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ABSTRACT
This paper deals with vector optimization problems where the feasible set is given by a generalized
semi-infinite structure. We present necessary and sufficient optimality conditions both for (locally)
(weakly) efficient points as well as for properly efficient points.
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RESUMEN
Este art́ıculo trata sobre problemas de optimización vectorial donde el conjunto de factibilidad viene
dado por una estructura semi-infinita generalizada. Presentamos condiciones de optimailidad nece-
sarias y suficientes tanto para puntos (localmente) (débilmente) eficientes como para puntos eficientes
propios.

PALABRAS CLAVE: Optimización vectorial, optimización semi-infinita generalizada, condi-

ciones necesarias y suficientes de optimalidad, punto (localmente)(débilmente) eficiente, punto propi-

amente eficiente

1. INTRODUCTION

This paper deals with non-linear vector (or multi-objective) optimization problems whose feasible sets
have a generalized semi-infinite structure. That means, that all appearing functions are real-valued
and defined on a finite dimensional space and that there are
• finitely many objective functions

fi : x ∈ Rn 7−→ fi(x) ∈ R, i ∈ P := {1, . . . , p},

• infinitely many inequality constraints

G : (x, y) ∈ Rn × Rm 7−→ G(x, y) ∈ R

where the index y ∈ Rm is varying in an (infinite) index set

Y (x) = {y ∈ Rm | vl(x, y) ≥ 0, l ∈ L}

with a finite set L and

vl : (x, y) ∈ Rn × Rm 7−→ vl(x, y) ∈ R.
†fgveme1@prodigy.net.mx
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Each y ∈ Y (x) represents a corresponding inequality constraint G(x, y) ≥ 0.

There are many applications both for vector optimization and generalized semi-infinite programming
(see e.g. [2, 5, 6]); both areas, their theory and numerical approaches became a very active research
area in recent decades.

Our problem under consideration is called a Vector Generalized Semi-Infinite Programming Problem
(VGSIP) and is defined as

V GSIP : “min” (f1(x), . . . , fp(x)) s.t. x ∈M

with the feasible set

M = {x ∈ Rn | G(x, y) ≥ 0, y ∈ Y (x)}

(the term generalized refers to the dependence of Y (x) on x; in case that Y (x) = Y is a fixed set we
would have a semi-infinite structure).

Throughout this paper we assume the following:
• All appearing functions are continuously differentiable (and the corresponding gradient, e.g. for f1
at x is a row vector and denoted by Df1(x)).
• The set-valued mapping

Y : x ∈ Rn 7−→ Y (x) ⊂ R

is upper semicontinuous at all x ∈ Rn in the sense of [1] and Y (x) is compact for all x ∈ Rn (this
property is sometimes also called uniformly bounded).

We will use the following notations. Given z, w ∈ Rr we write

• z 5 w (z < w) if zi 5 wi (zi < wi), i = 1, . . . , r and

• z ≤ w if zi 5 wi, i = 1, . . . , r and z 6= w.

The origen (zero vector) in Rr is denoted by 0r. As usual, the Euclidean norm is denoted by ‖·‖ and
for x ∈ Rr and a real number ε > 0 define B(x, ε) := {x ∈ Rr | ‖x− x‖ < ε} .
Throughout this paper, let x ∈ M be our point under consideration. In the following definition we
recall different types of solutions for vector optimization problems which are adapted straightforwardly
to our problem class VGSIP.

Definition 1.1. (a) A point x ∈ M is called efficient for VGSIP if there does not exist any x ∈ M
with f(x) ≤ f(x).
(b) A point x ∈ M is called weakly efficient for VGSIP if there does not exist any x ∈ M with
f(x) < f(x).
(c) A point x ∈M is called locally efficient for VGSIP on B(x, ε) if there exists a real number ε > 0
and if there does not exist any x ∈ B(x, ε) ∩M with f(x) ≤ f(x).
(d) A point x ∈M is called locally weakly efficient for VGSIP if there exists a real number ε > 0 and
if there does not exist any x ∈ B(x, ε) ∩M with f(x) < f(x).
(e) A point x ∈ M is called properly efficient for VGSIP if x is an efficient point for VGSIP and if
there exists a real number K such that for any index i ∈ P and x ∈M with fi(x) < fi(x) there exists
an index j ∈ P such that fj(x) > fj(x) and

• K > 0

• fi(x)−fi(x)
fj(x)−fj(x) < K

(1.1)
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The goal of this paper is as follows. On the one hand, there are many applications and several
numerical approaches for vector optimization problems (cf. e.g. the standard book [2]) as well as
for generalized semi-infinite programming (cf. e.g. [5, 12, 13, 14, 16]). On the other hand, there
are only a few results on the relationship between vector optimization and generalized semi-infinite
programming. This paper will fill in this gap to some extent by presenting necessary and sufficient
optimality conditions for locally weakly efficient points for VGSIP as well as for properly efficient
points for VGSIP.

In vector optimization the assignment of a so-called weighted-sum optimization problem plays an
important role. The weighted-sum optimization problem assigned to VGSIP is defined as follows
where the weights are λi ≥ 0, i ∈ P, with λ ≥ 0p, λ = (λ1, . . . , λp) :

min
∑
i∈P

λifi(x) s.t. x ∈M. (1.2)

A well-known relationship between VGSIP and the problem (1.2) is presented in the following propo-
sition.

Proposition 1.1. [2] (i) If x ∈M is a global (local) minimizer of the problem (1.2) for some λ ≥ 0p,
then x is a (locally) weakly efficient point for VGSIP.
(ii) If λ > 0p in assertion (i), then x is a (locally) efficient point for VGSIP.

For x ∈M, the index set of active constraints is defined as

Y0(x) = {y ∈ Y (x) | G(x, y) = 0} .

By definition, each y ∈ Y0(x) is a global minimizer of the related (parametric) lower level problem

min G(x, y) s.t. y ∈ Y (x),

(where x is the parameter vector). As usual, The Linear Independence constraint qualification LICQ
is said to hold at y ∈ Y0(x) if the gradients

Dyvl(x, y), l ∈ L0(x, y) := {l ∈ L | vl(x, y) = 0}

are linearly independent (Dyvl refers to the partial derivative of vl with respect to y). By the Fritz-John
optimality condition [9] there exist for each y ∈ Y0(x) multipliers α ∈ R and γ = (γl, l ∈ L0(x, y))
satisfying

α ≥ 0, γl ≥ 0, l ∈ L0(x, y)
α+

∑
l∈L0(x,y)

γl = 1

DyL(x,y)(x, y, α, γ) = 0>m,

 (1.3)

where the latter refers to the Lagrangian

L(x,y)(x, y, α, γ) = αG(x, y)−
∑

l∈L0(x,y)

γlvl(x, y).

It is shown in [10] that
• the set

F (x, y) =
{

(α, γ) ∈ R× R|L0(x,y)| | (α, γ) fulfills (1.3)
}

is compact for x ∈M and each y ∈ Y0(x) and that
• the set
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V (x) =
⋃

y∈Y0(x)

{
DxL(x,y)(x, y, α, γ) | (α, γ) ∈ F (x, y)

}
(1.4)

is compact for x ∈M.

This paper is organized as follows. Section 2 contains some basic notations and preliminary results. In
Section 3 the main results are presented: necessary and sufficient optimality conditions for a feasible
point of VGSIP to be
– a (locally) weakly efficient point for VGSIP or
– a properly efficient point for VGSIP.
This paper is completed with some conclusions in Section 4.

2. NOTATIONS AND LEMMAS

In this section we recall some notations and present some known results which will be used later. Let
S ⊂ Rn be a given set. Then:
• By conv(S) and co(S) we denote the convex hull of S and the convex cone hull of S, respectively,
where the latter is defined as the set of all finite non-negative linear combinations of elements of S
and where co( ∅) = {0}.
• The contingent cone Γ∗(s, S) ⊂ Rn of S at an element s ∈ S is defined as follows: d ∈ Γ∗(s, S) if
and only if there exist sequences {tν}ν∈N ⊂ R and {dν}ν∈N ⊂ Rn such that

tν ↓ 0, dν → d and s+ tνdν ∈ S for all ν ∈ N.

Lemma 2.1. [7][8, Lemma 3.1.12].
Let S ⊂ Rn be a compact set. Then:
(i) If 0n /∈ conv(S), then co(S) is closed.
(ii) It is 0n /∈ conv(S) if and only if the system

w>d < 0, w ∈ S

has a solution d ∈ Rn.

For x ∈ M we refer to the compact set V (x) defined in (1.4) and define the following corresponding
sets:

A′ (x,M) :=
{
d ∈ Rn | w>d ≤ 0, w ∈ V (x)

}
and

A0 (x,M) :=
{
d ∈ Rn | w>d < 0, w ∈ V (x)

}
.

Obviously, it is A0 (x,M) ⊂ A′ (x,M) .
The following constraint qualification was introduced in [10] and is a generalization of the well known
Mangasarian-Fromovitz constraint qualification (see [11]) to generalized semi-infinite programming.

The extended Mangasarian-Fromovitz constraint qualification (EMFCQ) is said to hold at x ∈ M if
there exists a vector d ∈ Rn such that

w>d < 0, w ∈ V (x)

(in other words, d ∈ A0 (x,M)).

The following is an obvious corollary from Lemma 2.1. since V (x) is a compact set.

Corollary 2.1. If EMFCQ holds at x ∈M, then co(V (x)) is closed.
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The next lemma states some well-known results under the assumption that EMFCQ holds at a point
x ∈M.

Lemma 2.2. [5, Lemma 2.4] Assume that EMFCQ holds at a point x ∈M. Then:
(i) −A′ (x,M) ⊂ Γ∗(x,M).
(ii) If d ∈ Rn solves the system

w>d > 0, w ∈ V (x)

(that is, −d ∈ A0 (x,M)), then there exists a positive t ∈ R such that

x+ td ∈M for all t ∈ [0, t].

The final lemma in this section recalls a statement of alternatives for infinite systems.

Lemma 2.3. [4, Theorem 3.5] Let S1 ⊂ Rn be a finite set and S2 ⊂ Rn such that co(S2) is closed.
Then, exactly one of the following two assertions (i) and (ii) holds:
(i) 0n ∈

{
w1 + w2 | w1 ∈ conv(S1), w2 ∈ co(S2)

}
.

(ii) The system

(s1)>d < 0, s1 ∈ S1

(s2)>d ≤ 0, s2 ∈ S2

has a solution d ∈ Rn.

3. OPTIMALITY CONDITIONS FOR LOCALLY WEAKLY EFFICIENT AND PROP-
ERLY EFFICIENT POINTS

This section contains the main results of this paper. We will state necessary as well as sufficient
optimality conditions for
• a (locally) weakly efficient point for VGSIP (Theorems 3.1. and 3.2.) and for
• a properly efficient point for VGSIP (Theorems 3.3. and 3.4.).
In the remainder of this paper the point x ∈ M will be our point under consideration and we will
sometimes delete the argument x, that is, Dfi means Dfi(x), i ∈ P.

Theorem 3.1. Assume that EMFCQ holds at x ∈ M and that x is a locally weakly efficient point
for VGSIP. Then,

there exist finitely many
• yj ∈ Y0(x),

(
αj , γj

)
∈ F

(
x, yj

)
, µj ≥ 0, j = 1, . . . , q

• as well as λi ≥ 0, i ∈ P such that∑
i∈P

λiDfi −
q∑
j=1

µjDxL(x,yj)(x, yj , αj , γj) = 0>n .

 (3.1)

Proof. Since x is a locally weakly efficient point for VGSIP, we get from [15] that

{d ∈ Rn | Dfid < 0, i ∈ P} ∩ Γ∗(x,M) = ∅.

By Lemma 2.2. (i) and the property that EMFCQ holds at x, the system

Dfid < 0, i ∈ P
w>d ≤ 0, w ∈ −V (x) ( := {−w | w ∈ V (x)} ),

has no solution d ∈ Rn. Furthermore, Corollary 2.1. implies that co (V (x)) is closed. Then, Lemma
2.3. yields

345



0n ∈
{
w1 − w2 | w1 ∈ conv({Dfi, i ∈ P}), w2 ∈ co(V (x))

}
,

that is, there exist finitely many yj ∈ Y0(x),
(
αj , γj

)
∈ F

(
x, yj

)
, µj ≥ 0, j = 1, . . . , q and λi ≥ 0,

i ∈ P such that (3.1) is fulfilled. This completes the proof. 4
In order to obtain sufficient optimality conditions we will consider the special case where certain
convexity assumptions are fulfilled. The following lemma refers to the convexity of the feasible set.

Lemma 3.1. [16] Assume that
• the function G(x, y) is concave on Rn+m (that is, with respect to (x, y)) and that
• the following set-valued inclusion holds:

Y
(
ρx1 + (1− ρ)x2

)
⊂ ρY (x1) + (1− ρ)Y (x2)

for all x1, x2 ∈ Rn and all ρ ∈ [0, 1].
Then, the feasible set M is convex.

Now, we state a sufficient optimality condition.

Theorem 3.2. Suppose
• that the functions fi, i ∈ P are convex,
• that the assumptions of Lemma 3.1. hold and
• that there exist finitely many yj ∈ Y0(x),

(
αj , γj

)
∈ F

(
x, yj

)
, µj ≥ 0, j = 1, . . . , q as well as λi ≥ 0,

i ∈ P such that condition (3.1) is fulfilled.
Furthermore, let the functions vl(x, y), l ∈ L be convex with respect to (x, y) and assume that LICQ
holds at all yj ∈ Y0(x), j = 1, . . . , q.
Then, x is a weakly efficient point for VGSIP. In particular, x is an efficient point for VGSIP if λi > 0,
i ∈ P.

Proof. By [16, Theorem 5], x is a global minimizer of problem (1.2). Then, by Proposition 1.1, x is a
weakly efficient point (if λi ≥ 0, i ∈ P ) for VGSIP or an efficient point (if λi > 0, i ∈ P ) for VGSIP.
This completes the proof. 4

By Definition 1.1. it turns out that at an efficient point for VGSIP a decrease of a function fi1 , i1 ∈ P
in a certain direction is only possible if another function fi2 , i2 ∈ P is increasing in this direction.
This so-called trade-off is described by the ratio between the decrease of fi1 and the increase of fi2 .

According to Definition 1.1. (e), particularly (1.1), a properly efficient point is characterized by a
bounded trade-off. In the following we will consider a properly efficient point x ∈ M and state
corresponding necessary and sufficient optimality conditions. However, before that we present two
examples which illustrate the concept of a properly efficient point.

Example 3.1. The feasible set in this example is taken from [5, Example 3.4]. Let
• n = 2, m = 2, p = 2, L = {1, 2, 3, 4, 5},
• f1(x) = −x1, f2(x) = x2, G(x, y) = −y2 + x2y

4
1 ,

• v1(x, y) = −y2 + x1y
2
1 , v2(x, y) = y1 + 1, v3(x, y) = −y1 + 1, v4(x, y) = y2 + 1, v5(x, y) = −y2 + 1.

A short calculation shows that x> = (0, 0) = 0>2 is an efficient point for this VGSIP. The following
observation shows that 02 is also a properly efficient point for this VGSIP.
The points where one function fi1 decreases and another function fi2 increases can be described as:

x̃ = (x̃1, x̃2) with x̃1 < 0, x̃2 ≥ x̃1, x̃2 < 0 and

x̂ = (x̂1, x̂2) with x̂1 < 0, x̂2 < x̂1, x̂2 ≥ −x̂21.
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For x̃ there exist δ1 ≥ 0, δ2 > 0 such that x̃ = (−δ1 − δ2,−δ2). Consequently, we have

f2(x)− f2(x̃)

f1(x̃)− f1(x)
=

δ2
δ1 + δ2

≤ 1.

For x̂ we have
f2(x)− f2(x̂)

f1(x̂)− f1(x)
=
x̂2
x̂1

< 1.

Therefore, x = 02 is a properly efficient point for VGSIP and we can choose K = 1 in (1.1). 4

Example 3.2. This example illustrates that an efficient point is not necessarily also properly efficient.
The feasible set in this example is based on [14, Example 2.7]. Let
• n = 2, m = 1, p = 2, L = {1, 2},
• f1(x) = x1, f2(x) = x2, G(x, y) = y,
• v1(x, y) = y − 1 + (x1 − 1)2 + (x2 − 1)2,
• v2(x, y) = 2− (x1 − 1)2 − (x2 − 1)2 − x1 − y.
It is easy to see that x> = (1, 0) is an efficient point for this VGSIP. The following argument is taken
from [2, Example 2.40] and it will show that (1, 0)> is not a properly efficient point.
Define for ε ∈ [0, 1] :

x1(ε) := 1− ε, x2(ε) := 1−
√

1− ε2.

Then, the point x(ε)> = (x1(ε), x2(ε)) is an efficient point but the term

f1(x)− f1(x(ε))

f2(x(ε))− f2(x)
=

ε

1−
√

1− ε2

tends to infinity (it becomes unbounded) as ε ↓ 0. So, the condition (1.1) in Definition 1.1. (e) is not
fulfilled. 4

The next lemma presents an important property of a properly efficient point.

Lemma 3.2. Let x ∈M be a properly efficient point for VGSIP and assume that EMFCQ holds at
x ∈M. Then, for each non-empty subset I ⊂ P the system

Dfid < 0, i ∈ I
Dfjd ≤ 0, j ∈ P
w>d ≤ 0, w ∈ −V (x)

has no solution d ∈ Rn.

Proof. Suppose the contrary and assume without loss of generality that there exists d ∈ Rn with

Df1d < 0, (3.2)

Dfjd ≤ 0, j = 2, . . . , p (3.3)

w>d ≤ 0, w ∈ −V (x).

The latter means d ∈ −A′(x,M) and, by Lemma 2.2. (i), we get d ∈ Γ∗(x,M). Therefore, there exist
sequences {tν}ν∈N ⊂ R and {dν}ν∈N ⊂ Rn such that tν ↓ 0, dν → d and x + tνdν ∈ M for all ν ∈ N.
Perhaps after shrinking to an appropriate subsequence suppose for a moment that
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f1(x+ tνdν)− f1(x) ≥ 0 for all ν ∈ N.

Then, by the mean value theorem,

f1(x+ tνdν)− f1(x) = tνDf1(x+4νdν)dν ≥ 0

for some 4ν ∈ (0, tν). For ν → ∞ we had Df1d ≥ 0 which contradicts (3.2). Therefore, we have
without loss of generality

f1(x+ tνdν) < f1(x) for all ν ∈ N.

Since x is a properly efficient point for VGSIP there exists a real number K > 0 as in Definition 1.1.
(e) and - perhaps after passing to a subsequence - an index j0 ∈ {2, . . . , p} such that

fj0(x+ tνdν) > fj0(x) and

f1(x)− f1(x+ tνdν)

fj0(x+ tνdν)− fj0(x)
≤ K. (3.4)

By applying the mean value theorem to the latter two inequalities and by letting ν →∞ we obtain

Dfj0d ≥ 0

and, by (3.3), Dfj0d = 0 as well as the unboundedness of the left-hand-side of (3.4) (recall, by (3.2),
that Df1d < 0). However, this contradicts (3.4) and the proof is complete. 4

The next theorem represents a first order necessary optimality condition for a properly efficient point
where the main difference to Theorem 3.1. (which represents a first order necessary optimality condi-
tion for a locally weakly efficient point) is that all multipliers λi, i ∈ P have to be positive.

Theorem 3.3. Assume that EMFCQ holds at x ∈ M and that x is a properly efficient point for
VGSIP. Then,

there exist finitely many
• yj ∈ Y0(x),

(
αj , γj

)
∈ F

(
x, yj

)
, µj ≥ 0, j = 1, . . . , q

• as well as λi > 0, i ∈ P such that∑
i∈P

λiDfi −
q∑
j=1

µjDxL(x,yj)(x, yj , αj , γj) = 0>n .

 (3.5)

Proof. We will show for each index i0 ∈ P that

−Dfi0 ∈ co ({Dfi, i ∈ P} ∪ {−V (x)}) . (3.6)

Then, a summation of the latter p particular combinations yields a combination as described in this
theorem. Choose the index i0 ∈ P arbitrarily and fixed, say i0 = p. We distinguish two cases.
Case 1. The system

w>d < 0, w ∈ −V (x), Dfpd < 0 (3.7)

has no solution.
Since the set {Dfp} ∪ {−V (x)} is compact, Lemma 2.1. (ii) implies that

0>n ∈ conv ({Dfp} ∪ {−V (x)}) .

Since EMFCQ holds at x, the latter yields that there exists a combination
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Df>p − w = 0n

for some w> ∈ co (V (x)) (recall that EMFCQ means 0>n /∈ co (V (x))) and, therefore, we obtain (3.6):

−Dfp ∈ co(−V (x)).

Case 2. The system (3.7) has a solution. Then, we can choose a subset P̂ ⊂ P such that p ∈ P̂ and
the system

w>d < 0, w ∈ −V (x), Dfid < 0, i ∈ P̂ (3.8)

has a solution and that for any solution d of (3.8) we have

Dfjd ≥ 0, j ∈ P \ P̂ . (3.9)

Obviously, such a (“maximal”) subset P̂ always exists. Note that, by Lemma 3.2. there exists an

index j0 ∈ P \ P̂ such that Dfj0d > 0.

Now, let d̂ ∈ Rn be a solution of (3.8) (and, therefore, also of (3.9)).

Proposition 3.1. There exists an index j1 ∈ P \ P̂ such that Dfj1d > 0 and

−Dfpd
Dfj1d

≤ K, (3.10)

where K > 0 is a real number as described in Definition 1.1. (e).

Proof of Proposition.
According to Lemma 2.2. (ii) and a Taylor expansion there exists a positive number t ∈ R such that
for all t ∈ [0, t] we have

x+ td ∈M
fi(x+ td) < fi(x), i ∈ P̂ ,
fj(x+ td) > fj(x), j ∈ P \ P̂ and Dfjd > 0.

Since x is a properly efficient point and

fp(x+ td) < fp(x), t ∈ (0, t],

there exist (by Definition 1.1. (e)), without loss of generality, a sequence {tν}ν∈N ⊂ R with tν ↓ 0 and

an index j1 ∈ P \ P̂ such that

fp(x)− fp(x+ tνd)

fj1(x+ tνd)− fj1(x)
≤ K.

The mean value theorem gives

−tνDfp(x+4ν1d)d

tνDfj1(x+4ν2d)d
≤ K

for 4ν1 ,4ν2 ∈ (0, tν) and for ν →∞ we get

−Dfp(x)d

Dfj1(x)d
≤ K,

349



which completes the proof of Proposition.

Now, we are in the following situation. The vector d ∈ Rn solves (3.8) and (3.9) and there is an index

j1 ∈ P \ P̂ fulfilling (3.10). Then, we obtain

−Dfpd∑
j∈P\P̂

Dfjd
≤ −Dfpd

Dfj1d
≤ K

and, therefore,

K
∑

j∈P\P̂

Dfjd+Dfpd ≥ 0. (3.11)

Since (3.11) holds for all solutions d ∈ Rn of the system (3.8) we have that the set

S =

K ∑
j∈P\P̂

Dfj +Dfp, Dfi, i ∈ P̂

 ∪ {−V (x)}

is compact and 0n ∈ conv (S) (by Lemma 2.1. (ii)). The latter and, by (3.8), 0n /∈ conv
({
Dfi, i ∈ P̂

}
∪ {−V (x)}

)
imply that

−K
∑

j∈P\P̂

Dfj −Dfp ∈ co
({
Dfi, i ∈ P̂

}
∪ {−V (x)}

)
and, therefore, we obtain (3.6):

−Dfp ∈ co ({Dfi, i ∈ P} ∪ {−V (x)}) .

Since the index i0 = p was chosen arbitrarily and fixed, this completes the proof of the theorem. 4

Finally, in order to obtain sufficient optimality conditions for properly efficient points we assume again
certain convexity properties. The following lemma recalls a relationship between properly efficient
points and a related weighted-sum optimization problem as defined in (1.2).

Lemma 3.3. [3] Assume that M is a convex set and that the functions fi, i ∈ P are convex as well.
Then, x is a properly efficient point for VGSIP if and only if x is a global minimizer of the problem
(1.2) for some λi > 0, i ∈ P.

The final theorem presents sufficient optimality conditions for x ∈M to be a properly efficient point
for VGSIP.

Theorem 3.4. Suppose
• that the functions fi, i ∈ P are convex,
• that the assumptions of Lemma 3.1. hold and
• that condition (3.5) is fulfilled.
Furthermore, let the functions vl(x, y), l ∈ L be convex with respect to (x, y) and assume that LICQ
holds at all yj ∈ Y0(x), j = 1, . . . , q (as chosen in (3.5)).
Then, x is a properly efficient point for VGSIP.

Proof. By [16, Theorem 5], x is a global minimizer of problem (1.2) with strictly positive multipliers
λi > 0, i ∈ P. Then, Lemma 3.3. implies that x is a properly efficient point for VGSIP. 4
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4. CONCLUSIONS

In this paper we considered the particular class VGSIP of vector optimization problems whose feasible
sets have a generalized semi-infinite structure. That is, all functions are real-valued and defined on a
finite-dimensional space where the index set of inequality constraints is infinite and depends on the
decision variables. Although both problem classes, vector optimization and generalized semi-infinite
programming, have been recently very active research topics within mathematical programming, a
systematic description of properties of the combined problem class VGSIP is still missing. This paper
fills in this gap to some extent by presenting necessary and sufficient optimality conditions for a feasible
point to be a (locally)(weakly) efficient point for VGSIP or a properly efficient point for VGSIP.
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