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ABSTRACT

Suppose each member of some syndicate applies a monetary measure to price risk. Then, how might

they reasonably share risk? What premiums could apply to insurance policies? More basically: can

modestly informed, moderately skilled members eventually allocate risk efficiently and fairly?

These questions are framed here below by convoluting the members’ monetary measures. If the

resulting inf-convolution admits a global subgradient at the aggregate risk, then any such gradient

provides equilibrium pricing in a pure exchange economy.

Most important, it’s shown that clearing prices - and efficient sharing - might emerge after repeated

bilateral exchanges.
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RESUMEN

Supongamos que cada miembro de un sindicato aplica una medida monetaria de precio de riesgo.

Entonces surgen cuestiones como de qué forma se puede compartir el riesgo de forma razonable, qué

premiums pueden aplicarse como parte de las póıticas de seguros o si miembros poco informados y

moderadamente capacitados pueden afijar el riego de forma eficiente y justa.

Estas preguntas se encuentran en el marco de la convolución de las medidas monetarias de los

miembros del sindicato. Si la inf-convolución resultante admite un sub-gradiente global para la

función de riesgo agregado, entonces cualquier sub-gradiente provee un precio de equilibrio en una

economı́a de intercambio puro.

Se prueba también que los precios ”clearing”-y el reparto eficiente- puede emerger como resultado

de intercambios bilaterales repetidos.

PALABRAS CLAVE: convolución, equilibrio, mercados de intercambio, medidas de riesgo.

1. INTRODUCTION

Large parts of actuarial sciences have considered single agents - or just two of them - who face

individual risks. Focus on a risk-exposed group of agents, typically having many members, came

first with Arrow (1953) who emphasized the allocative rôle of security markets. Later, Borch (1962)
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stressed the constructive part played by reinsurance. Thereby, these two pioneering authors linked

finance to insurance - and risk sharing to market exchange.1

Questions were framed within the Bernoulli paradigm of expected utility; see also Wilson (1968).

That setting offers numerous insights, mostly qualitative [11], [22].2 However, present several players,

each worshipping his (ordinal) non-transferable utility, analysts face the intricacies of computing or

quantifying solutions.

In response, during recent decades - partly spurred by needs for bank regulations [24] - finance theory

has increasingly considered (cardinal) transferable utilities, reported via monetary risk measures.3

This shift fits institutional or large investors, and it offers several advantages. To wit, analysis,

computation and quantification all become more tractable. Also - on a substantial, albeit somewhat

technical note - risk measures open doors to convex analysis, whence to duality, non-smooth objectives,

bid-ask spreads, and boundary positions.

Accordingly, this paper presumes that utility (or dis-utility) be transferable across the members of a

syndicate. Section 2 formulates the allocation problem as that of solving an inf-convolution [4]. That

section also underscores precisely where and how risk aversion enters by way of convex preferences.

Assuming such preferences, Pratt (1962) already considered one agent’s ”risk aversion in the large

and in the small.” Transversal to his approach, present several agents here, their joint risk aversion

”in the large” filters down to that of each single agent ”in the small” [41].

Extremal convolution of agents’ criteria facilitates the analysis. One-sided, global support of the

resulting criterion helps to price risk and decentralize decisions. Optimal allocations may emerge as

price-supported core solutions and market equilibria. For that, convex preferences are essential only

in the large - for the convoluted syndicate.

These observations serve as backdrop to the main issues and novelties of the paper: how might the

agents, by and between themselves, eventually implement efficiency? In what way could they come to

agree on common risk pricing? Admittedly, to that end, convex criteria become crucial also in the

small - for each member of the syndicate.

Section 3 prepares the ground by considering merely one bilateral, direct exchange. Section 4 shows,

as main contribution, that repeated transactions, between just two parties at a time, may eventually

generate efficiency. It’s noteworthy that no objectives need be smooth.

The paper may interest diverse groups of readers. Included are economic, finance and insurance

theorists who care about constructive attainment of stable equilibrium. Also addressed are optimizers

and mathematicians who study stochastic or non-smooth data. Further, there are links to computer

science concerned with block-coordinate methods and distributed or parallel programming [33], [34],

[35], [36].

The paper can be read as a stylized story about risk-exposed agents’ market behavior - or as displaying

how equilibrium could emerge via agent-based computations. The measure-theoretic component, most

prominent in many studies [19], [23] [40], is deliberately played down here.

1See also Malinvaud (1972-73), Bühlmann, Jewell (1979), Cass et al. (1996), and Dana, Scarsini (2007).
2Expected utility still dominates, often with strong assumptions as to differentiability of criteria or interiority of

positions [17].
3Important references include [2], [10] and [19].
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2. RISK AND SYNDICATED SHARING

This section formalizes two things. First, it explains what is meant here below by a risk? Second, it

fixes the frames within which syndicated sharing might emerge.

Risk materializes from some underlying, elementary outcome (or state) ω in a specified set Ω. The

latter comprises all relevant, but mutually exclusive, future ”contingencies.” Ω is endowed with a field

F of subsets, each referred to as measurable. Members of F are just those events that can commonly

be confirmed or refuted ex post - after ω has happened. The reader (and certainly the computer

scientist) may prefer to regard Ω as finite, and then - with no loss of generality - let F be composed

of all Ω-subsets.

Anyway, a risk is a F-measurable mapping ω 7→ x(ω) from Ω into some Euclidean space E of conse-

quences. For concreteness and interpretation, one may posit E = RC , for a finite list C of ”commodity”

labels, and write x(ω) = [x(c, ω)]c∈C . In standard finance and insurance, C is a singleton, E = R, and

money is the only commodity in question [27], [28].

For a holder of risk x, outcome ω ∈ Ω entails loss x(ω) ∈ E . A realized component x(c, ω) ≥ 0 of

x activates his (contractual) commitment to give up the corresponding amount of commodity c; a

negative component gives him the right to receive the same amount of c. With this convention, a

holder of risk x has a ”debit account” from which is ”drawn” x(ω) ∈ E in state ω.

In the leading interpretation, let L0 = L0(Ω,F ; E) denote the space all F-measurable mappings

x : Ω→ E . Henceforth regard risks as vectors in some fixed real subspace X ⊆ L0. That space inherits

the natural order from E .4

Syndicated sharing might come about when a fixed, finite family I of agents face risks (aggre-

gate or individual). Here, attention goes beyond the most studied case in which I comprises just two

agents: one demanding insurance, the other providing it.5

By standing assumption, member i ∈ I valuates risk up front - prior to any realization ω ∈ Ω. For

valuation, he uses an idiosyncratic, pecuniary cost function ρi : X→ R∪{+∞}.6 Thus, ρi(xi) equals

his personal liability, measured ex ante in money, of incurring loss xi(ω) ∈ E , realized ex post. Put

differently: ρi(xi) reports individual dis-utility or inconvenience, denominated in units of common

account, of covering xi.

Presuming that money and risk both be perfectly transferable - with no fees or frictions - any aggregate

risk xI ∈ X could be allocated by solving the inf-convolution

ρI(xI) := inf

{∑
i∈I

ρi(xi) :
∑
i∈I

xi = xI

}
. (2.1)

ρI(xI) equals the money amount the syndicate would pay, in toto, to rid itself of aggregate liability

xI .

4Note that if Ω is finite, L0 becomes Euclidean.
5Typically, #I > 2.
6The value +∞ is a conceptual device. It signals infeasibility - that is, violation of underlying constraints, not spelled

out here.
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Remark 2.1. (On insurance versus finance) . A twin version of problem (2.1) regards any χi(ω) :=

−xi(ω) as realized revenue, put into i′s ”credit account.” In this optic, a ”financial position” χi ∈ X
is worth transferable utility ui(χi) = −ρi(−xi) to him. Then, ui(χi) equals the ex ante pecuniary

value, to agent i, of owning contingent claim ω 7→ χi(ω) ∈ E. Thus, while problem format (2.1) suits

insurance, its mirror image, the sup-convolution

uI(χI) := sup

{∑
i∈I

ui(χi) :
∑
i∈I

χi = χI

}
(2.2)

might be better tailored to finance. Henceforth format (2.1) stays in focus.

Remark 2.2. (On links to risk measures) . In important and tractable cases, each criterion ρi

qualifies as a risk measure [15], [19], [23], [40]. As formalized or axiomatized, such measures satisfy

one or more special properties - be it cash invariance, comonotone additivity, convexity, law invariance,

monotonicity, positive homogeneity, or subadditivity. Just one of these properties is chief in the sequel,

namely: convexity. What imports is first, that dis-utility be transferable, and second, that it comes

convex.

Any solution to (2.1) is called an efficient or optimal allocation of the prescribed aggregate xI .7 The

next section considers how optimality could be captured and characterized via risk pricing. For this

purpose, given any function f : X → R∪{+∞} and linear functional x∗ : X→ R, the subgradient

expression x∗ ∈ ∂−f(x) means that

x ∈ arg min {f − x∗} (·). (2.3)

By tacit assumption, (2.3) features a finite minimal value. Hereafter, to alleviate notations, it’s

convenient to write x∗x in place of x∗(x).

If an extended indicator δX : X→ {0,+∞} defines a non-empty subset X ⊆ X by x ∈ X ⇐⇒ δX(x) =

0, then it subdifferential

∂−δX(x) = {x∗ : x∗(χ− x) ≤ 0 ∀χ ∈ X} =: NX(x). (2.4)

is called the outward normal cone to X at x ∈ X.
When f : X→ R∪{+∞} is convex, ∂−f coincides with the customary subdifferential operator ∂f in

convex analysis [39].

3. OPTIMAL RISK SHARING

This section aims at characterizing optimal solutions to problem (2.1). By assumption, at least one

such solution exists.

7Not presuming transferable utility, many studies must contend with the weaker normative criterion of Pareto

optimality [9], [21], [41]. Here that criterion has too little bite.
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For simplicity, any subgradient x∗ ∈ ∂−ρI(xI) (2.3) of the convoluted criterion (2.1), at the aggregate

risk xI , is henceforth named a shadow price. Every such price system makes it easier to come to grips

with efficient allocations:

Theorem 3.1. (Price characterization of optimal risk sharing)

• On shadow pricing and equal margins. For any optimal allocation (xi) of aggregate risk xI ,

x∗ ∈ ∂−ρI(xI)⇐⇒ x∗ ∈ ∂−ρi(xi) for each i. (3.1)

• On optimality and market equilibrium. Any optimal allocation (xi) of xI , alongside any shadow

price x∗ ∈ ∂−ρI(xI), constitutes a market equilibrium in that

xi ∈ arg min {ρi − x∗} ∀i ∈ I and
∑
i∈I

xi = xI . (3.2)

Conversely, every such equilibrium allocation (xi) is optimal, and every associated price x∗ must be a

corresponding shadow entity.

• Cost-sharing core solutions. Suppose, just here, that each agent i, at the outset, be ”endowed”

with a risk ei ∈ X such that
∑

i∈I ei = xI . For any non-empty coalition C ⊆ I, let xC :=
∑

i∈C ei,

and, like (2.1), posit

ρC(xC) := inf

{∑
i∈C

ρi(xi) :
∑
i∈C

xi = xC

}
.

Then, given any shadow price x∗ ∈ ∂−ρI(xI), the cost-sharing scheme (κi) defined by

κi := inf {ρi − x∗}+ x∗ei (3.3)

constitutes a core solution to the transferable-cost, cooperative game with characteristic (cost) function

C 7→ ρC(xC). That is, ∑
i∈C

κi ≤ ρC(xC) ∀C ⊂ I, and
∑
i∈I

κi = ρI(xI).

• Existence of a shadow price. Let ρ̌I : X→ R∪{+∞} denote the largest convex function point-

wise ≤ ρI , the latter being defined in (2.1). If ∂ρ̌I(xI) is non-empty and ρ̌I(xI) = ρI(xI), then each

x∗ ∈ ∂ρ̌I(xI) is a shadow price. In particular,when ∂ρ̌I(xI) reduces to a singleton, x∗ is unique.

• Existence of an optimal allocation. In case X is Euclidean, assume that each ρi be lower

semicontinuous. Suppose there is a subset I ⊆ Isuch that ρ−1
i (R) is compact when i ∈ I, and∑

i/∈I ρi(xi)→ +∞ as
∑

i/∈I ‖xi‖ → ∞. Then there exists an optimal allocation.

Proof. Let (xi) be any optimal allocation. Then, x∗ ∈ ∂−ρI(xI)

⇐⇒
∑
i∈I

ρi(χi) ≥ ρI(χ) ≥ ρI(xI) + x∗(χ− xI) with χ =
∑
i∈I

χi
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⇐⇒
∑
i∈I
{ρi(χi)− x∗χi} ≥

∑
i∈I
{ρi(xi)− x∗xi} ∀(χi) ∈ XI . (3.4)

Fix any i ∈ I. In (3.4), posit χj = xj for all j 6= i to have

ρi(χi)− x∗χi ≥ ρi(xi)− x∗xi ∀χi ∈ X, ∀i ∈ I. (3.5)

By (2.3) it obtains x∗ ∈ ∂−ρi(xi),∀i. Conversely, summing inequalities (3.5) over i ∈ I yields (3.4).

This proves the first bullet on common margins (3.1).

As to market equilibrium, simply note that system (3.5) amounts to xi ∈ arg min {ρi − x∗} ∀i ∈ I.
Moreover, when (χi) allocates xI , summation of (3.5) gives

∑
i∈I ρi(χi) ≥

∑
i∈I ρi(xi). That is, any

equilibrium profile is optimal. Further, by repeating the same summation, but now with
∑

i∈I χi = χ,

one obtains

ρI(χ)− x∗χ ≥ ρI(xI)− x∗xI for all χ ∈ X,

hence, again by (2.3), x∗ ∈ ∂−ρI(xI).

For core solutions, given any non-empty coalition C ⊆ I, note that∑
i∈C

κi =
∑
i∈C

inf {ρi(χi)− x∗(χi − ei)}

≤ inf
∑
i∈C
{ρi(χi)− x∗(χi − ei)}

≤ inf
∑
i∈C

{
ρi(χi) :

∑
i∈C

(χi − ei) = 0

}
= ρC(xC).

In particular,
∑

i∈I κi ≤ ρI(xI). That the converse of the last inequality also holds follows from (3.4).

For existence of a shadow price, simply observe that ∂ρ̌I(xI) ⊆ ∂−ρI(xI).

Finally, for existence of an optimal solution, suppose a feasible allocation (χi) satisfies
∑

i/∈I ‖χi‖ = r.

Then, provided r be large enough,
∑

i∈I ρi(χi) > ρI(xI). Hence existence of an optimal allocation

derives from the lower semicontinuity of each ρi, coupled with coercivity and compactness. �

Miscellaneous remarks conclude this section. None are essential.

(On shadow pricing). Any shadow price can be seen as a common Lagrange multiplier - a dual

object, hence a linear price system x∗ : X→ R associated to relaxations of the coupling constraint∑
i∈I xi = xI [17]. A chief issue here below is how differences between agents’ individual multipliers

(alias their margins) could motivate exchanges. If such differences thereby dwindle, a common shadow

price might emerge.

(On market clearing and welfare). By the second welfare theorem [29], [32], equilibrium (3.2) is a

price-taking (alias competitive) Walras equilibrium for the pure exchange economy in which agent i,

at the outset, already holds his part xi of an optimal allocation (xi). Note though that x∗ is unaffected

by the distribution (ei) of initial risk endowments, satisfying
∑

i∈I ei = xI . Most likely, x∗xi 6= x∗ei

for at least two agents. Thus, commonplace budget constraints disappear here. They are obviated by

endogenous side payments for demand/supply of insurance.

(On core outcomes). Core imputation (3.3) debits agent i for the risk ei he sheds onto the syndicate,

but credits him for the risk xi he shoulders. Individual rationality prevails because κi ≤ ρi(ei) ∀i.
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(On attainment of equilibrium). Syndicate members can hardly leap straight to market equilibrium

(3.2) - or to core imputations (3.3). They need time to learn. Further, where do prices come from?

These two queries motivate the subsequent sections.

(On composition of risks). Many studies elaborate on important effects of adding background or non-

insurable risk [9], [13], [20]. Here the aggregate risk is rather taken as primitive - not as decomposed

across different sources. While risk sharing remains the chief issue, nothing was, or will be, said about

stochastic dependence among various components or terms in xI . Thus, the paper is silent on crucial

policy consequences - say, on comonotonicity, co-insurance or deductibles [9]. Note though, that when

dim E > 1, risk becomes multivariate [13].

(On functional properties). It’s remarkable that, so far, no criterion ρi needs be continuous, convex,

monotone, normalized, or positively homogenous [38]. Broadly, what imports is only that the convo-

luted criterion ρI be convex with respect to one point, namely xI . In other words: convexity - hence

monotone margins - enters chiefly at the aggregate level. As is easily verified, inf-convolution (2.1)

tends to lift useful properties - for example, convexity - from individual terms ρi to ρI . What is no

less important, it also contributes towards ”creating” such properties. For instance, on a qualitative

note, adding many and minor members to the syndicate I, renders ρI(·) ”more convex” [3], [12], [30].

(On vector spaces). Except for the last bullet, Theorem 3.1 holds for any real linear space; no topo-

logical arguments were invoked.

(On outside insurance). Background components, if any, in xI , whether difficult to diversity or in-

sure, ought nonetheless be evaluated - at least at their margins. Using shadow prices to do so, the

syndicate could transact with exogenous parties. To illustrate, suppose some outsider o /∈ I offers to

cover liability ∆ ∈ X for premium π. Since

x∗ ∈ ∂ρI(xI) =⇒ ρI(xI −∆) ≥ ρI(xI)− x∗∆,

the syndicate should care that π ≤ inf {x∗∆ : x∗ ∈ ∂ρI(xI)} .8 Also, because

ρI∪o(xI) ≤ ρI(xI −∆) + ρo(∆),

and reasonably, π ≥ ρo(∆), the outside offer might be attractive if π ≤ ρI∪o(xI)− ρI(xI −∆). Thus,

this paper opens towards - but does not develop - extended syndicates. Including more members could

fit say, partial cover for syndicate-wide catastrophes.

(On decision making). Naming the ensemble I a syndicate could lure one into thinking that the

members must make a common decision in face of uncertainty. Here, that image isn’t quite fitting.

In what follows, decisions on sharing will be fully decentralized.

4. BILATERAL RISK REALLOCATION

Theorem 3.1 invites a top-down perspective - from coordinated shadow pricing (of risk) at the upper,

aggregate level down to equal margins across agents.

8Likewise, if the syndicate were to carry additional risk ∆ for outsider o, it ought charge him a premium π ≥
sup {x∗∆ : x∗ ∈ ∂ρI(xI)} .
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This section embarks on an alternative, more constructive, totally opposite approach. It starts from

unequal margins deep down and moves upward, by way of trade, to make for possible emergence of

common risk pricing. Upon travelling this turned-around path, convexity becomes handy - in fact,

almost indispensable.

Some motivating remarks are in order. It appears natural to regard each syndicate member as au-

tonomous and self-interested - more or less. Then, quite likely, data or decisions are distributed.

Consequently, a coordinator (or central processing unit) could hardly direct all choices, know every

detail - or solicit necessary information. This observation indicates the expediency of letting market-

like platforms mobilize the members, but leave their choices to themselves. For that, some useful

instruments are most classical. In fact, direct exchange will serve here as chief vehicle. Moreover, just

two parties transact at any time.

Recall that a monetary measure may take the value +∞, thereby signalling non-admissible risk ex-

posure. Thus, agent i ∈ I is subject to the viability restriction that xi always belong to his effective

domain

Xi := {xi ∈ X : ρi(xi) < +∞} = ρ−1
i (R) =: domρi. (4.1)

From here onwards, the paper’s orientation becomes more computational - and practical. So, assume

now that X be finite-dimensional Euclidean with norm ‖·‖, and that each criterion ρi be convex.

To begin with, this section fixes two agents i, j ∈ I, and it considers the following episode. Prior to

realization of any contingency ω ∈ Ω, the two parties meet with respective holdings xi ∈ Xi (4.1) and

xj ∈ Xj . Suppose they detect that

∂ρi(xi) ∩ ∂ρj(xj) = ∅. (4.2)

Put differently: suppose they disagree on ex ante valuations of marginal risks. Then, why not shift

some ”small risk” ∆ ∈ X away from first agent to the second? With no loss of generality, the said

shift takes the form ∆ = sd for some step s > 0 along some direction d ∈ X. Thus, they could arrive

at updated, still feasible positions

x+1
i := xi − sd ∈ Xi and x+1

j := xj + sd ∈ Xj . (4.3)

Such updating just reallocates risks; it preserves aggregates in that x+1
i + x+1

j = xi + xj . The last

part of (4.3) implies that d belongs to the convex cone

Dj(xj) := {d : xj + sd ∈ Xj for sufficiently small step s ≥ 0} . (4.4)

This cone comprises all feasible directions for agent j at xj . By assumption, Dj(xj) is closed with non-

empty interior.9 Similarly, the first statement in (4.3) tells that −d ∈ Di(xi). Hence the interlocutors

must, out of concerns for feasibility, agree on some direction

d ∈ Dij(xi, xj) := [−Di(xi)] ∩Dj(xj). (4.5)

Besides feasibility, they have, of course, additional concerns. Regarding these, it appears natural that

d = x∗i − x∗j with x∗i ∈ ∂ρi(xi) and x∗j ∈ ∂ρj(xj). (4.6)

9intDj(xj) is non-empty if intXj is likewise.
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Broadly, the chosen direction should equal a subgradient difference. For a partial and economic

rationale behind (4.6), suppose X = RC×Ω, C and Ω being finite sets of commodities and contingencies

respectively. Here, for argument, let Dij(xi, xj) = X. Then, by (4.6), component (c, ω) of d should

satisfy d(c, ω) > 0 ⇐⇒ x∗i (c, ω) > x∗j (c, ω). Thus, the party who has lowest marginal cost becomes a

net receiver; he should shoulder a larger part of loss in the setting (c, ω).

For another partial, but mathematical rationale behind (4.6), still with Dij(xi, xj) = X, suppose, here

again just for argument, that ρi, ρj , are differentiable at xi, xj respectively. Then, d = ρ′i(xi)−ρ′j(xj) =

x∗i − x∗j , and, using directional derivatives,

ρ′i(xi;−d) + ρ′j(xj ; d) = −x∗i d+ x∗jd = −
[
x∗i − x∗j

]
d = −

∥∥x∗i − x∗j∥∥2
.

Consequently, provided x∗i 6= x∗j and s > 0 be sufficiently small, updates (4.3) imply

ρi(x
+1
i ) + ρj(x

+1
j ) < ρi(xi) + ρj(xj).

In this case, modulo zero-sum monetary side payments µi, µj ∈ R, both parties can see some satis-

faction in so far as

ρi(x
+1
i ) + µi < ρi(xi), ρj(x

+1
j ) + µj < ρj(xj) & µi + µj = 0.

To argue more fully for (4.6), it remains to discuss instances where Dij(xi, xj) 6= X - or where some

function ρi, ρj isn’t differentiable at the respective agent’s actual holding. For either case, suppose

that each subgradient x∗i ∈ ∂ρi(xi) has a decomposition

x∗i = x∗i + ni with x∗i ∈ X
∗
i (xi) and ni ∈ NXi(xi). (4.7)

The correspondence xi ∈ Xi ⇒ X∗i (xi) ⊂ X is supposed outer semicontinuous [39] with non-empty,

uniformly bounded, closed, convex values. NXi(xi) is the normal cone (2.4) at xi of the effective

domain Xi (4.1). By assumption, each subgradient x∗j ∈ ∂ρj(xj) of agent j decomposes likewise.

Invoking decompositions (4.7), can (4.5) comply with (4.6)? To address this question, write simply

Pij [·] for the orthogonal projection onto the closed convex cone Dij(xi, xj) (4.5).

Proposition 4.1. (Projected subgradient difference) Any two subgradients x∗i ∈ ∂ρi(xi), x∗j ∈
∂ρj(xj) admit decompositions (4.7) such that

d = x∗i − x∗j ∈ Dij(xi, xj).

Proof. Recall the assumption that both cones Di(xi), Dj(xj) are closed convex. Hence, by a decom-

position theorem of Moreau, the particular choice

d := Pij

[
x∗i − x∗j

]
= (x∗i − x∗j )− n ∈ Dij(xi, xj) (4.8)

is well defined for some unique normal vector n, belonging to the dual cone

Nij(xi, xj) := {n : nd ≤ 0 for all d ∈ Dij(xi, xj)} .
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By assumption, both cones −Di(xi), Dj(xj) have non-empty interior. Hence

Nij(xi, xj) = −NXi(xi) +NXj (xj).

So, the above outward pointing vector n equals −ni+nj for some normals ni ∈ NXi
(xi), nj ∈ NXj

(xj).

Now, (4.6) follows from (4.7) which implies x∗i − ni = x∗i , x
∗
j − nj = x∗j , and thereby

d = (x∗i − x∗j )− (−ni + nj) = x∗i − x∗j ∈ ∂ρi(xi)− ∂ρj(xj). �

5. REPEATED RISK EXCHANGE

The preceding section dealt with just one encounter - and the attending direct exchange of risk -

between two syndicate members.

Each such transaction is henceforth seen as a recurrent episode of repeated exchange. For convergence

of the resulting process, step-sizes should provide sufficient progress. Further, some protocol should

regulate who meets next whom. These issues are taken up next.

The protocol: Henceforth suppose agents meet pair-wise, just one pair at each stage, selected

independently and randomly with uniform probability 1/
(
n
2

)
, n := #I. This stochastic mechanism

complements the deterministic ones considered in [16]. Random matching is also used in [14], [33],

[34], [35]. This paper differs by allowing extended-valued, non-Lipschitz objectives.

Step-sizes sk > 0 should dwindle, but not too fast along stages k = 0, 1, ... These requirements

are cared for provided

∞∑
k=0

s2
k < +∞ and

{∑
k

sk : i meets j

}
= +∞ almost surely ∀i, j ∈ I. (5.1)

Thus, each encounter is a single step of a discrete-time stochastic process. For argument, that process

is cast next in the form of an algorithm:

Repeated exchange proceeds at stages k = 0, 1, ...

Start with some profile x = (xi) ∈ XI which satisfies
∑

i∈I xi = xI and xi ∈ Xi := domρi (4.1) for

each i ∈ I.
Select two members i, j ∈ I independently, with uniform probability .

Choose any of their marginal valuation schemes x∗i ∈ ∂i(xi), x∗j ∈ ∂ρj(xj) such that (4.7) and

(4.8) hold.

Update their actual holdings by (4.3) for some suitable step-size s > 0.

Continue to Select two members until convergence.

Theorem 5.1. (Convergence [18].) Under (5.1) the profile k 7→ xk = (xki ) generated by repeated

risk exchange converges almost surely (a.s.) to the set X̄ of optimal allocations of the aggregate risk

xI . That is, dist(xk, X̄)→ 0 a.s.
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Proof. [18] provides proof for the mirror-image instance (2.2). For completeness, and to save trans-

lation from concave to convex functions, direct arguments are included here.

Consider a stage k at the moment when xk = (xki ) is about to be updated by members i, j. For simpler

notation, temporarily suppress mention of k. In compliance with (4.3) and (4.6), define a direction

d ∈ XI with components

dj := x∗i − x∗j =: −di, and all other d-components are nil.

Using step-size s > 0, direct exchange, as modelled by (4.3), takes the form x+1 := x + sd. Now, for

any optimal allocation x̄ ∈ X̄,

∥∥x+1 − x̄
∥∥2

= ‖x + sd− x̄]‖2 = ‖x− x̄‖2 + 2s(x− x̄)d + s2 ‖d‖2

= ‖x− x̄‖2 + 2s {(xi − x̄i)di + (xj − x̄j)dj}+ 2s2 ‖di‖2 .

Recall that the correspondences xi ⇒ X∗i (xi) and xj ⇒ X∗j (xj), mentioned in (4.7), have uniformly

bounded values. On that premise, Proposition 4.1 implies that ‖di‖ is bounded. Hence 2 ‖di‖2 ≤ γ

for some constant γ ≥ 0.

The pair (i, j) of distinct agents is randomly drawn with uniform probability. Repeated draws are

independent of one another. In the above equalities take expectation E with respect to drawing the

agent pair (i, j). This gives

E
∥∥x+1 − x̄

∥∥2 ≤ ‖x− x̄‖2 − 8s

n(n− 1)

∑
i

∑
j

[x∗i − x∗j ](xi − x̄i) + s2γ. (5.2)

Next, consider the orthogonal projection P∆ from the product space X : = XI onto its linear subspace

∆ :=

{
(∆i) ∈ X :

∑
i∈I

∆i = 0

}
.

Given any vector x∗ = (x∗i ) ∈ X, it holds for each block component i ∈ I of its projection P∆[x∗]

onto ∆ that

(P∆ [x∗])i =
1

n

∑
j∈I

{
x∗i − x∗j

}
.

So, returning to the sum in the last inequality,∑
i

1

n

∑
j

[x∗i − x∗j ](xi − x̄i) = P∆[x∗](x− x̄) = x∗(x− x̄) ≤ x∗(x− x̄).

The last inequality obtains from (4.7) because x∗i − ni = x∗i and −n∗i (xi − x̄i) ≤ 0. The upshot so far

is that

E
∥∥x+1 − x̄

∥∥2 ≤ ‖x− x̄‖2 − 8

n− 1
sx∗(x̄− x) + s2γ.

Reintroduce the state xk which prevails at stage k, and let x̄k ∈ X̄ realize dist(xk, X̄). It obtains now

for k = 0, 1, ... that

E
∥∥xk+1 − x̄k+1

∥∥2 ≤
∥∥xk − x̄k

∥∥2 − 8

n− 1
skx∗k(x̄k − xk) + s2

kγ.
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With identifications

Ak := dist2(xk, X̄), Bk := 0, Ck :=
8sk

(n− 1)
x∗k(x̄k − xk), Dk := s2

kγ,

all these items are non-negative random variables. Further, the last inequality takes the form

EAk+1 ≤ Ak(1 +Bk)− Ck +Dk. (5.3)

Next invoke the Robbins-Siegmund Lemma [5], [37]: Suppose k 7→ Ak, Bk, Ck, Dk be sequences of

non-negative random variables, each adapted to a filtration Fk ⊆ Fk+1 of some probability space.

Further suppose
∑
Bk,

∑
Dk < +∞ almost surely, and that (5.3) holds with conditional expectation

E [· |Fk ]. Then, Ak converges almost surely, and
∑
Ck < +∞ likewise.

In the actual context, if A := limAk > 0 on some set of trajectories which has strictly positive prob-

ability, the contradiction
∑
Ck = +∞ holds on that set. Hence, A = 0 a.s. �

The above proof of convergence was coached in primal terms; dual items - alias prices - never came

to the fore.10 Finally, in any limit (x̄i), the forces that drive bilateral exchanges disappear. That is,

each two agents i, j see a common price in ∂ρi(x̄i) ∩ ∂ρj(x̄j). To round up, if some agent has smooth

objective (whence interior position), eventually everybody sees common prices:

Proposition 5.2. (On emergence of common prices) Ultimately, at any limit point (x̄i), pro-

vided ∂ρi(x̄i) reduces to a singleton x∗ for at least one agent i, that singleton becomes a common

(shadow) price x∗ ∈ ∩i∈I∂ρi(x̄i).

Remark 5.1. (On second-hand trade and linear pricing) Exchange, as modelled above, does

not preclude bundling or unbundling of risks. Further, holdings or transfers need not be first hand.

Consequently, to block arbitrage, pricing had finally better become linear and common [27], [28].

Remark 5.2. (On risk-free papers and money) Following finance theory, it’s common to single

out a particular claim 1 ∈ X, referred to as risk-free.11 Many risk measures [19], [40] are then

presumed translation invariant along that claim, meaning

ρi(xi + r1) =ρi(xi) + r ∀i ∈ I ∀r ∈ R. (5.4)

No such properties have been invoked here. Note though, that given any shadow price x∗, it obtains

from (5.4) and xi ∈ arg min {ρi − x∗} (3.2), that x∗1 = 1. Thus, a risk-free paper ”monetizes”

transactions; it serves as unit of account.
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10Theorem 4.1 extends the convergence result in [14] by allowing viability constraints (4.1).
11In most of the literature, outcomes are univariate, meaning E = R. Then, naturally, 1(ω) ≡ 1.
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