ϕ. Because of x1 ∈ A and x2 /∈ clA, Lemma 6.4. implies

the existence of some t ∈ (0, 1] such that a := tx1 + (1 − t)x2 ∈ bdM A, where bdM A denotes the

boundary of A in the topology induced by τ on M . a ∈ domϕ since domϕ is convex. The continuity

of ϕ implies ϕ(a) = −∞ by the definition of A and the existence of some neighborhood V of a such

that ϕ(x) = −∞ for all x ∈ V ∩ domϕ. Since a ∈ bdM A, there exists some x ∈ V ∩M : x /∈ A. This

implies x /∈ dom− ϕ, a contradiction. Consequently, ϕ is constant on domϕ. �
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Corollary 6.3. Assume that X is a topological vector space and ϕ : X → R is continuous and linear.

Then ϕ is finite-valued.

A linear functional may be improper without being constant.

Example 6.9. Define ϕ : R→ R by

ϕ(x) =


−∞ if x < 0,

0 if x = 0,

+∞ if x > 0.

epiϕ = ((−∞, 0) × R) ∪ ({0} × [0,+∞)) and hypoϕ = ((0,+∞) × R) ∪ ({0} × (−∞, 0]) are convex,

but not closed. ϕ is an improper linear functional.

Definition 6.13. is compatible with the usual definition of linear and affine real-valued functions. This

will be shown in Theorem 6.2.

Let us first introduce further algebraic properties of extended real-valued functions.

Definition 6.14. Let X be a linear space and ϕ : X → Rν .

ϕ is said to be

(a) positively homogeneous iff domϕ and epiϕ are cones,

(b) subadditive iff domϕ+ domϕ ⊆ domϕ and epiϕ+ epiϕ ⊆ epiϕ hold,

(c) superadditive iff domϕ+ domϕ ⊆ domϕ and hypoϕ+ hypoϕ ⊆ hypoϕ hold,

(d) additive iff it is subadditive and superadditive,

(e) sublinear iff domϕ and epiϕ are convex cones,

(f) odd iff domϕ = −domϕ and ϕ(−x) = −ϕ(x) is satisfied for all x ∈ domϕ,

(g) homogeneous iff ϕ is positively homogeneous and odd.

According to our definition, ϕ(0) ∈ {0,−∞} holds for each positively homogeneous and for each

sublinear functional. ϕ is superadditive if and only if −ϕ is subadditive.

Lemma 6.5. Let C be a nonempty subset of a linear space X.

C is a convex cone ⇐⇒ λ1c
1 + λ2c

2 ∈ C for all λ1, λ2 ∈ R+, c
1, c2 ∈ C,

⇐⇒ C is a cone and C + C ⊆ C,
⇐⇒ C is convex, C + C ⊆ C and 0 ∈ C.

This implies:

Lemma 6.6. Let X be a linear space and ϕ : X → Rν .

ϕ is sublinear ⇐⇒ ϕ is convex and positively homogeneous,

⇐⇒ ϕ is subadditive and positively homogeneous,

⇐⇒ ϕ is convex and subadditive and ϕ(0) ≤ 0.
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The properties defined in Definition 6.14. coincide with the usual definitions for real-valued functions.

Proposition 6.7. Let X be a linear space and ϕ : X → Rν .

(a) ϕ is positively homogeneous with ϕ(0) = 0 if and only if domϕ is a cone and

ϕ(λx) = λϕ(x)

is satisfied for all λ ∈ R+ and x ∈ domϕ.

(b) A proper function ϕ is subadditive or superadditive if and only if domϕ+ domϕ ⊆ domϕ and

ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2) or

ϕ(x1 + x2) ≥ ϕ(x1) + ϕ(x2), respectively,

holds for all x1, x2 ∈ domϕ.

(c) ϕ is homogeneous if and only if domϕ is a cone, domϕ = −domϕ and

ϕ(λx) = λϕ(x)

holds for all λ ∈ R and x ∈ domϕ.

Proof:

(a) (i) Suppose first that ϕ is positively homogeneous, i.e., that domϕ and epiϕ are cones. Assume

λ ∈ R+ \ {0}. Consider first some x ∈ domϕ with t := ϕ(x) ∈ R. λ · (x, t) ∈ epiϕ since

(x, t) ∈ epiϕ. ⇒ ϕ(λx) ≤ λt. Suppose ϕ(λx) < λt. ⇒ ∃λ1 ∈ R with λ1 < λt : ϕ(λx) < λ1.

⇒ (λx, λ1) ∈ epiϕ. If λ > 0, then 1
λ · (λx, λ1) ∈ epiϕ, i.e., (x, λ1

λ ) ∈ epiϕ. ⇒ t = ϕ(x) ≤ λ1

λ ,

which implies λt ≤ λ1, a contradiction. Thus ϕ(λx) = λt = λϕ(x).

Consider now some x ∈ domϕ with ϕ(x) = −∞. ⇒ (x, t) ∈ epiϕ for all t ∈ R. ⇒ (λx, λt) ∈
epiϕ for all t ∈ R since epiϕ is a cone. ⇒ ϕ(λx) = −∞ = λϕ(x).

Consider finally some x ∈ domϕ with ϕ(x) = +∞. If ϕ(λx) 6= +∞, then ϕ(x) = ϕ( 1
λλx) =

1
λϕ(λx) 6= +∞ by the above statements, a contradiction.

(ii) Assume now that domϕ is a cone and ϕ(λx) = λϕ(x) is satisfied for all λ ∈ R+ and x ∈
domϕ. If (x1, t1) ∈ epiϕ, then for each λ1 ∈ R+: λ1x

1 ∈ domϕ and ϕ(λ1x
1) = λ1ϕ(x1) ≤ λ1t1,

hence (λ1x
1, λ1t1) ∈ epiϕ. Thus epiϕ is a cone.

(b) (i) Suppose first that ϕ is subadditive, i.e., domϕ + domϕ ⊆ domϕ and epiϕ + epiϕ ⊆ epiϕ.

Consider x1, x2 ∈ domϕ. ⇒ (x1, ϕ(x1)), (x2, ϕ(x2)) ∈ epiϕ. ⇒ (x1, ϕ(x1))+(x2, ϕ(x2)) ∈ epiϕ.

⇒ ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2).

(ii) Assume that domϕ + domϕ ⊆ domϕ and that ϕ(x1 + x2) ≤ ϕ(x1) + ϕ(x2) holds for all

x1, x2 ∈ domϕ. If (x3, t3), (x4, t4) ∈ epiϕ, then the assumption yields that x3 +x4 ∈ domϕ and

ϕ(x3 + x4) ≤ ϕ(x3) + ϕ(x4) ≤ t3 + t4. ⇒ (x3 + x4, t3 + t4) ∈ epiϕ.

We have proved part (b) for subadditivity. This implies the statement for superadditivity.
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(c) (i) Let us first assume that ϕ is homogeneous, i.e., odd and positively homogeneous. Then

domϕ is a cone, domϕ = −domϕ, ϕ(−x) = −ϕ(x) and ϕ(λx) = λϕ(x) hold for all λ ∈ R+ and

x ∈ domϕ. Consider some arbitrary x ∈ domϕ and λ1 < 0. Then ϕ(λ1x) = ϕ((−λ1) · (−x)) =

(−λ1)ϕ(−x) = (−λ1) · (−ϕ(x)) = λ1ϕ(x). Consequently, ϕ(λx) = λϕ(x) holds for all λ ∈ R and

x ∈ domϕ.

(ii) The reverse direction of the equivalence is obvious because of (a). �

The statement of Proposition 6.7.(b) cannot be extended to functions which are not proper. This is

illustrated by Example 6.9. There the function ϕ is additive, but ϕ(−1+1) = 0 6= ν = ϕ(−1)+ϕ(+1).

We are now going to investigate the relationship between additive and linear functions.

Lemma 6.7. Let X be a linear space and ϕ : X → Rν be a subadditive function.

(a) If ϕ(0) = −∞, then ϕ does not attain any real value.

(b) If {x,−x} ⊂ domϕ, ϕ(x) = −∞ and ϕ(0) 6= −∞, then ϕ(−x) = +∞.

(c) If ϕ(0) ∈ R, then ϕ(0) ≥ 0 and ϕ(nx) = −∞ holds for all n ∈ N \ {0} and all x ∈ domϕ with

ϕ(x) = −∞.

Proof:

(a) Assume ϕ(0) = −∞ and λ := ϕ(x) ∈ R for some x ∈ domϕ. ⇒ (0, t) ∈ epiϕ for all t ∈ R,

(x, λ) ∈ epiϕ. ⇒ (0, t) + (x, λ) = (x, t+λ) ∈ epiϕ for all t ∈ R. ⇒ ϕ(x) = −∞, a contradiction.

(b) Assume that ϕ(−x) 6= +∞. ⇒ ∃λ ∈ R : (−x, λ) ∈ epiϕ. Since (x, t) ∈ epiϕ for all t ∈ R and ϕ

is subadditive, we get (x− x, t+ λ) ∈ epiϕ for all t ∈ R. Thus ϕ(0) = −∞, a contradiction.

(c) ϕ(0) ∈ R ⇒ (0, ϕ(0)) ∈ epiϕ. ⇒ (0, ϕ(0)) + (0, ϕ(0)) = (0, 2ϕ(0)) ∈ epiϕ. ⇒ ϕ(0) ≤ 2ϕ(0).

⇒ ϕ(0) ≥ 0.

If ϕ(x) = −∞, then (x, t) ∈ epiϕ for all t ∈ R. ⇒ (nx, nt) ∈ epiϕ for all t ∈ R, n ∈ N \ {0}.
⇒ ϕ(nx) = −∞ for all n ∈ N \ {0}. �

Proposition 6.8. Let X be a linear space and ϕ : X → Rν be an additive function with 0 ∈ domϕ.

(a) If ϕ(0) 6= 0, then ϕ does not attain any real value.

(b) If ϕ(0) = 0, then ϕ is odd on domϕ ∩ (−domϕ) and

ϕ(tx) = tϕ(x) for all t ∈ Q and all x ∈ domϕ ∩ (− domϕ).

Proof: We get from Lemma 6.7.:

If ϕ(0) /∈ R, then ϕ does not attain any real value.

If ϕ(0) ∈ R, then ϕ(0) = 0.

This implies (a).

Assume now ϕ(0) = 0. Lemma 6.7. implies for x ∈ domϕ ∩ (− domϕ): ϕ(x) = −∞ if and only if

ϕ(−x) = +∞. Consider now some arbitrary x ∈ domϕ ∩ (− domϕ) with ϕ(x) ∈ R. ⇒ (x, ϕ(x)),

(−x, ϕ(−x)) ∈ epiϕ ∩ hypoϕ. ⇒ (x, ϕ(x)) + (−x, ϕ(−x)) = (0, ϕ(x) + ϕ(−x)) ∈ epiϕ ∩ hypoϕ.

⇒ 0 = ϕ(0) = ϕ(x) + ϕ(−x). ⇒ ϕ(−x) = −ϕ(x). Thus ϕ is odd on domϕ ∩ (−domϕ).
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Lemma 6.7. implies ϕ(nx) = nϕ(x) for all n ∈ N and all x ∈ domϕ with ϕ(x) /∈ R. Consider now

some x ∈ domϕ with ϕ(x) ∈ R. ⇒ (x, ϕ(x)) ∈ epiϕ ∩ hypoϕ. ⇒ (nx, nϕ(x)) ∈ epiϕ ∩ hypoϕ.

⇒ ϕ(nx) = nϕ(x) for all n ∈ N. Thus ϕ(nx) = nϕ(x) for all n ∈ N, x ∈ domϕ. For t ∈ −N,

x ∈ domϕ ∩ (−domϕ) we get ϕ(tx) = ϕ((−t)(−x)) = −tϕ(−x) = −t · (−ϕ(x)) = tϕ(x). Consider

q ∈ Z\{0}, x ∈ domϕ∩(−domϕ). Then ϕ(x) = ϕ(q 1
qx) = qϕ( 1

qx). ⇒ ϕ( 1
qx) = 1

qϕ(x). Consequently,

ϕ(pqx) = p
qϕ(x) for all x ∈ domϕ, p ∈ N, q ∈ Z \ {0}. �

Theorem 6.2. Let X be a linear space and ϕ : X → R.

(1) ϕ is linear if and only if ϕ is homogeneous and additive.

(2) ϕ is linear if and only if ϕ and −ϕ are sublinear.

Proof:

(a) We suppose that ϕ is linear.

Assume that ϕ is not odd. ⇒ ∃x ∈ X : ϕ(−x) 6= −ϕ(x). Proposition 5.5.(d) implies ϕ(x) 6= −∞
and ϕ(−x) 6= −∞. Applying Proposition 5.5.(d) to the convex function −ϕ, we get ϕ(x) 6= +∞
and ϕ(−x) 6= +∞. Thus t1 := ϕ(x) ∈ R, t2 := ϕ(−x) ∈ R. ⇒ (x, t1), (−x, t2) ∈ epiϕ ∩ hypoϕ.

⇒ ( 1
2 (x−x), 1

2 (t1 + t2)) ∈ epiϕ∩hypoϕ. ⇒ 0 = ϕ(0) = 1
2 (t1 + t2). ⇒ t1 = −t2, a contradiction.

Hence ϕ is odd.

If ϕ(x) = −∞, then Proposition 5.5.(b) implies ϕ(λx) = −∞ for all λ ∈ (0, 1). If ϕ(x) = +∞ and

we apply Proposition 5.5.(b) to −ϕ, we get ϕ(λx) = +∞ for all λ ∈ (0, 1). Consider now some

x ∈ X with t := ϕ(x) ∈ R. ⇒ (0, 0), (x, t) ∈ epiϕ∩hypoϕ. ⇒ ((1−λ) ·0 +λx, (1−λ) ·0 +λt) ∈
epiϕ ∩ hypoϕ for all λ ∈ [0, 1]. ⇒ (λx, λt) ∈ epiϕ ∩ hypoϕ for all λ ∈ [0, 1]. ⇒ ϕ(λx) = λt for

all λ ∈ [0, 1]. Thus ϕ(λx) = λϕ(x) for all x ∈ X and all λ ∈ [0, 1].

Consider some x ∈ X and λ > 1. ⇒ 1
λ ∈ (0, 1). ⇒ ϕ(x) = ϕ( 1

λ (λx)) = 1
λϕ(λx). ⇒ ϕ(λx) =

λϕ(x). Hence ϕ(λx) = λϕ(x) for all λ ∈ R+. Since ϕ is odd, we get ϕ(λx) = λϕ(x) for all

λ ∈ R. Thus ϕ is homogeneous.

(b) (a) implies part (2) of our assertion because of Lemma 6.6.

(c) Applying Lemma 6.6. to ϕ and −ϕ implies the additivity of each linear function ϕ.

(d) If ϕ is homogeneous and additive, then ϕ is linear by (2) and Lemma 6.6. �

Thus for real-valued functions, our definition of linearity coincides with the usual one.

Theorem 6.3. Let X be a topological vector space and ϕ : X → R be continuous. Then ϕ is linear if

and only if ϕ is additive and ϕ(0) = 0.

Proof: Assume that ϕ is additive and ϕ(0) = 0, but that ϕ is not linear. Then ϕ is not homogeneous

by Theorem 6.2. ⇒ ∃x0 ∈ X ∃λ ∈ R : ϕ(λx0) 6= λϕ(x0). ⇒ There exist neighborhoods V1 of ϕ(λx0)

and V2 of λϕ(x0) such that V1 ∩ V2 = ∅. Since ϕ is continuous, the function ϕ(λx) is a continuous

function of x. Thus there exists some neighborhood U of x0 such that for each x ∈ U : ϕ(λx) ∈ V1.

There exists some p ∈ (0, 1) such that for all t ∈ (p, 1]: tx0 ∈ U . Consider some sequence (qn)n∈N of
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rational numbers with qn < λ for all n ∈ N which converges to λ. ⇒ ∃n0 ∈ N ∀n > n0 : qnλ ∈ (p, 1].

⇒ ∀n > n0 : qnλ x
0 ∈ U . ⇒ ∀n > n0 : qnϕ(x0) = ϕ(qnx

0) = ϕ(λ qnλ x
0) ∈ V1. ⇒ ∀n > n0 : qnϕ(x0) 6∈

V2. ⇒ qnϕ(x0) does not converge to λϕ(x0) for n→∞, a contradiction. �

7. USAGE OF RESULTS FROM CONVEX ANALYSIS

Many essential facts for extended real-valued functions have been proved in convex analysis and can be

applied to the extended real-valued functions in our approach by making use of the following remarks.

By defining notions and properties in the unified approach, one simply has to take into consideration

that the value ν stands for ”not being defined” or ”not being feasible”. A function in the unified

approach has a property if and only if it has it on its domain, where the domain has to fulfill those

conditions which are essential for the defined property. The definition for the property on the domain

can be taken from convex analysis. This is illustrated by the previous sections.

There is a one-to-one correspondence between extended real-valued functions in convex analysis and

those extended real-valued functions in the unified approach which do not attain the value +∞. This

will be shown in Section 7.1. In Section 7.2, the way of transferring results from convex analysis to

functions in the unified approach which can attain also the value +∞ is pointed out.

7.1. Usage of results from convex analysis for functions which do not attain the value

+∞ in the unified approach

If a functional attains only values from R ∪ {−∞} on the entire space, then the notions for and

properties of this function are the same in convex analysis and in our unified approach.

If a statement in convex analysis is given for some functional fcxa : X → R, we can transfer this

statement to fua : X → Rν in the unified approach given by

fua(x) =

{
fcxa(x) if fcxa(x) 6= +∞,
ν if fcxa(x) = +∞,

using the following interdependencies.

Note that fua does not attain the value +∞.

I. Notions and properties which are similar for fcxa and fua

(a) The (effective) domain of fcxa in the terminology of convex analysis is, in the unified

approach, the set

dom fua = {x ∈ X | fua(x) ∈ R ∪ {−∞}} = {x ∈ X | fcxa(x) ∈ R ∪ {−∞}} = dom− fcxa.

(b) fua is proper in the terminology of the unified approach

⇔ fcxa is proper in the terminology of convex analysis

⇔ fua attains some real value, but not the value −∞ on X

⇔ fcxa attains some real value, but not the value −∞ on X.
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(c) fua is finite-valued in the terminology of the unified approach

⇔ fcxa is finite-valued in the terminology of convex analysis

⇔ fua attains only real values on X

⇔ fcxa attains only real values on X.

(d) epi fua = epi fcxa.

Our definition of the epigraph applied to fcxa coincides with that in convex analysis.

(e) For each x ∈ dom− fcxa, fcxa is lower semicontinuous at x if and only if fua is lower

semicontinuous at x.

The notion of lower semicontinuity of fcxa at x ∈ dom− fcxa coincides in convex analysis

and in the unified approach.

(f) fcxa is convex if and only if fua is convex.

Our definition of convexity applied to fcxa coincides with that in convex analysis.

(g) ∂fua(x) = ∂fcxa(x) for all x ∈ X if X is a separated locally convex space.

Our definition of the subdifferential applied to fcxa coincides with that in convex analysis.

II. Notions and properties which are different for fcxa and fua

(h) For each nonempty set X0 ⊆ dom fua, the notions infimum, supremum, maximum, mini-

mum, upper bound and lower bound on X0 have the same contents for fcxa as for fua. In

the case X0 ⊆ dom fua with X0 being nonempty, the definitions of these notions coincide

for fcxa with the usual definitions in convex analysis.

If X0 = ∅, we get in convex analysis infx∈X0 fcxa(x) = +∞ and supx∈X0
fcxa(x) = −∞,

and in the unified approach infx∈X0 fua(x) = supx∈X0
fua(x) = ν.

If X0\dom− fcxa 6= ∅, we get in convex analysis infx∈X0 fcxa(x) = infx∈dom fcxa fcxa(x) and

supx∈X0
fcxa(x) = +∞, and in the unified approach infx∈X0 fua(x) = infx∈dom fua fua(x)

and supx∈X0
fua(x) = supx∈dom fua

fua(x).

(i) fcxa is continuous at x ∈ dom− fcxa if and only if x ∈ int dom fua and fua is continuous

at x.

The analogous statement for upper semicontinuity instead of continuity holds as well.

At each x ∈ dom− fcxa \ int(dom− fcxa), fcxa is not upper semicontinuous and hence not

continuous according to the definition in convex analysis as well as to the definition in the

unified approach, but fua may be upper semicontinuous or continuous at x in the unified

approach.

At x ∈ int(dom− fcxa), the notions of continuity and upper semicontinuity of fcxa in

convex analysis are the same as in the unified approach.

Let us point out that these differences are advantages of the unified approach.
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7.2. Usage of results from convex analysis for functions which attain the value +∞ in

the unified approach

Statements from convex analysis for functionals fcxa : X → R can be transferred to statements for

functions ϕ : X → Rν in the unified approach which can also attain the value +∞ according to the

following rules.

Replace by

X domϕ

dom fcxa dom− ϕ

finite-valued proper

proper ϕ attains some real value and not the value −∞

The sets on which fcxa has a certain property have to be adapted to ϕ according to this table. If

the set is X, those conditions which the whole space X automatically fulfils have to be taken into

consideration.

8. FINAL REMARKS

Our theory serves as a basis for extending functions with values in R to the entire space and handling

them in a way which is not unilateral. It offers the same possibilities as the approach in convex

analysis, but avoids several of its disadvantages and delivers a calculus for functions not depending

on the purpose they are used for.

All results of the unified approach can immediately be applied in the classical framework of convex

analysis since each function ϕ : X → R also maps into Rν . Then domϕ from the unified approach

becomes X, and dom− ϕ from the unified approach becomes the effective domain defined in the

classical approach of convex analysis.

Let us finally mention that the application of ν is not restricted to R. ν can be considered in

combination with each space Y . The concept presented in this paper can easily be adapted to Yν :=

Y ∪ {ν} and to functions with values in Yν . Suppose some function f : C → Y with C being a subset

of some space X and Y being a linear space. f could be extended to X by the function value ν. An

indicator function ιC : X → Yν can be defined in the same way as in (3.3), where 0 stands for the

element of Y which is neutral with regard to addition.
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[9] ROCKAFELLAR, R.T. (1997): Convex analysis. Princeton University Press, Princeton, NJ.

[10] ROCKAFELLAR, R.T., WETS, R.J.B. (1998): Variational analysis. Springer-Verlag, Berlin.

[11] WEIDNER, P. (1990): Ein Trennungskonzept und seine Anwendung auf Vektoroptimierungsver-

fahren. Habilitation Thesis, Martin-Luther-Universität Halle-Wittenberg.

[12] WEIDNER, P. (2015): A unified approach to extended real-valued functions. Research Report,

arXiv: 1605.03456, HAWK Hildesheim/Holzminden/Göttingen.

[13] WEIDNER, P. (2017): Gerstewitz functionals on linear spaces and functionals with uniform

sublevel sets. J. Optim. Theory Appl. 173(3), 812–827.

[14] WEIDNER, P. (2017): Lower semicontinuous functionals with uniform sublevel sets. Optimiza-

tion 66(4), 491–505.
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