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ABSTRACT

In this paper, the aim is to compute Pareto efficient solutions of multi-objective optimization prob-

lems involving forbidden regions. More precisely, we assume that the vector-valued objective function

is componentwise generalized-convex and acts between a real topological linear pre-image space and a

finite-dimensional image space, while the feasible set is given by the whole pre-image space excepting

some forbidden regions that are defined by convex sets. This leads us to a nonconvex multi-objective

optimization problem. Using the recently proposed penalization approach by Günther and Tammer

(2017), we show that the solution set of the original problem can be generated by solving a finite

family of unconstrained multi-objective optimization problems. We apply our results to a special

multi-objective location problem (known as point-objective location problem) where the aim is to

locate a new facility in a continuous location space (a finite-dimensional Hilbert space) in the pres-

ence of a finite number of demand points. For the choice of the new location point, we are taking

into consideration some forbidden regions that are given by open balls (defined with respect to the

underlying norm). For such a nonconvex location problem, under the assumption that the forbid-

den regions are pairwise disjoint, we give complete geometrical descriptions for the sets of (strictly,

weakly) Pareto efficient solutions by using the approach by Günther and Tammer (2017) and results

derived by Jourani, Michelot and Ndiaye (2009).
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RESUMEN

El objetivo de este trabajo es el estudio de los puntos eficientes de Pareto en problemas multi-

objetivo con regiones prohibidas. O sea, se considera el problema en el que el dominio de la función

objetivo es un espacio lineal topológico, su imagen es un espacio de dimención finita, cada una

de sus componentes son fuciones convexas generalizadas y el conjunto de soluciones factibles es el

complemento de la unión de conjuntos convexos de su diminio. Usando el enfoque de penalización

propuesto por Günther y Tammer (2017), mostramos que el conjunto de soluciones puede generarse

resolviendo una familia finita de problemas multiobjetivo sin restricciones. Estos resultados se aplican

al caso particular de ubicar un punto en un espacio Eucĺıdeo, donde hay una cantidad finita de

clientes y las regiones prohibidas son bolas abiertas con respecto a la norma que se considera. Si

las regiones son disjuntas, se obtiene una caracterización geométrica completa de los conjuntos de

soluciones estricas y débiles de Pareto. usando el enfoque propuesto en Günther y Tammer (2017) y

los resultados que se derivan de Jourani, Michelot y Ndiaye (2009).

PALABRAS CLAVE: Convexidad Generalizada, Eficiencia de Pareto, Norma Eucĺıdeana, Prob-

lema de Optimización Multi-objetivo, Regiones Prohibidas, Teoŕıa de la Ubicación.

1. INTRODUCTION

In multi-objective optimization, several conflicting objective functions f1, · · · , fm : Rn → R, m ≥ 2,

should be simultaneously minimized. Usually one looks for so-called Pareto efficient solutions. A

feasible point x ∈ X ⊆ Rn of the multi-objective optimization problemf(x) = (f1(x), · · · , fm(x))→ min

x ∈ X

is said to be a Pareto efficient solution in X if

@ y ∈ X subject to

{
∀ i ∈ Im : fi(y) ≤ fi(x),

∃ j ∈ Im : fj(y) < fj(x),

where Im = {1, 2, · · · ,m}. For certain classes of multi-objective optimization problems it is known

how to compute the whole set of Pareto efficient solutions. In most cases one considers a problem

in which the goal is to minimize a vector-valued convex function f over a nonempty closed convex

feasible set X. In particular, the case when the feasible set is given by the whole pre-image space

(i.e., X = Rn) is often considered in the literature since unconstrained problems can be handled more

easily in comparison to constrained ones. For instance, in the applied field of location theory, many

authors studied unconstrained multi-objective problems (see, e.g., Alzorba, Günther and Popovici

[2]; Alzorba et al. [3]; Durier and Michelot [11]; Puerto and Rodŕıguez-Ch́ıa [22]; Thisse, Ward and

Wendell [24]). It is known that considering problems without any constraints is a rather inaccurate

approximation in many real world location problems (see, e.g., Carrizosa et al. [8]). Constrained

multi-objective location problems are considered for instance in the papers by Carrizosa et al. [7],

Carrizosa and Plastria [9] and Ndiaye and Michelot [18] for special types of convex objective functions

and convex constraints. Jourani, Michelot and Ndiaye [17] studied a multi-objective location problem

with nonconvex objective function and a convex feasible set. Planar multi-objective location problems

354



with nonconvex constraints are considered in the work by Carrizosa et al. [8]. However, Puerto and

Rodŕıguez-Ch́ıa [23] noted that there is a lack of a common geometrical description of the sets of

solutions for constrained versions of multi-objective location problems. For that reason, Günther

and Tammer [13] started to investigate relationships between constrained and unconstrained multi-

objective optimization. In the work [13], a new approach was presented that shows that the set of

solutions of certain classes of (generalized-convex) multi-objective optimization problems with convex

constraints can be generated by solving two corresponding multi-objective optimization problems

without constraints. Recently Günther and Tammer [14] succeeded to derive a new penalization

approach for (generalized-convex) multi-objective optimization problems involving not necessarily

convex constraints where the vector-valued objective function is acting between a real topological

linear pre-image space and a finite-dimensional image space.

In our article, we will use the approach by Günther and Tammer [14] in order to characterize the

sets of (strictly, weakly) Pareto efficient solutions of (generalized-convex) multi-objective optimization

problems involving certain types of nonconvex constraints. More precisely, we will consider a feasible

set that is given by the whole pre-image space (a real topological linear space) excepting some forbidden

regions that are given by convex sets (i.e., the feasible set is an intersection of so-called reverse convex

sets). Such a feasible set is of nonconvex type and occurs often in (single-objective) optimization, for

instance, in the field of location theory (see, e.g., Brimberg and Juel [5], Hamacher and Nickel [15]

and Nickel and Puerto [19]).

The article is structured as follows. In Section 2, we recall generalized-convexity and semi-continuity

properties as well as solutions concepts for the vector-valued minimization in our multi-objective

optimization problems.

The penalization approach by Günther and Tammer [13, 14] is presented in Section 3. We recall some

important relationships between the initial constrained multi-objective optimization problem and two

corresponding unconstrained problems.

Section 4. is devoted to the study of generalized-convex multi-objective optimization problems where

the feasible set is given by the whole pre-image space (a real topological linear space) excepting some

forbidden regions that are given by convex sets.

In Section 5, we emphasize the importance of our results by applying it to a special multi-objective

location problem (known as point-objective location problem). In this problem the distances are

measured by a norm (induced by a scalar product) and the feasible set is given by the whole pre-image

space (a finite-dimensional Hilbert space) excepting some forbidden regions that are given by open balls

(defined with respect to the underlying norm). For this nonconvex multi-objective location problem,

under the assumption that the forbidden regions are pairwise disjoint, we characterize completely the

sets of (strictly, weakly) Pareto efficient solutions by using the penalization approach by Günther and

Tammer [14] as well as certain results derived by Jourani, Michelot and Ndiaye [17].

We conclude with some remarks in Section 6.
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2. PRELIMINARIES

Throughout this article, we denote by N, R, R+ and R++ the sets of positive integers, real numbers,

nonnegative and positive real numbers, respectively. By Rm we denote the m-dimensional Euclidean

space. Let V be a real topological linear space. For any set X ⊆ V, we denote the interior, the relative

interior, the boundary, the closure, the convex hull, the cardinality of X by intX, rintX, bdX, clX,

convX, and cardX, respectively. The closed line segment between two points x′, x′′ ∈ V is denoted

by

[x′, x′′] := {(1− λ)x′ + λx′′ |λ ∈ [0, 1]} ,

while the open line segment is ]x′, x′′[ := [x′, x′′]\{x′, x′′} and the half-open line segments are [x′, x′′[ :=

[x′, x′′] \ {x′′} and ]x′, x′′] := [x′, x′′] \ {x′}.
For any nonempty set X ⊆ V, the following properties hold (see, e.g., Barbu and Precupanu [4], Jahn

[16] and Zălinescu [25]):

• If X is a convex set with intX 6= ∅, then we have

intX = {x ∈ X | ∀ v ∈ V ∃ δ ∈ R++ : x+ [0, δ] · v ⊆ X} (2.1)

(i.e., the topological interior of X coincides with the algebraic interior of X).

• We have

intX ⊆ rintX ⊆ X ⊆ clX = (intX) ∪ (bdX).

• rintX = intX whenever intX 6= ∅.

A set X ⊆ V is called reverse convex if the complement of X (i.e., the set Xc := V \X) is a convex

set in V (i.e., λ ·Xc + (1− λ) ·Xc ⊆ Xc for all λ ∈ ]0, 1[ ).

Given a normed space (V, || · ||), where || · || : V → R, we denote the open ball around the center d ∈ V
of radius r ∈ R++ by

B||·||(d, r) := {x ∈ V | ||x− d|| < r}

and the closed ball around the center d ∈ V of radius r ∈ R++ by

B||·||(d, r) := {x ∈ V | ||x− d|| ≤ r}.

Notice, for any r ∈ R++, the balls B||·||(d, r) and B||·||(d, r) are convex sets in V.

For any nonempty set X ⊆ V, the set

coneX := {λx ∈ V | (λ, x) ∈ R+ ×X}

is called the cone generated by the set X.

In a finite-dimensional normed space (V, || · ||), for any convex set X ⊆ V, the equation (2.1) holds

(see Barbu and Precupanu [4, Prop. 1.17]), and moreover, we have

x ∈ intX ⇐⇒ cone(X − x) = V

for any x ∈ X (see Zălinescu [25, Sec. 1.1])
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2.1. Generalized-convexity and semi-continuity notions

In what follows, we will recall certain generalized-convexity and semi-continuity notions (see, e.g.,

Cambini and Martein [6] for more details).

A real-valued function h : V → R is said to be

• upper (lower) semi-continuous along line segments if h ◦ lx0,x1 : [0, 1] → R is upper (lower)

semi-continuous on [0, 1] for all x0, x1 ∈ V, where lx0,x1 : [0, 1] → V is defined by lx0,x1(λ) :=

(1− λ)x0 + λx1 for all λ ∈ [0, 1].

• convex if for all x0, x1 ∈ V and for all λ ∈ [0, 1] we have

h((1− λ)x0 + λx1) ≤ (1− λ)h(x0) + λh(x1).

• quasi-convex if for all x0, x1 ∈ V and for all λ ∈ [0, 1] we have

h((1− λ)x0 + λx1) ≤ max
{
h(x0), h(x1)

}
.

• semi-strictly quasi-convex if for all x0, x1 ∈ V, h(x0) 6= h(x1) and for all λ ∈ ]0, 1[ we have

h((1− λ)x0 + λx1) < max
{
h(x0), h(x1)

}
.

• explicitly quasi-convex if h is both quasi-convex and semi-strictly quasi-convex.

Moreover, a function h : V → R is called concave (quasi-concave, semi-strictly quasi-concave, explicitly

quasi-concave) if −h is convex (quasi-convex, semi-strictly quasi-convex, explicitly quasi-convex).

We say that a vector-valued function f = (f1, · · · , fm) : V → Rm is componentwise upper (lower)

semi-continuous along line segments / convex / (semi-strictly, explicitly) quasi-convex / semi-strictly

quasi-convex or quasi-convex if fi is upper (lower) semi-continuous along line segments / convex /

(semi-strictly, explicitly) quasi-convex / semi-strictly quasi-convex or quasi-convex for all i ∈ Im.

Remark 2.1. It is well-known that each convex function is explicitly quasi-convex and upper semi-

continuous along line segments. Furthermore, each semi-strictly quasi-convex function that is lower

semi-continuous along line segments is explicitly quasi-convex. Important applications for the field

generalized-convexity can be for instance found in fractional programming (see Cambini and Martein

[6]). Moreover, in utility and production theory one often maximizes a generalized-concave function

(e.g., the well-known Cobb-Douglas function). Notice that this problem is equivalent to the problem

that consists of minimizing the negative of a generalized-concave function (hence a generalized-convex

function).

We now define further notions that will be used in the sequel.

Consider a real-valued function h : V → R and a nonempty set X ⊆ V. For any s ∈ R, the (strict)

lower-level set and the level line of h to the level s are defined by

L∼(X,h, s) := {x ∈ X | h(x) ∼ s} for all ∼∈ {<,≤,=},

while the (strict) upper-level set of h to the level s are

L>(X,h, s) := L<(X,−h,−s) and L≥(X,h, s) := L≤(X,−h,−s).
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Notice, for any s ∈ R, we have

L∼(X,h, s) = L∼(V, h, s) ∩X for all ∼∈ {<,≤,=, >,≥}.

It is well-known that quasi-convex (quasi-concave) functions are characterized by the convexity of

its lower-level (upper-level) sets. Semi-strictly quasi-convex functions can also be characterized by a

certain level line / level set condition, as given in Lemma 2.1.

Lemma 2.1. Let h : V → R be a function. Then, the following assertions are equivalent:

1◦. h is semi-strictly quasi-convex.

2◦. For all s ∈ R, x0 ∈ L=(V, h, s), x1 ∈ L<(V, h, s), we have [x1, x0[⊆ L<(V, h, s).

According to Popovici [21, Prop. 2], we have the following important property of semi-strictly quasi-

convex functions.

Lemma 2.2. ([21]) Let h : V → R be a semi-strictly quasi-convex function. Then, for every pair

(x0, x1) ∈ V × V, the set

L>

(
]x0, x1[ , h , max{h(x0), h(x1)}

)
is either a singleton set or the empty set.

Lemma 2.2. will be used in the proofs of Theorems 4.1.-4.2. and 4.3.

2.2. Multi-objective optimization

In this paper, our initial multi-objective optimization problem consist in minimizing a vector-valued

objective function f = (f1, · · · , fm) : V → Rm over a nonempty set X ⊆ V:f(x) = (f1(x), · · · , fm(x))→ min

x ∈ X.
(PX)

The corresponding unconstrained problem is denoted byf(x) = (f1(x), · · · , fm(x))→ min

x ∈ V.
(PV)

We are going to recall solution concepts for the vector-valued minimization considered in the above

problems (see, e.g., Ehrgott [12] and Jahn [16] for more details). Let us denote the image set of f over

X by f [X] := {f(x) ∈ Rm | x ∈ X}. Moreover, Rm
+ stands for the standard ordering cone in Rm.

Definition 2.1. The set of Pareto efficient solutions of problem (PX) is defined by

Eff(X | f) := {x0 ∈ X | f [X] ∩ (f(x0)− (Rm
+ \ {0})) = ∅},

while that of weakly Pareto efficient solutions is given by

WEff(X | f) := {x0 ∈ X | f [X] ∩ (f(x0)− intRm
+ ) = ∅}.

The set of strictly Pareto efficient solutions is defined by

SEff(X | f) := {x0 ∈ Eff(X | f) | card{x ∈ X | f(x) = f(x0)} = 1}.
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It can easily be checked that

SEff(X | f) ⊆ Eff(X | f) ⊆WEff(X | f).

In preparation of the next lemma, for any x0 ∈ X, we define the intersections of (strict) lower-level

sets / level lines by

S∼(X, f, x0) :=
⋂

i∈Im

L∼(X, fi, fi(x
0)) for all ∼∈ {<,≤,=}.

It is known that (strictly, weakly) Pareto efficient solutions can be characterized by certain conditions

based on level sets and level lines of the component functions of f .

Lemma 2.3. For any x0 ∈ X, we have

x0 ∈ Eff(X | f)⇐⇒ S≤(X, f, x0) ⊆ S=(X, f, x0);

x0 ∈WEff(X | f)⇐⇒ S<(X, f, x0) = ∅;

x0 ∈ SEff(X | f)⇐⇒ S≤(X, f, x0) = {x0}.

The geometrical characterizations of (strictly, weakly) Pareto efficient solutions as given in Lemma

2.3. can be found in the book by Ehrgott [12, Th. 2.30]. Notice that these characterizations were

already used in the works by Plastria [20] and Durier and Michelot [11, Prop. 1.1] in the context of

location theory.

The next lemma gives useful bounds for the sets of (strictly, weakly) Pareto efficient solutions of the

problem (PX) under generalized-convexity assumption on f but without convexity assumption on the

feasible set X.

Lemma 2.4. ([14]) Let X ⊆ V be a nonempty set and let Y ⊆ V be a set with X ⊆ Y . Then, the

following assertions hold:

1◦. We have

X ∩ Eff(Y | f) ⊆ Eff(X | f);

X ∩WEff(Y | f) ⊆WEff(X | f);

X ∩ SEff(Y | f) ⊆ SEff(X | f).

2◦. If f : V → Rm is componentwise semi-strictly quasi-convex, then

Eff(X | f) ⊆ [X ∩ Eff(Y | f)] ∪ bdX;

WEff(X | f) ⊆ [X ∩ WEff(Y | f)] ∪ bdX.

3◦. If f : V → Rm is componentwise semi-strictly quasi-convex or quasi-convex, then

SEff(X | f) ⊆ [X ∩ SEff(Y | f)] ∪ bdX.

Proof: The proof is analogous to the proof of Günther and Tammer [14, Lem. 4.4, Cor. 4.5]. Notice

that f is a componentwise generalized-convex function on the whole space V in assertions 2◦ and 3◦.

Hence, in the view of the proof of [14, Lem. 4.4, Cor. 4.5], we can omit to assume that Y is convex.

�
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3. PENALIZATION APPROACH IN MULTI-OBJECTIVE OPTIMIZATION

In this section, we recall the penalization approach recently derived by Günther and Tammer [13, 14].

This approach can be used for solving a constrained multi-objective optimization problem by using

two corresponding unconstrained problems. It should be mentioned that there are also other vectorial

penalization approaches known in the literature (see, e.g., Durea, Strugariu and Tammer [10]).

Considering a penalization function φ : V → R, we can define a new unconstrained multi-objective

optimization problem by f⊕(x) := (f1(x), · · · , fm(x), φ(x))→ min

x ∈ V.
(P⊕V )

In what follows, we will need in certain results some of the following assumptions concerning the

lower-level sets / level lines of the function φ:

∀x0 ∈ bdX : L≤(V, φ, φ(x0)) = X, (A1)

∀x0 ∈ bdX : L=(V, φ, φ(x0)) = bdX, (A2)

L≤(V, φ, 0) = X, (A3)

L=(V, φ, 0) = bdX, (A4)

∀x0 ∈ bdX ∃ x̃ ∈ intX : [x̃, x0[ ⊆ L<(V, φ, φ(x0)), (A5)

where

X ⊆ V is a closed set with X 6= V and intX 6= ∅. (3.1)

In the next two lemmata, we present some preliminary results related to the validity of the above

assumptions.

Lemma 3.1. Let (3.1) be satisfied. Then, we have:

1◦. If φ fulfils (A3) and (A4), then φ fulfils (A1) and (A2).

2◦. φ fulfils (A1) and (A2) if and only if φ̂ := h ◦ φ : V → R fulfils (A1) and (A2) (with φ̂ in the role of

φ), where h : R→ R is a strictly increasing function on the image set φ[V].

3◦. φ fulfils (A5) if and only if φ̂ := h ◦ φ : V → R fulfils (A5) (with φ̂ in the role of φ), where h : R→ R
is a strictly increasing function on the image set φ[V].

4◦. φ fulfils (A1) and (A2) if and only if φ̂ := φ − φ(x0), x0 ∈ bdX, fulfils (A1), (A2), (A3) and (A4)

(with φ̂ in the role of φ).

Lemma 3.2. Let (3.1) be satisfied. Assume that φ is a semi-strictly quasi-convex and continuous

function which fulfils Assumption (A3) and L<(V, φ, 0) 6= ∅. Then, φ fulfils Assumptions (A1), (A2),

(A4) and (A5). Moreover, the set X is convex.

Proof: Follows by results given in Günther and Tammer [14, Rem. 5.5, Cor. 6.15] and by assertion

1◦ in Lemma 3.1. Notice that (A5) follows by the Assumptions (A1) and (A2) and by the semi-strictly

quasi-convexity of φ. By Günther and Tammer [14, Lem. 6.16], we get the convexity of X. �
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Due to results by Günther and Tammer [14, Th. 5.1, Th. 5.6, Th. 5.13], we can completely charac-

terize the sets of (strictly, weakly) Pareto efficient solutions of the initial constrained multi-objective

optimization problem (PX) by using the sets of (strictly, weakly) solutions of the corresponding un-

constrained problems (PV) and (P⊕V ).

Proposition 3.1. ([14]) Let (3.1) be satisfied. Suppose that φ fulfils Assumptions (A1) and (A2).

Then, the following assertions hold:

1◦. We have

[X ∩ Eff(V | f)] ∪
[
(bdX) ∩ Eff(V | f⊕)

]
⊆ Eff(X | f).

2◦. Let f : V → Rm be componentwise semi-strictly quasi-convex. Then, we have

[X ∩ Eff(V | f)] ∪
[
(bdX) ∩ Eff(V | f⊕)

]
⊇ Eff(X | f).

Proposition 3.2. ([14]) Let (3.1) be satisfied. Suppose that φ fulfils Assumptions (A1) and (A2).

Then, the following assertions hold:

1◦. Let f : V → Rm be componentwise upper semi-continuous along line segments. Assume that φ fulfils

Assumption (A5). Then, we have

[X ∩WEff(V | f)] ∪
[
(bdX) ∩WEff(V | f⊕)

]
⊆WEff(X | f).

2◦. Let f : V → Rm be componentwise semi-strictly quasi-convex. Then, we have

[X ∩WEff(V | f)] ∪
[
(bdX) ∩WEff(V | f⊕)

]
⊇WEff(X | f).

Proposition 3.3. ([14]) Let (3.1) be satisfied. Suppose that φ fulfils Assumptions (A1) and (A2).

Then, the following assertions hold:

1◦. We have

[X ∩ SEff(V | f)] ∪
[
(bdX) ∩ SEff(V | f⊕)

]
⊆ SEff(X | f).

2◦. Let f : V → Rm be componentwise semi-strictly quasi-convex or quasi-convex. Then, we have

[X ∩ SEff(V | f)] ∪
[
(bdX) ∩ SEff(V | f⊕)

]
⊇ SEff(X | f).

4. MULTI-OBJECTIVE OPTIMIZATION PROBLEMS INVOLVING FORBIDDEN

REGIONS

In this section, we consider a feasible set X that is given by the whole pre-image space V excepting

some forbidden regions that are given by convex sets. More precisely, we suppose that the following

assumption is fulfilled:{
Let D1, · · · , Dl ⊆ V be closed convex sets with Di 6= V and intDi 6= ∅, i ∈ Il, l ∈ N;

let X :=
⋂

i∈Il Xi with Xi := V \ intDi, i ∈ Il, and let X 6= ∅.
(4.1)

Under the assumption (4.1), the feasible setX is an intersection of closed reverse convex setsX1, · · · , Xl.

So, X is a closed set too. Moreover, notice that we have bdDi = bdXi for all i ∈ Il.
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The sets Di, i ∈ Il, are said to be pairwise disjoint if

Di ∩Dj = ∅ for all i, j ∈ Il, i 6= j. (4.2)

Formula (4.2) implies that the sets intDi, i ∈ Il, are pairwise disjoint, i.e.,

(intDi) ∩ (intDj) = ∅ for all i, j ∈ Il, i 6= j. (4.3)

Notice that each of the conditions (4.2) and (4.3) implies

X ∩ bdXi = bdXi = bdDi, (4.4)

which is a direct consequence of the next result.

Lemma 4.1. Let (4.1) and (4.3) be satisfied. Then, we have

bdX =
⋃
i∈Il

bdDi.

Proof: Since Il is a finite index set, we have

int

(⋂
i∈Il

Xi

)
=
⋂
i∈Il

intXi =

(⋃
i∈Il

Di

)c

. (4.5)

Now, we are going to prove that

(intDj)
c ∩Di = Di for every i, j ∈ Il, i 6= j. (4.6)

Assume the contrary holds, i.e., there exists x ∈ Di \ (intDj)
c = Di∩ (intDj) for some i, j ∈ Il, i 6= j.

Of course, in view of (4.3), we must have x ∈ (bdDi) ∩ (intDj). Consider some d ∈ intDi (notice

that d 6= x). By the convexity of Di, we infer that ]x, d] ⊆ intDi (see, e.g., Zălinescu [25, Th. 1.1.2]).

This means, for every δ ∈]0, 1], we have x+]0, δ] · (d− x) ⊆ intDi. Moreover, since x ∈ intDj and Dj

is convex, we get x+]0, δ′] · (d− x) ⊆ intDj for some δ′ ∈ ]0, 1]. Hence, we have

∅ 6= x+]0, δ′] · (d− x) ⊆ (intDi) ∩ (intDj)

in contradiction to (4.3). So, (4.6) holds.
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Consequently, we have

bdX = X \ intX =

⋂
j∈Il

Xj

 \ int

(⋂
i∈Il

Xi

)

(4.5)
=

⋂
j∈Il

Xj

 \(⋃
i∈Il

Di

)c

=

⋂
j∈Il

Xj

 ∩(⋃
i∈Il

Di

)

=
⋃
i∈Il

⋂
j∈Il

(intDj)
c ∩Di

=
⋃
i∈Il

(bdDi) ∩
⋂

j∈Il\{i}

(intDj)
c ∩Di

(4.6)
=

⋃
i∈Il

(bdDi) ∩Di =
⋃
i∈Il

bdDi.�

Let us consider, for any i ∈ Il, a penalization function φi : V → R that fulfils the Assumptions (A1)

and (A2) (with φi in the role of φ and Xi in the role of X). Then, for any i ∈ Il, we can define a new

penalized multi-objective optimization problem byf⊕i(x) := (f1(x), · · · , fm(x), φi(x))→ min

x ∈ V.
(P⊕i

V )

4.1. Problems with one forbidden region (l = 1)

In this section, we analyze an important special case in which we have exactly one (i.e., l = 1)

forbidden region. For notational convenience, we assume that φ := φ1 and D := D1.

In preparation of the next lemma, we define a new penalization function φ̂ : V → R by

φ̂ := −φ.

Lemma 4.2. Let (4.1) be satisfied. Then, the following assertions are equivalent:

1◦. φ fulfils the Assumptions (A3) and (A4).

2◦. φ̂ fulfils the Assumptions (A3) and (A4) with φ̂ in the role of φ and D in the role of X.

Proof: First, we are going to prove that

int(V \ intD) = V \D. (4.7)

Since D is closed, we infer that V \D is open. Then, then inclusion “⊇” in (4.7) follows by the fact

that V \D ⊆ V \ intD. Now, we prove the reverse inclusion “⊆”.

Assume that there is x ∈ int (V \ intD) with x /∈ V \D, i.e., x ∈ D. Of course, since x ∈ V \ intD

we must have x ∈ bdD. Consider d ∈ intD. By the convexity of D, we infer that ]x, d] ⊆ intD (see,
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e.g., Zălinescu [25, Th. 1.1.2]). This means, for every δ ∈ ]0, 1], we have x+ ]0, δ] · (d − x) ⊆ intD.

Hence, x is no algebraic interior point of V \ intD, which implies x /∈ int(V \ intD), a contradiction.

We conclude that (4.7) holds.

So, we have

L<(V, φ, 0) = intX (4.8)

⇐⇒ L≥(V, φ, 0) = V \ intX

⇐⇒ L≤(V, φ̂, 0) = V \ int (V \ intD)

(4.7)⇐⇒ L≤(V, φ̂, 0) = D (4.9)

and

L≤(V, φ, 0) = X (4.10)

⇐⇒ L>(V, φ, 0) = V \X

⇐⇒ L<(V, φ̂, 0) = V \ (V \ intD)

⇐⇒ L<(V, φ̂, 0) = intD. (4.11)

Notice that (4.8) follows by (4.10) and

L=(V, φ, 0) = bdX, (4.12)

while (4.8) and (4.10) imply (4.12). Analogously, (4.11) follows by (4.9) and

L=(V, φ̂, 0) = bdD, (4.13)

while (4.11) and (4.9) imply (4.13). The proof is complete.�

Lemma 4.3. Let (4.1) be satisfied. Assume that φ̂ = −φ is a semi-strictly quasi-convex and contin-

uous function which fulfils Assumption (A3) (with φ̂ in the role of φ and D in the role of X) and

suppose that L<(V, φ̂, 0) 6= ∅. Then, φ is a semi-strictly quasi-concave and continuous function and

fulfils the Assumptions (A1), (A2), (A3) and (A4).

Proof: Follows immediately by Lemma 3.1. (1◦) and Lemmata 3.2. and 4.2. �

Example 4.1. Let D ⊆ V be a closed convex set with d ∈ intD 6= ∅ and D 6= V. Let a Minkowski

gauge function µ : V → R be given by

µ(x) := inf{λ ∈ R++ | x ∈ λ · (−d+D)} for all x ∈ V.

Under our assumptions, the function µ is convex (hence explicitly quasi-convex) and continuous (see,

e.g., Zălinescu [25, Prop. 1.1.1]). Hence, the function φ̂, defined by

φ̂(x) := µ(x− d)− 1 for all x ∈ V,

has these properties too. Since d ∈ L<(V, φ̂, 0) 6= ∅ and (A3) holds (with φ̂ in the role of φ and D in

the role of X), we get that

φ := −φ̂( · ) = −µ( · − d) + 1
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satisfies the Assumptions (A1), (A2), (A3) and (A4) by Lemma 4.3. Moreover, the function

φ( · ) := −µ( · − d)

fulfils the Assumptions (A1) and (A2) (with φ in the role of φ) by Lemma 3.1. (4◦)

In assertion 1◦ of Proposition 3.2. we need that the function φ fulfils the Assumption (A5). In the

next lemma, we will show that the penalization function φ given in Example 4.1. satisfies Assumption

(A5) (with φ in the role of φ).

Lemma 4.4. Let (4.1) be satisfied. Consider any x1 ∈ bdX and d ∈ intD. Define x̃ := x1+(x1−d) 6=
x1. Then, we have

[x̃, x1[⊆ L<(V, φ, φ(x1)) = intX.

Thus, φ fulfils the Assumption (A5) (with φ in the role of φ).

Proof: First, notice that µ(x1 − d) = 1 > 0 since x1 ∈ bdX = bdD = L=(V, φ,−1). Hence, for any

λ ∈ ]0, 1], we have

φ((1− λ)x1 + λx̃) = −µ((1− λ)x1 + λ(2x1 − d)− d)

= −µ((λ+ 1)(x1 − d))

= −(λ+ 1)µ(x1 − d)

< −µ(x1 − d)

= φ(x1),

which shows the assertion in this lemma. �

According to Günther and Tammer [14, Th. 5.4, Th. 5.12], we have the inclusions

SEff(X | f) ⊆ SEff(V | f⊕1),

WEff(X | f) ⊆WEff(V | f⊕1).

However, Günther and Tammer [13, Ex. 1] gave a counter-example for the convex case which shows

that the inclusion

Eff(X | f) ⊆ Eff(V | f⊕1) (4.14)

does not hold in general. In the next example, we point out that inclusion (4.14) does not hold in our

class of problems.

Example 4.2. Figure 1 shows a constrained convex multi-objective location problem with functions

f1, f2, f3 : R2 → R defined by fi(x) := ||x−ai||1 for all x ∈ R2 and all i ∈ I3, where a1 := (5, 5), a2 :=

(2, 2.5), a3 := (3.5, 3.5) ∈ R2 and || · ||1 denotes the Manhattan norm in R2. Consider the feasible set

X := R2 \ intD with D := [2, 3.5]× [3.5, 5] and put d := (3, 4) ∈ intD. Let the penalization function

φ1 be given by the function φ considered in Example 4.1. In the left part of Figure 1 one can see that

the point x0 ∈ bdX = bdD is belonging to both sets Eff(X | f) and Eff(R2 | f). Notice that we have

Eff(X | f) = Eff(R2 | f) = ([2, 3.5]× [2.5, 3.5]) ∪ ([3.5, 5]× [3.5, 5])
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by the Rectangular Decomposition Algorithm in Alzorba et al. [3]. The right part of Figure 1 shows

that x0 /∈ Eff(R2 | f⊕1) since x1 ∈ (intX) ∩ S=(R2, f, x0). Consequently, the inclusion in (4.14) does

not hold in this example.

Figure 1: Counter-example for the inclusion (4.14).

4.2. Problems with multiple forbidden regions (l > 1)

The next theorem is related to the concept of Pareto efficiency and presents relationships between

the initial constrained multi-objective optimization problem (PX) and a finite family of unconstrained

multi-objective optimization problems (PV), (P⊕i

V ), i ∈ Il.

Theorem 4.1. Let (4.1) be satisfied. Suppose that each function φi, i ∈ Il, fulfils Assumptions (A1)

and (A2) (with φi in the role of φ and Xi in the role of X). Then, the following assertions hold:

1◦. We have

X ∩ Eff(V | f) ⊆ X ∩
⋃
i∈Il

Eff(Xi | f) ⊆ Eff(X | f). (4.15)

2◦. Assume that (4.2) holds. Let f be componentwise semi-strictly quasi-convex. Then, we have

X ∩
⋃
i∈Il

Eff(Xi | f) ⊇ Eff(X | f). (4.16)

3◦. Assume that (4.3) holds. Let f be componentwise explicitly quasi-convex. Then, (4.16) is true.

4◦. We have

Eff(X | f) ⊇ [X ∩ Eff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ Eff(V | f⊕i)

]
. (4.17)

Now, suppose that (4.2) holds. Let f be componentwise semi-strictly quasi-convex. Then, we have

Eff(X | f) = [X ∩ Eff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩ Eff
(
V | f⊕i

)]
. (4.18)
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5◦. Assume that (4.3) holds. Let f be componentwise explicitly quasi-convex. Then, (4.18) is true.

Proof:

1◦. Since X ⊆ Xi ⊆ V for all i ∈ Il, we get (4.15) directly by Lemma 2.4. (1◦)

2◦. Consider x0 ∈ Eff(X | f). On the one hand, we can have x0 ∈ Eff(V | f), hence it follows

x0 ∈ Eff(Xi | f) for some i ∈ Il by 1◦ of this theorem. On the other hand, we can have

x0 /∈ Eff(V | f). Then, there exists x1 ∈ V \X =
⋃

i∈Il intDi with

x1 ∈ L<(V, fj , fj(x0)) ∩ S≤(V, f, x0) for some j ∈ Im. (4.19)

Without loss of generality, we assume x1 ∈ intDk for some k ∈ Il. We are going to show that[ ⋃
i∈Im

L<(V, fi, fi(x0))

]
∩ S≤(V, f, x0) ⊆ intDk,

which implies x0 ∈ Eff(Xk | f).

Suppose that the contrary holds, i.e., there exists x2 ∈ intDk with k ∈ Il \ {k} such that

x2 ∈ L<(V, fj , fj(x
0)) ∩ S≤(V, f, x0) for some j ∈ Im.

By (4.2) and the closedness of Di, i ∈ Il, we infer that the set X ∩ ]x1, x2[ has an infinite number

of elements. In particular, we have

card
(
X ∩ ]x1, x2[

)
≥ m+ 2. (4.20)

We are going to prove that

∃x3 ∈ ]x1, x2[: x3 ∈ L<(X, fj , fj(x
0)) ∩ S≤(X, f, x0), (4.21)

which implies x0 /∈ Eff(X | f), a contradiction.

Since max{fi(x1), fi(x
2)} ≤ fi(x0) for every i ∈ Im, we infer that

card

( ⋃
i∈Im

L>

(
]x1, x2[ , fi , fi(x

0)
))
≤ m (4.22)

by Lemma 2.2. Now, for the specific index j given in (4.19), we consider two cases:

Case 1: If x2 ∈ L=(V, fj , fj(x0)), then in view of Lemma 2.1. we get [x1, x2[⊆ L<(V, fj , fj(x0)).

By (4.20), it follows

card
(
X ∩ L<

(
]x1, x2[ , fj , fj(x

0)
))
≥ m+ 1. (4.23)

Case 2: If x2 ∈ L<(V, fj , fj(x0)), then we have

cardL>

(
]x1, x2[ , fj , s

)
≤ 1 (4.24)

with s := max{fj(x1), fj(x
2)} < fj(x

0) by Lemma 2.2. Due to (4.20) and (4.24), it follows

(4.23).

So, in both cases (4.23) holds. Consequently, we get the validity of (4.21) by (4.22) and (4.23).

This completes the proof of assertion 2◦.
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3◦. The proof is analogous to the proof of assertion 2◦. By (4.3), we get card
(
X∩ ]x1, x2[

)
≥

1 instead of (4.20). Notice, for any i ∈ Im, the conditions x1, x2 ∈ L∼(V, fi, fi(x0)) imply

]x1, x2[⊆ L∼(V, fi, fi(x0)) for all ∼∈ {<,≤} by the quasi-convexity of fi. Consequently, it

follows

∅ 6= X∩ ]x1, x2[⊆ L<(X, fj , fj(x
0)) ∩ S≤(X, f, x0).

4◦. By Proposition 3.1. (1◦), for any i ∈ Il, we have

[Xi ∩ Eff(V | f)] ∪
[
(bdXi) ∩ Eff(V | f⊕i)

]
⊆ Eff(Xi | f). (4.25)

Notice that intXi 6= ∅ by Lemma 4.4. Then, due to 1◦ of this theorem we get

Eff(X | f)
(4.15)

⊇ X ∩
⋃
i∈Il

Eff(Xi | f)

(4.25)

⊇ X ∩
⋃
i∈Il

(
[Xi ∩ Eff(V | f)] ∪

[
(bdXi) ∩ Eff(V | f⊕i)

])
=

[⋃
i∈Il

X ∩Xi ∩ Eff(V | f)

]
∪

[⋃
i∈Il

X ∩ (bdXi) ∩ Eff(V | f⊕i)

]

= [X ∩ Eff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(V | f⊕i)

]
,

where X ∩Xi = X for every i ∈ Il, which shows (4.17).

Assume that (4.2) holds. Let f be componentwise semi-strictly quasi-convex. By (4.16) and by

Proposition 3.1. (2◦), we get the reverse inclusion, which shows (4.18) in view of (4.4).

5◦. This assertion follows by 1◦ and 3◦ of this theorem as well as by the ideas given in the proof of

assertion 4◦.�

Notice that the assumptions (4.2) in 4◦ and (4.3) in 5◦ of Theorem 4.1. are essential for the validity

of (4.18) (see Example 5.1. in Section 5.).

In the next theorem, we derive relationships between the initial constrained multi-objective optimiza-

tion problem (PX) and the corresponding unconstrained problems (PV) and (P⊕i

V ), i ∈ Il, for the

concept of weak Pareto efficiency.

Theorem 4.2. Let (4.1) be satisfied. Suppose that each penalization function φi, i ∈ Il, fulfils As-

sumptions (A1) and (A2) (with φi in the role of φ and Xi in the role of X). Then, the following

assertions hold:

1◦. We have

X ∩WEff(V | f) ⊆ X ∩
⋃
i∈Il

WEff(Xi | f) ⊆WEff(X | f).

2◦. Assume that (4.2) holds. Let f be componentwise semi-strictly quasi-convex or quasi-convex. Then,

we have

X ∩
⋃
i∈Il

WEff(Xi | f) ⊇WEff(X | f). (4.26)
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3◦. Assume that (4.3) holds. Let f be componentwise quasi-convex. Then, (4.26) is true.

4◦. Let f be componentwise upper semi-continuous along line segments. Assume that each function φi,

i ∈ Il, fulfils Assumption (A5). Then, we have

WEff(X | f) ⊇ [X ∩WEff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩WEff(V | f⊕i)

]
.

Now, suppose that (4.2) holds. In addition, assume that f is componentwise semi-strictly quasi-convex.

Then, we have

WEff(X | f) = [X ∩WEff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩WEff
(
V | f⊕i

)]
. (4.27)

5◦. Suppose that (4.3) holds. Let f be componentwise explicitly quasi-convex and upper semi-continuous

along line segments. Assume that each function φi, i ∈ Il, fulfils Assumption (A5). Then, (4.27) is

true.

Proof: The proof uses similar ideas as given in the proof of Theorem 4.1.

1◦. Follows by Lemma 2.4. (1◦)

2◦. Let x0 ∈ WEff(X | f). If x0 ∈ WEff(V | f), then x0 ∈ X ∩WEff(Xj | f) for some j ∈ Il by

1◦ of this theorem. In what follows, we assume that x0 /∈ WEff(V | f). Consequently, there is

x1 ∈ S<(V, f, x0) ∩ intDk for some k ∈ Il. We show that x0 ∈WEff(Xk | f).

Assume the contrary holds, i.e., x0 /∈WEff(Xk | f). Then, there exists x2 ∈ S<(V, f, x0)∩intDk

for some k ∈ Il \ {k}. Consider i ∈ Im. If fi is semi-strictly quasi-convex, then we get

cardL≥
(

]x1, x2[ , fi , fi(x
0)
)
≤ 1

by Lemma 2.2. If fi is quasi-convex, then it follows

cardL≥
(

]x1, x2[ , fi , fi(x
0)
)

= 0.

So, we conclude

card

( ⋃
i∈Im

L≥
(

]x1, x2[ , fi , fi(x
0)
))
≤ m. (4.28)

By (4.20) and (4.28), we infer that there exists x3 ∈ ]x1, x2[ such that x3 ∈ S<(X, f, x0). This

shows x0 /∈WEff(X | f), a contradiction.

3◦. The proof is analogous to the proof of assertion 2◦. Notice that one has

∅ 6= X ∩ ]x1, x2[⊆ S<(X, f, x0).

4◦. The proof uses Proposition 3.2, Theorem 4.2.(1◦, 2◦), formula (4.4) and the ideas given in the

proof of Theorem 4.1. (4◦).
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5◦. This assertion follows by 1◦ and 3◦ of this theorem as well as by the ideas given in the proof of

assertion 4◦.�

It is important to mention that the assumptions (4.2) in 4◦ and (4.3) in 5◦ of Theorem 4.2. are essential

for the validity of (4.27) (see Example 5.1. in Section 5.).

We now present similar relationships for the concept of strict Pareto efficiency.

Theorem 4.3. Let (4.1) be satisfied. Suppose that each function φi, i ∈ Il, fulfils Assumptions (A1)

and (A2) (with φi in the role of φ and Xi in the role of X). Then, the following assertions hold:

1◦. We have

X ∩ SEff(V | f) ⊆ X ∩
⋃
i∈Il

SEff(Xi | f) ⊆ SEff(X | f).

2◦. Assume that (4.2) holds. Let f be componentwise semi-strictly quasi-convex or quasi-convex. Then,

we have

X ∩
⋃
i∈Il

SEff(Xi | f) ⊇ SEff(X | f). (4.29)

3◦. We have

SEff(X | f) ⊇ [X ∩ SEff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ SEff(V | f⊕i)

]
.

Now, suppose that (4.2) holds. In addition, assume that f is componentwise semi-strictly quasi-convex

or quasi-convex. Then, we have

SEff(X | f) = [X ∩ SEff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩ SEff
(
V | f⊕i

)]
. (4.30)

Proof: The proof uses similar ideas as given in the proof of Theorem 4.1.

1◦. Follows by Lemma 2.4. (1◦)

2◦. Consider x0 ∈ SEff(X | f). In the case that x0 ∈ SEff(V | f), we conclude x0 ∈ X∩SEff(Xj | f)

for some j ∈ Il by 1◦ of this theorem. In the second case, we can have x0 /∈ SEff(V | f),

hence there exists x1 ∈ S≤(V, f, x0) ∩ intDk for some k ∈ Il. Now, we are going to prove that

x0 ∈ SEff(Xk | f).

Assume the contrary holds, i.e., x0 /∈ SEff(Xk | f). Then, there exists a point x2 ∈ S≤(V, f, x0)∩
intDk for some k ∈ Il \ {k}.

Let i ∈ Im. If fi is semi-strictly quasi-convex, then we get

cardL>

(
]x1, x2[ , fi , fi(x

0)
)
≤ 1

by Lemma 2.2. If fi is quasi-convex, then it follows

cardL>

(
]x1, x2[ , fi , fi(x

0)
)

= 0.
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Hence, we infer

card

( ⋃
i∈Im

L>

(
]x1, x2[ , fi , fi(x

0)
))
≤ m. (4.31)

Taking into account (4.20) and (4.31), we get that there exists x3 ∈ ]x1, x2[ \{x0} such that

x3 ∈ S≤(X, f, x0). This implies x0 /∈ SEff(X | f), a contradiction.

3◦. The proof uses Proposition 3.3, Theorem 4.3.(1◦, 2◦), formula (4.4) and the ideas given in the

proof of Theorem 4.1.(4◦).�

Remark 4.1. Consider the points x0, x1, x2 ∈ V as given in the proof of 2◦ in Theorem 4.3, Under

the weaker assumption (4.3) (in comparison to (4.2)) and the componentwise quasi-convexity of f , we

get

∅ 6= X ∩ ]x1, x2[⊆ S≤(X, f, x0).

We notice, however, that X∩ ]x1, x2[ can be a singleton set. Hence, in the proof of 2◦ in Theorem 4.3,

we can not ensure that we have

X ∩ ]x1, x2[ 6= {x0}. (4.32)

For the concepts of Pareto efficiency and weak Pareto efficiency, we know that there is x ∈ X ∩ ]x1, x2[

such that x ∈ L<(V, fj , fj(x0)) ∩ S≤(V, f, x0) for some j ∈ Im, hence (4.32) holds.

The assumption (4.2) in 4◦ of Theorem 4.2. is essential for the validity of (4.30), as shown in Example

5.1. in Section 5.

In preparation of the next section, we conclude by considering a specific type of penalization functions

φi, i ∈ Il, that fulfils the Assumptions (A1), (A2) and (A5) (with φi in the role of φ and Xi in the

role of X, see Example 4.1. and Lemma 4.4.)

Corollary 4.1. Assume that (4.1) holds. Let each penalization function φi, i ∈ Il, be defined by

φi(x) := − inf{λ ∈ R++ | x− di ∈ λ · (−di +Di)}

for all x ∈ V, where di ∈ intDi. Then, the following hold:

1◦. We have

SEff(X | f) ⊇ [X ∩ SEff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ SEff(V | f⊕i)

]
;

Eff(X | f) ⊇ [X ∩ Eff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ Eff(V | f⊕i)

]
.

Suppose that f is componentwise upper semi-continuous along line segments. Then, it follows

WEff(X | f) ⊇ [X ∩WEff(V | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩WEff(V | f⊕i)

]
.

Moreover, under the validity of (4.2) or (4.3), one can replace X ∩ (bdXi) by bdDi for every i ∈ Il.
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2◦. If f is componentwise semi-strictly quasi-convex or quasi-convex, then we have

SEff(X | f) ⊆ [X ∩ SEff(V | f)] ∪ bdX.

3◦. If f is componentwise semi-strictly quasi-convex, then

Eff(X | f) ⊆ [X ∩ Eff(V | f)] ∪ bdX;

WEff(X | f) ⊆ [X ∩WEff(V | f)] ∪ bdX.

4◦. Assume that (4.2) holds. Let f be componentwise semi-strictly quasi-convex or quasi-convex. Then,

we have

SEff(X | f) = [X ∩ SEff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩ SEff
(
V | f⊕i

)]
.

5◦. Assume that (4.3) holds. Let f be componentwise explicitly quasi-convex. Then, we have

Eff(X | f) = [X ∩ Eff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩ Eff
(
V | f⊕i

)]
.

In addition, suppose that f is componentwise upper semi-continuous along line segments. Then, it

follows

WEff(X | f) = [X ∩WEff(V | f)] ∪

[⋃
i∈Il

(bdDi) ∩WEff
(
V | f⊕i

)]
.

Proof: Follows by Lemma 2.4, Theorems 4.1, 4.2 and 4.3 and formula (4.4). �

5. APPLICATION TO A NONCONVEX MULTI-OBJECTIVE LOCATION PROB-

LEM

In this section, we apply our results to multi-objective location problems. Assume that (V, || · ||) is a

normed space. Consider m a priori given facilities located at the points a1, · · · , am ∈ V. For notational

convenience, we define the set of all existing facilities by

A := {a1, · · · , am}.

Let X ⊆ V be a nonempty closed set. Our aim is to find a point x ∈ X for a new facility such that

the distances (associated with the norm || · ||) between x and the given points a1, · · · , am are to be

simultaneously minimized. Such a problem can be modeled as follows:g(x) :=
(
||x− a1||, · · · , ||x− am||

)
→ min

x ∈ X.
(LPX)

If, in addition, X is convex and (V, || · ||) is a Hilbert space, then it is known (see Ndiaye and Michelot

[18, Cor. 4.2]) that we have

SEff(X | g) = Eff(X | g) = WEff(X | g) = ProjX(convA),
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where the projection of convA onto X is defined with respect to the norm || · ||.
By applying the weighted-sum scalarization method to the problem (LPX), we infer that minimal

solutions of the well-known generalized Fermat-Weber problem are actually Pareto efficient solutions

for the problem (LPX), i.e., we have

argminx∈X

m∑
i=1

||x− ai|| ⊆ Eff(X | g).

Taking into account the literature in multi-objective location theory, one can see that most papers

are dealing with closed and convex feasible sets. In particular, the case X = V is well-studied in

the literature. In contrast to that, the nonconvex case is less studied. For instance, Carrizosa et al.

[8] considered the point-objective location problem (LPX) involving the Euclidean norm and used a

geometrical construction in the plane (i.e., V = R2) based on their concept of a closed and convex

decomposition of the not necessarily convex feasible set X, in order to obtain a characterization for the

set of weakly Pareto efficient solutions. To the best of our knowledge, it is unknown how to compute

the set of (strictly, weakly) Pareto efficient solutions for the problem (LPX) involving forbidden

regions. Since in practical problems, there often exist regions where it is forbidden to locate a new

facility, it is interesting to study the classical problem (LPX) in the presence of forbidden regions.

So, let the feasible set X of (LPX) be given by the whole pre-image space V excepting some forbidden

regions that are defined by open balls with respect to the norm || · ||. More precisely, throughout this

section, we assume that the following assumption is fulfilled:
Let (V, || · ||) be a real finite-dimensional Hilbert space;

let Di := B||·||(d
i, ri) with di ∈ V, ri ∈ R++, i ∈ Il, l ∈ N;

let X :=
⋂

i∈Il Xi with Xi := V \ intDi, i ∈ Il.
(5.1)

As one can see in (5.1), the feasible set X is given by an intersection of reverse convex sets X1, · · · , Xl.

For convenience the reader may assume that V = Rn and that || · || is given by the Euclidean norm

(denoted by || · ||2) defined in Rn.

Notice that the Hilbert space (V, || · ||) is strictly convex. Hence, for any i ∈ Il, we have

]x′, x′′[⊆ intDi for all x′, x′′ ∈ bdDi, x
′ 6= x′′.

Moreover, we have

||di − dj || > ri + rj for all i, j ∈ Il, i 6= j (5.2)

if and only if the balls D1, · · · , Dl are pairwise disjoint. Furthermore, we have

||di − dj || ≥ ri + rj for all i, j ∈ Il, i 6= j (5.3)

if and only if the the interiors intD1, · · · , intDl of the ballsD1, · · · , Dl are pairwise disjoint. Obviously,

(5.3) follows by (5.2). In general, we have bdX ⊆
⋃

i∈Il bdDi. Under the assumption (5.3), we

actually have

bdX =
⋃
i∈Il

bdDi
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by Lemma 4.1.

For every i ∈ Il, we consider a penalized point-objective location problem byg⊕i(x) :=
(
||x− a1||, · · · , ||x− am||,−||x− di||

)
→ min

x ∈ V,
(LP⊕i

V )

where we define the penalization function φi : V → R by

φi(x) := −||x− di|| for all x ∈ V.

Notice that (LPX) involves a convex objective function g and a nonconvex feasible set X. In contrast

to that, (LP⊕i

V ) involves a nonconvex objective function g⊕i(x) and a convex feasible set V for every

i ∈ Il. According to Jourani, Michelot and Ndiaye [17], the problem (LP⊕i

V ) can be seen as the

problem of locating a new facility x ∈ V in presence of attracting points a1, · · · , am and a repulsive

demand point di in a continuous location space V.

Remark 5.1. By Example 4.1. and Lemma 4.4. we know that the function φ̂i : V → R, defined for

every x ∈ V by

φ̂i(x) := − 1

ri
||x− di|| = − inf{λ ∈ R++ | x− di ∈ λ · (−di +Di)},

fulfils Assumptions (A1), (A2) and (A5) (with φ̂i in the role of φ and Xi in the role of X) for every

i ∈ Il. In view of Lemma 3.1. (2◦, 3◦) , we actually get that φi( · ) = −|| · −di|| fulfils Assumptions

(A1), (A2) and (A5) (with φi in the role of φ and Xi in the role of X) for every i ∈ Il.

By Durier and Michelot [11, Prop. 1.3], we know that one can determine completely the set of (strictly,

weakly) Pareto efficient solutions for the problem (LPV) (defined as (LPX) with V in the role of X)

as stated in the next lemma.

Lemma 5.1. Assume that (5.1) holds. Then, we have

SEff(V | g) = Eff(V | g) = WEff(V | g) = convA.

By Jourani, Michelot and Ndiaye [17] we get the following characterizations of the sets of (strictly,

weakly) Pareto efficient solutions for the nonconvex location problem (LP⊕i

V ).

Lemma 5.2. Assume that (5.1) holds. For every i ∈ Il, the following assertions hold:

1◦. SEff(V | g⊕i) = convA+ cone
(
convA− di

)
.

2◦. di ∈ int(convA) if and only if SEff(V | g⊕i) = V.

3◦. If di /∈ convA, then SEff(V | g⊕i) = Eff(V | g⊕i) = WEff(V | g⊕i) 6= V.

4◦. di ∈ convA if and only if WEff(V | g⊕i) = V.

5◦. di /∈ rint(convA) if and only if Eff(V | g⊕i) = SEff(V | g⊕i) 6= V.

6◦. di ∈ rint(convA) if and only if Eff(V | g⊕i) = V.
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7◦. WEff(V | g⊕i) = {x ∈ V | (convA) ∩ conv {x, di} 6= ∅}.

8◦. rint(SEff(V | g⊕i)) = {x ∈ V | rint(convA) ∩ rint(conv {x, di}) 6= ∅}.

Proof: First, notice that cone
(
convA− di

)
= V if and only if di ∈ int(convA) (see Section 2.). Now,

1◦ follows by [17, Cor. 4.1]; 2◦ follows by 1◦; 3◦ follows by [17, Th. 4.5] and by 2◦; 4◦ follows by [17,

Prop. 4.2]; 5◦ follows by [17, Th. 4.3]; 6◦ follows by [17, Prop. 4.1]; 7◦ follows by [17, Th. 4.4]; 8◦

follows by [17, Th. 4.2]. �

Remark 5.2. Notice that Lemma 5.1. is actually true for infinite-dimensional Hilbert spaces (see

Durier and Michelot [11, Prop. 1.3]) taking into account that convA is compact for the finite set

A (see Aliprantis and Border [1, Cor. 5.30]). According to Jourani, Michelot and Ndiaye [17],

the results given in Lemma 5.2. are valid for finite-dimensional inner product spaces (hence finite-

dimensional Hilbert spaces). For that reason, we assume in our main assumption (5.1) that V is a

finite-dimensional Hilbert space.

Since A is finite, the set convA is a polytope. In the case di /∈ int(convA), for any i ∈ Il, the

set cone
(
convA− di

)
is a (closed and convex) polyhedral cone and convA + cone

(
convA− di

)
is a

polyhedral set. Otherwise, if di ∈ int(convA), then both sets are equal to V. In addition, we have

T (convA, di) = cl
(
cone

(
convA− di

))
= cone

(
convA− di

)
,

where T (convA, di) stands for the contigent cone of convA at the point di. For more details, see the

books by Aliprantis and Border [1] and Jahn [16].

As mentioned by Jourani, Michelot and Ndiaye [17], these complete geometrical descriptions of the

sets of (strictly, weakly) Pareto efficient solutions given in Lemma 5.2. are surprising due to the

nonconvexity of the objective function g⊕i , i ∈ Il.
In the next lemma, we will see that Lemmata 5.1. and 5.2. are very important results in order to obtain

complete geometrical descriptions of the sets of (strictly, weakly) Pareto efficient solutions (under the

validity of (5.2) or (5.3)) for the nonconvex problem (LPX).

Lemma 5.3. Let (5.1) be fulfilled. Then, the following assertions hold:

1◦. We have

SEff(X | g) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ SEff(V | g⊕i)

]
;

Eff(X | g) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(V | g⊕i)

]
;

WEff(X | g) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩WEff(V | g⊕i)

]

and

SEff(X | g) ⊆ Eff(X | g) ⊆WEff(X | g) ⊆ [X ∩ convA] ∪ bdX.
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2◦. Assume that (5.2) holds. Then, we have

SEff(X | g) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩ SEff(V | g⊕i)

]
.

3◦. Assume that (5.3) holds. Then, we have

Eff(X | g) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩ Eff(V | g⊕i)

]
;

WEff(X | g) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩WEff(V | g⊕i)

]
.

Proof: Follows by Corollary 4.1. and Lemma 5.1. �

The reverse inclusions in 1◦ of Lemma 5.3. do not hold in general, as shown in the next example.

Example 5.1. Consider the space V = R2, the set A = {a1} = {(0, 0)}, and three Euclidean balls in

R2, namely

D1 with center d1 = (−2, 0) and radius r1 = 3,

D2 with center d2 = (2, 0) and radius r2 = 3,

D3 with center d3 = (0, 2) and radius r3 = 3.

For the problem (LPX) (with m = 1), we suppose that X = X1 ∩X2 ∩X3 with Xi = R2 \ intDi for

every i ∈ I3. Then, we have convA = {(0, 0)}, hence

X ∩ convA = ∅.

Moreover, we get for d1, d2, d3 /∈ convA,

Eff(R2 | g⊕1) = −cone {d1} = [0,∞)× {0},

Eff(R2 | g⊕2) = −cone {d2} = (−∞, 0]× {0},

Eff(R2 | g⊕3) = −cone {d3} = {0} × (−∞, 0]

by Lemma 5.2. We thus infer

X ∩ (bdD1) ∩ Eff(R2 | g⊕1) = X ∩ {(1, 0)} = ∅,

X ∩ (bdD2) ∩ Eff(R2 | g⊕2) = X ∩ {(−1, 0)} = ∅,

X ∩ (bdD3) ∩ Eff(R2 | g⊕3) = X ∩ {(0,−1)} = ∅.

Notice, in view of Lemma 5.2, we have

SEff(R2 | g⊕i) = Eff(R2 | g⊕i) = WEff(R2 | g⊕i) for all i ∈ I3.

However, it can easily be checked that

∅ 6= {(0,−
√

5)} = argminx∈X ||x||2 = SEff(X | g) = Eff(X | g) = WEff(X | g).

This means that the reverse inclusions in 1◦ of Lemma 5.3. do not hold for this example problem.

Notice that (5.2) and (5.3) are not fulfilled.
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In preparation of the next theorem, we define the following three sets of indices:

Iconv := {i ∈ Il | di ∈ convA};

Ii−conv := {i ∈ Il | di ∈ int(convA)};

Iri−conv := {i ∈ Il | di ∈ rint(convA)}.

We now present the main theorem of this section where we give complete geometrical descriptions for

the sets of (strictly, weakly) Pareto efficient solutions of (LPX) that are valid under the assumptions

(5.1) and (5.2) (or (5.3)).

Theorem 5.1. Let (5.1) be fulfilled. Then, the following assertions hold:

1◦. Assume that (5.2) holds. Then, we have

SEff(X | g) = X ∩ convA

∪

 ⋃
i∈Il\Ii−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Ii−conv

bdDi

]
⊇ X ∩ convA

∪

 ⋃
i∈Il\Ii−conv

{
x ∈ bdDi | rint(convA) ∩ rint(conv {x, di}) 6= ∅

}
∪

[ ⋃
i∈Ii−conv

bdDi

]
.
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2◦. Assume that (5.3) holds. Then, we have

Eff(X | g) = X ∩ convA

∪

 ⋃
i∈Il\Iri−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iri−conv

bdDi

]
;

WEff(X | g) = X ∩ convA

∪

 ⋃
i∈Il\Iconv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iconv

bdDi

]
= X ∩ convA

∪

 ⋃
i∈Il\Iconv

{
x ∈ bdDi | (convA) ∩ conv {x, di} 6= ∅

}
∪

[ ⋃
i∈Iconv

bdDi

]
.

Proof: Follows by Lemmata 5.2. and 5.3. �

Corollary 5.1. Let (5.1) be fulfilled. Then, the following assertions hold:

1◦. Assume that (5.2) holds. Then, SEff(X | g) is a compact set.

2◦. Assume that (5.3) holds. Then, Eff(X | g) and WEff(X | g) are compact sets.

Proof: The setsDi, i ∈ Il, and convA are compact sets. In addition, the setsX and cone
(
convA− di

)
,

i ∈ Il, are closed. Hence, we easily obtain that SEff(X | g), Eff(X | g) and WEff(X | g) are closed and

bounded sets by Theorem 5.1. Notice that the sum of a compact set and a closed set in V is closed.

Since V is a finite-dimensional normed space, both assertions of this corollary follow immediately. �

Next, we present two examples in order to illustrate (for the case l = 1 as well as for the case l = 2)

the geometrical descriptions given for the sets of (strictly, weakly) Pareto efficient solutions of the

problem (LPX) in Theorem 5.1.

Example 5.2. We consider a point-objective location problem (LPX) involving the Euclidean norm

|| · ||2 where the set of existing facilities is given by

A = {a1, a2, a3} ⊆ R2 = V

and the feasible set is given by X = X1 = R2 \ intD1. Figure 2 shows the location problem as well as

the procedure for computing the set Eff(X | g). Notice that d1 ∈ (convA)\ int(convA). Due to Lemma
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5.1. and Theorem 5.1, we have

SEff(R2 | g) = Eff(R2 | g) = WEff(R2 | g) = convA

and

SEff(X | g) = [X ∩ convA] ∪
[
(bdD1) ∩

(
convA+ cone

(
convA− d1

))]
;

Eff(X | g) = SEff(X | g);

WEff(X | g) = [X ∩ convA] ∪ bdD1.

Figure 2: Construction of the set of Pareto efficient solutions of the problem (LPX) with m = 3 and

l = 1.

Example 5.3. Again, let us consider a point-objective location problem (LPX) involving the Eu-

clidean norm || · ||2 where the set of existing facilities is given by

A = {a1, a2, a3} ⊆ R2 = V.
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We assume that X is an intersection of two reverse convex sets, i.e., we have

X = X1 ∩X2 = (R2 \ intD1) ∩ (R2 \ intD2).

Figure 3 illustrates this problem and shows how the set Eff(X | g) can be computed. Notice that

d1 ∈ int(convA) and d2 /∈ convA. In view of Lemma 5.1. and Theorem 5.1, we infer

SEff(R2 | g) = Eff(R2 | g) = WEff(R2 | g) = convA

and

SEff(X | g) = [X ∩ convA] ∪ bdD1

∪
[
(bdD2) ∩ (convA+ cone

(
convA− d2

)
)
]

;

Eff(X | g) = WEff(X | g) = SEff(X | g).

Figure 3: Construction of the set of Pareto efficient solutions of the problem (LPX) with m = 3 and

l = 2.
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In Proposition 5.1, we present some characterizations related to the sets of (strictly, weakly) Pareto

efficient solutions.

Proposition 5.1. Let (5.1) and (5.3) be fulfilled. Then, the following assertions are true:

1◦. Assume that (5.2) holds. Then, we have

Ii−conv = Il ⇐⇒ SEff(X | g) = [X ∩ convA] ∪ bdX.

2◦. Assume that (5.2) or dimV ≥ 2 holds. Then, we have

Iri−conv = Il ⇐⇒ Eff(X | g) = [X ∩ convA] ∪ bdX.

3◦. Assume that (5.2) or dimV ≥ 2 holds. Then, we have

Iconv = Il ⇐⇒ WEff(X | g) = [X ∩ convA] ∪ bdX.

4◦. Assume that (5.2) holds. Then, we have

Iri−conv = Ii−conv ⇐⇒ SEff(X | g) = Eff(X | g),

or, equivalently, we have

int(convA) 6= ∅ ∨ Iri−conv = ∅ ⇐⇒ SEff(X | g) = Eff(X | g).

5◦. Assume that (5.2) or dimV ≥ 2 holds. Then, we have

Iconv = Iri−conv ⇐⇒ Eff(X | g) = WEff(X | g).

6◦. Assume that (5.2) holds. Then, we have

Iconv = Ii−conv ⇐⇒ SEff(X | g) = Eff(X | g) = WEff(X | g).

7◦. Assume that (5.2) holds. Then, we have

∅ = Ii−conv ( Iri−conv ( Iconv ⇐⇒ SEff(X | g) ( Eff(X | g) ( WEff(X | g).

To prove Proposition 5.1, we need the following key lemma.

Lemma 5.4. Let (5.1) be fulfilled. The following assertions hold:

1◦. For any j ∈ Il, we have

j ∈ Ii−conv ⇐⇒ (bdDj) ∩
(
convA+ cone

(
convA− dj

))
= bdDj .

2◦. Let j ∈ Il \ Ii−conv. Then, we have

(bdDj) ∩ (convA) ⊆ (bdDj) ∩
(
convA+ cone

(
convA− dj

))
( bdDj .

Hence, the set

(bdDj) \
(
convA+ cone

(
convA− dj

))
is nonempty, and if dimV ≥ 2, has an infinite number of elements.
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3◦. Assume that (5.3) holds. For any i, j ∈ Il, i 6= j, the set (bdDi) ∩ (bdDj) is a singleton set or the

empty set. Hence, for any j ∈ Il, the set (bdDj) ∩
⋃

i∈Il\{j} bdDi has at most l elements.

4◦. Assume that (5.2) holds. For any i, j ∈ Il, i 6= j, the set (bdDi) ∩ (bdDj) is the empty set.

Proof: For notational convenience, we define Cj := cone
(
convA− dj

)
for all j ∈ Il.

1◦. Since for j ∈ Ii−conv we have Cj = V (see Section 2.), the implication “=⇒” follows immediately.

Now, let us establish the reverse implication “⇐=”.

Let j ∈ Il. Since bdDj ⊆ convA+ Cj and convA+ Cj is a convex set, we get

dj ∈ intDj ⊆ Dj ⊆ convA+ Cj ,

hence

dj ∈ int(convA+ Cj). (5.4)

Assume that the contrary holds, i.e., j ∈ Il \ Ii−conv, hence dj /∈ int(convA). First, we show

that

∃ v ∈ V \ {0} ∀ δ ∈ R++ : dj + δv /∈ convA (5.5)

by considering two cases:

Case 1: Assume that dj /∈ convA. By a separation theorem (see e.g., Barbu and Precupanu [4,

Cor 1.45]), we infer that there exists a linear functional ψ : V → R such that

sup
a∈convA

ψ(a) < ψ(dj). (5.6)

Assume that the contrary of (5.5) holds. Then, for v := dj − a with a ∈ convA, there exists

δ ∈ R++ such that dj + δv ∈ convA. So, we have

ψ(dj)
(5.6)
> ψ(dj + δv)

= ψ(dj) + δψ(dj − a)

= ψ(dj) + δψ(dj)− δψ(a),

which implies ψ(a) > ψ(dj), a contradiction to (5.6). Thus, (5.5) holds.

Case 2: Assume that dj ∈ bd(convA). Since dj ∈ convA is not an interior point of convA, it

follows

∃ v ∈ V \ {0} ∀ δ ∈ R++ ∃ θ ∈ ]0, δ] : dj + θv /∈ convA (5.7)

in the finite-dimensional normed space (V, || · ||) (see Section 2.). If we suppose that dj + δv ∈
convA for some δ ∈ R++, then

dj + [0, δ] · v ⊆ convA

by the convexity of convA, a contradiction to (5.7). This shows (5.5) with v := v.

In both cases (5.5) holds.
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In view of (5.4), for v ∈ V \ {0} given in (5.5), we get that there exists δ̂ ∈ R++ such that

dj + δ̂v ∈ convA+Cj . So, there exist k ∈ R+, a′, a′′ ∈ convA, such that dj + δ̂v = a′+k(a′′−dj).
This means that

dj +
δ̂

1 + k
v =

1

1 + k
a′ +

k

1 + k
a′′ =

(
1− k

1 + k

)
a′ +

k

1 + k
a′′ ∈ convA,

a contradiction to (5.5).

The proof of assertion 1◦ is complete.

2◦. We have 0 ∈ Cj , hence convA ⊆ convA+Cj , which shows the first inclusion in assertion 2◦. By 1◦

of this lemma, we get the second strict inclusion. Hence, we infer that (bdDj)\(convA+Cj) 6= ∅.

Now, we show that (bdDj) \ (convA+Cj) has an infinite number of elements. Let us consider

two cases:

Case 1: Assume that dj /∈ convA. Then, we get dj /∈ convA+Cj . Indeed, if there exist k ∈ R+,

a′, a′′ ∈ convA, such that dj = a′ + k(a′′ − dj), then

dj =
1

1 + k
a′ +

k

1 + k
a′′ =

(
1− k

1 + k

)
a′ +

k

1 + k
a′′ ∈ convA,

a contradiction.

Since convA+ Cj is closed and convex, we infer that there exists a linear functional ψ : V → R
such that

sup
c∈convA+Cj

ψ(c) < ψ(dj) (5.8)

by a separation theorem (see, e.g., Barbu and Precupanu [4, Cor 1.45]). Without loss of gen-

erality, assume that V is n-dimensional (n ≥ 2). The sum of the dimensions of the kernel of ψ

(kerψ for short) and the image of ψ (imgψ for short) is equal to n. More precisely, we have

dim(kerψ) = n − 1 and dim(imgψ) = 1. Consider x ∈ (kerψ) \ {0}. Since dj ∈ intDj and Dj

is convex, it exists δ ∈ R++ such that S := dj + [0, δ] · x ⊆ intDj . Notice that S has an infinite

number of elements. Define v := dj − c for some c ∈ convA + Cj . For any y ∈ S, we define a

function hy : R→ R by

hy(t) := ||y + tv − dj || for all t ∈ R. (5.9)

Consider y ∈ S. Since Dj is bounded and v 6= 0, there exists ty ∈ R++ such that y + tyv /∈ Dj .

By the continuity of hy and by hy(0) < rj < hy(ty), we get some t∗y ∈ ]0, ty[⊆ R++ such that

hy(t∗y) = rj , hence xy := y + t∗yv ∈ bdDj . Since y ∈ S we know that y = dj + δx for some

δ ∈ [0, δ]. Then, due to x ∈ kerψ and formula (5.8), we infer

ψ(xy) = ψ(dj) + δψ(x) + t∗y(ψ(dj)− ψ(c)) > ψ(dj),

which implies xy /∈ convA+ Cj in view of (5.8). We conclude that

xy ∈ (bdDj) \ (convA+ Cj).
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Moreover, the map y 7→ xy is injective. Assume the contrary holds, i.e., there exist y′, y′′ ∈ S,

y′ 6= y′′, such that

xy′ = y′ + t∗y′v = y′′ + t∗y′′v = xy′′ .

Of course, t∗y′ = t∗y′′ implies y′ = y′′, a contradiction. Without loss of generality, assume that

t∗y′ > t∗y′′ . We get y′ − y′′ = (t∗y′ − t∗y′′)v, hence

0 = ψ(y′ − y′′) = (t∗y′ − t∗y′′)ψ(v) = (t∗y′ − t∗y′′)(ψ(dj)− ψ(c)) > 0

taking into account the definition of S and formula (5.8), a contradiction.

This completes the proof in the first case.

Case 2: Assume that dj ∈ bd(convA). We must have dj /∈ int(convA + Cj), otherwise dj ∈
int(convA) by the ideas given in the proof of assertion 1◦ in this lemma. Notice that the case

dj /∈ convA+Cj is considered in Case 1 (assertion 2◦). Now, assume that dj ∈ bd(convA+Cj).

Then, similar to the proof given in 1◦ of this lemma, there exists v ∈ V \{0} such that dj + δv /∈
convA + Cj for all δ ∈ R++. Since dj ∈ intDj and Dj is a convex set, there is δ ∈ R++ such

that x0 := dj +δv ∈ intDj . So, we get x0 ∈ (intDj)\(convA+Cj). Now, the proof is analogous

to the proof given in Case 1 (assertion 2◦) where x0 is in the role of dj (except in the definition

of the function hy given in (5.9)).

The proof of assertion 2◦ is complete.

3◦, 4◦. Directly follow by the assumptions (5.3) and (5.2), respectively. �

Now, we are going to show Proposition 5.1.

Proof:

1◦. In view of assertion 1◦ in Theorem 5.1, the implication “=⇒” is obvious. Let us prove the

reverse implication “⇐=”. Let

SEff(X | g) = [X ∩ convA] ∪ bdX. (5.10)

Assume that the contrary holds, i.e, there exists j ∈ Il \ I i−conv. Then, due to Theorem 5.1.

(1◦) and formula (5.10), we must have

bdDj ⊆
⋃

i∈Il\{j}

bdDi

∪ (bdDj) ∩ convA

∪
(
(bdDj) ∩ (convA+ cone(convA− dj))

)
=

⋃
i∈Il\{j}

bdDi

∪
(
(bdDj) ∩ (convA+ cone(convA− dj))

)
.

Then, it can easily be seen that we get a contradiction by Lemma 5.4. (2◦, 4◦)
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2◦, 3◦. Analogous to the proof of 1◦ in this proposition by using Theorem 5.1. (2◦) and Lemma 5.4.

(2◦, 3◦, 4◦)

4◦. By Theorem 5.1. (1◦, 2◦), the implication “=⇒” holds. Now, we prove the reverse implication

“⇐=”. Assume that the contrary holds, i.e, there exists j ∈ Iri−conv \ I i−conv. Then, in view

of Theorem 5.1. (1◦, 2◦) and because of the assumption SEff(X | g) = Eff(X | g), we obtain a

contradiction by Lemma 5.4. (2◦, 4◦) and by the ideas given in the proof of 1◦ of this proposition.

5◦. Analogous to the proof of 4◦ in this proposition by using Theorem 5.1. (2◦) and Lemma 5.4.

(2◦, 3◦, 4◦).

6◦, 7◦. Follow by assertions 4◦ and 5◦ of this proposition.�

Usually, the new facility x ∈ V should be located as close a possible to the existing facilities ai, i ∈ Im.

In our model, each existing facility is located at one single point ai in V and has no expansion around

this point. In particular, in the field of town planning, a given facility has a certain expansion. Hence,

it is convenient to consider a forbidden region around ai defined by a certain open ball centered at ai

with positive radius. So, it is possible to include information about the sizes of the existing facilities

in the model. This means we are going to study the special case

l = m and di = ai for all i ∈ Il = Im. (5.11)

Corollary 5.2. Let (5.1), (5.3) and (5.11) be fulfilled. Then, the following assertions are true:

1◦. Assume that (5.2) holds. Then, we have

SEff(X | g) = X ∩ convA

∪

 ⋃
i∈Im\Ii−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Ii−conv

bdDi

]
.

2◦. Assume that (5.2) or dimV ≥ 2 holds. Then, we have

Eff(X | g) = X ∩ convA

∪

 ⋃
i∈Im\Iri−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iri−conv

bdDi

]
;

WEff(X | g) = [X ∩ convA] ∪ bdX.

Proof: Follows by Theorem 5.1. �

Corollary 5.3. Let (5.1), (5.3) and (5.11) be fulfilled. Then, the following assertions are true:
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1◦. Assume that (5.2) holds. Then, we have

int(convA) 6= ∅ ∨ Iri−conv = ∅ ⇐⇒ SEff(X | g) = Eff(X | g).

2◦. Assume that (5.2) or dimV ≥ 2 holds. Then, we have

card A = 1 ⇐⇒ Eff(X | g) = WEff(X | g).

Proof: Directly follows by 4◦ and 5◦ in Proposition 5.1. �

Next, we present an applied example of a location problem of type (LPX) in which the conditions

(5.2), (5.3) and (5.11) are fulfilled.

Example 5.4. A new central taxi station should be located in the district around La Habana on Cuba.

We assume that the new location will be located as close as possible to each center of the cities La

Habana, Guanabo, San José de las Lajas, Santiago de las Vegas, and Playa Baracoa. Due to the high

car traffic in the centers of the cities we want to avoid to place the new facility in the near of the city

centers. This means that we consider some forbidden regions around the given city centers. Figure 4

illustrates the example problem and shows the whole set of Pareto efficient solutions for this nonconvex

location problem.

Figure 4: The set of Pareto efficient solutions (black colored region) of the problem (LPX) for Example

5.4. illustrated on a map (from OpenStreetMap) of La Habana in Cuba.

Remark 5.3. Let (5.1) be satisfied. We consider the problem of locating a new facility in presence of

attracting and repulsive demand points. Such problems are discussed by Jourani, Michelot and Ndiaye
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[17] and can be modeled as follows:ĝ(x) :=
(
||x− a1||, · · · , ||x− am||,−||x− b1||, · · · ,−||x− bq||

)
→ min

x ∈ X
(5.12)

for attraction points a1, · · · , am ∈ V, m ∈ N, and repulsion points b1, · · · , bq ∈ V, q ∈ N. Then, for

any i ∈ Il, the penalized problem is given byĝ⊕i(x) :=
(
ĝ(x),−||x− di||

)
→ min

x ∈ V.
(5.13)

It is important to mention that ĝ is neither componentwise semi-strictly quasi-convex nor component-

wise quasi-convex. However, in view of Corollary 4.1, we can obtain the following useful lower bounds

for sets of (strictly, weakly) Pareto efficient solutions of (5.12):

SEff(X | ĝ) ⊇ [X ∩ SEff(V | ĝ)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ SEff(V | ĝ⊕i)

]
;

Eff(X | ĝ) ⊇ [X ∩ Eff(V | ĝ)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(V | ĝ⊕i)

]
;

WEff(X | ĝ) ⊇ [X ∩WEff(V | ĝ)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩WEff(V | ĝ⊕i)

]
.

Notice, under the assumption (5.3), it follows X ∩bdDi = bdDi for every i ∈ Il. The set of (strictly,

weakly) Pareto efficient solutions of the unconstrained problem (5.13) can be completely characterized

by using results in Jourani, Michelot and Ndiaye [17].

6. CONCLUSION

In this paper, we considered a multi-objective optimization problem in which the vector-valued objec-

tive function is componentwise generalized-convex and acts between a real topological linear pre-image

space and a finite-dimensional image space, while the feasible set is given by the whole pre-image space

excepting some forbidden regions that are defined by convex sets. We succeeded to characterize the

set of (strictly, weakly) Pareto efficient solutions of such a problem by using a finite family of uncon-

strained multi-objective optimization problems.

Then, we applied our results to a special multi-objective location problem (known as point-objective

location problem) that consists of locating a new facility in a continuous location space (a finite-

dimensional Hilbert space) in the presence of a finite number of demand points. For the choice of

the new location point, we took into consideration some forbidden regions that are given by open

balls (defined with respect to the underlying norm). For such a nonconvex location problem, under

the assumption that the forbidden regions are pairwise disjoint, we characterized completely the set

of (strictly, weakly) Pareto efficient solutions by using the penalization approach by Günther and

Tammer [14] and results obtained by Jourani, Michelot and Ndiaye [17].
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It is important to mention that our approach relies essentially on the fact that the objective function

in (LPX) as well as the unit balls D1, · · · , Dl (see the assumptions given in (5.1)) are defined with

respect to a norm induced by a scalar product. This ensures that we can apply the results derived by

Jourani, Michelot and Ndiaye [17].

It would be interesting to study other types of balls D1, · · · , Dl, for instance balls defined with respect

to a polyhedral norm µ : V → R. Therefore, in a forthcoming work, we will analyze a planar point-

objective location problem involving a polyhedral norm η : R2 → R. It is known that such a problem

without considering constraints can be solved completely. In order to solve a corresponding constrained

problem with a feasible set that is given by the complement of a finite union of open balls with respect

to a polyhedral norm µ : R2 → R, we have to compute the set of (strictly, weakly) Pareto efficient

solutions of the problem 
(
η(x− a1), · · · , η(x− am),−µ(x− di)

)
→ min

x ∈ V = R2.

Notice that this problem includes only one repulsive demand point, namely the point di. Hence, as

mentioned by Jourani, Michelot and Ndiaye [17] in their conclusion, some results for the polyhedral

case in presence of only one repulsive demand point could be expected.
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