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ABSTRACT
We propose a parameter set for the generalized-α class of time integration methods that allows to
keep the beneficial damping properties of the algorithm including controllable dissipation of high
frequency oscillations as well as second order of convergence for a large problem class. The benefits
of the new parameter set are that the introduction of an additional parameter allows to lessen the
overshoot behavior in the transient phase leading to a more robust time integration. To assess the
performance of the new parameters, we give a numerically tractable definition of overshoot for the
class of algorithms and analyze the methods in terms of a multicriteria optimization problem taking
overshoot as well as beneficial damping into account. Using nonlinear scalarization techniques, we
can then obtain full insight in how well the methods can perform and evaluate the classical as well
as the new parameter sets. Some numerical test examples illustrate the findings.
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RESUMEN
En este trabajo se propone un conjunto de parámetros para los métodos de integración de tiempo
generalizados de clase-α, el cual permite mantener las propiedades de amortiguamiento del algo-
ritmo, incluyendo la disipación controlable de oscilaciones de alta frecuencia, aśı como el segundo
orden de convergencia para una clase grande de problemas. El nuevo conjunto de parámetros in-
troduce un parámetro adicional que permite disminuir el comportamiento de sobrepaso en la fase
transitoria, llevando a una integración de tiempo más robusta. Para evaluar el rendimiento de los
nuevos parámetros, se presenta una definición numérica del sobre-salto para esta clase. Además se
analizan los métodos como un problema de optimización multicriterio teniendo en cuenta el sobre-
salto y el amortiguamiento beneficioso como criterios. Usando técnicas de escalarización no lineal,
se obtiene una visión completa de cómo se comportan los métodos y cómo evaluan el nuevo conjunto
de parámetros y el clásico. Algunos ejemplos numéricos ilustran los hallazgos.

PALABRAS CLAVE: Ecuaciones diferenciales algebraicas, escalarización no lineal, Método α

generalizado, optimización multiobjetivo, sobresalto.

1. INTRODUCTION

The generalized-α method [6] has been proposed as a second order extension of the classical time
integration methods of Newmark [25]. It offers the possibility to use a single parameter %∞ ∈ [0, 1] to
control the stability behavior of the method and therefore compromise between small error constants
and structure preservation [15] in case of %∞ ≈ 1 on the one hand and increased robustness of
the method by means of fast annihilation of high-frequency-low-amplitude artifacts in the model for
%∞ ≈ 0.
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Nevertheless, it is known [5, 17] that these two goals are not the only objectives to aim at when
designing integration algorithms for technical simulations or structural dynamics. The overshoot phe-
nomenon describes spurious oscillations in the transient phase of the time integration which are usually
quickly damped out but may cause inaccurate computational results, especially for complex compu-
tations involving projection methods [3], strongly varying step sizes or interfaces to other components
in a complex model.
The prominent parameter set of Chung and Hulbert [6] is constructed in a way to minimize the low-
frequency dissipation behavior of the algorithm without consideration of overshoot. It has recently
been shown [2] that the large tendency for overshoot using this parameter set can be explained by
the degenerate Jordan canonical form of the one-step amplification matrix [21] of the method. In this
work, we suggest a new parameter set which allows to keep the comfortable structure of the algorithm
while—through the introduction of an additional parameter—it also allows for a smooth transition to
methods with lucidly less over-reaction and spurious oscillations.
To value this new parameter set and gain a thorough understanding, we propose a simple mathematical
framework in which we treat the optimization process of the algorithms parameters as a multi-objective
optimization problem with the ‘tendency of overshoot’ and the ‘optimal overall dissipation behavior’
as objectives. Once this framework is established, we can use nonlinear scalarization methods [13]
to further improve the parameters and underline the performance for some well-studied benchmark
problems from the literature.
We emphasize that it is very easy to adapt existing codes to the new proposed algorithms since we
only change parameters and not the algorithm itself and that due to the nonconvex nature of the
optimization problem, nonlinear techniques are indispensable for the acquired results.
The rest of this paper is organized as follows: In Section 2. we state the problem class of the dy-
namic (mechanical) systems under consideration, give a short outline on known theoretical results
and methods for the analysis of Newmark methods and shortly review the most important stabil-
ity results from the literature. In Section 3. we introduce the novel parameter set Gen(%∞, φ0) and
explain its construction before we develop and utilize a general framework that allows for a math-
ematical substantiation of the overshoot phenomenon and its optimization in Section 4. Section 5.
contains some numerical experiments demonstrating the benefits of the optimization before the work
is summarized in Section 6, where we also provide some aspects of further investigations.

2. STABILITY AND OVERSHOOT

We consider second order differential-algebraic initial value problems of the form [16]

M(q(t))q̈(t) = F (q(t), q̇(t),λ(t)) ,

0 = Φ(q(t), q̇(t),λ(t)) , q(t0) = q0, q̇(t0) = q̇0, (t ∈ [t0, tend])
(2.1)

with a regular (mass) matrix M : Rnq → Rnq×nq , the vector of generalized forces F : R2nq+nλ → Rnq
and the constraint function Φ : R2nq+nλ → Rnλ which are all assumed sufficiently smooth but may
involve arbitrarily nonlinear components. In the ODE-case, nλ might be zero. From a physical
perspective, the state vector q(t) ∈ Rnq describes positions and rotational degrees of freedom, while

q̇(t) and q̈(t) are the respective (angular) velocities and accelerations and ˙(·) := d(·)/ dt denotes
differentiation with respect to the time variable t. The Lagrange multipliers λ(t) ∈ Rnλ constitute
physically artificial values ensuring the constraint fulfillment Φ = 0 for all t ∈ [t0, tend]. In this general
setting we can cope with purely differential equations without constraints as well as the index-3, 2 and
1 formulations of multibody system dynamics, see [10], even in the case of nonholonomic constraints
or friction forces in one unified framework. The obtained new methods are therefore applicable in a
wide range of practical problems from various areas of mechanics.
The class of time integration methods we address here is defined by four parameters αf , αm, β, and
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γ. For the problem (2.1) and time integration step size hn > 0, one time step reads [1, 6]

qn+1 = qn + hnvn + h2n( 1
2 − β)an + h2nβan+1 , (2.2a)

vn+1 = vn + hn(1− γ)an + hnγan+1 , (2.2b)

(1− αm)an+1 + αman = (1− αf )v̇n+1 + αf v̇n , (2.2c)

M(qn+1)v̇n+1 = F (qn+1,vn+1,λn+1) , (2.2d)

0 = Φ(qn+1,vn+1,λn+1) . (2.2e)

The state variables qn, n = 0, 1, . . . therefore denote numerical approximations to q(tn) at the n-th
time step tn+1 := tn+hn, n = 0, 1, . . ., while vn and v̇n approximate q̇(tn) and q̈(tn). The acceleration-
like variables an are coupled to the actual approximations v̇n by the weighted-sum relation (2.2c)
making the generalized-α algorithm a ‘one-step-multivalue method’ [21], i. e. a multistep method
allowing for a (rather simple) onestep implementation.

Remark 2.1. We will always assume that

β 6= 0 , αf 6= 1 ,

are fulfilled. This requirement ensures well-definition of error-recursion related terms we are going
to establish. These assumptions practically do not restrict the generality of our results as they are
necessary for stability of the methods anyway, as will become clear in Proposition 2.1. below.

Using Taylor expansions of the exact solution, plugging in the equilibrium conditions (2.2d) and
(2.2e) and comparing powers of the time step size reveals that the method is second order accurate
(for position and velocity variables and constant time step size hn = h, n = 0, 1, . . .) provided that

γ =
1

2
− αm + αf , (2.3)

is fulfilled, see [6]. Since we are dealing with a multistep scheme in a differential-algebraic framework,
the accuracy from the above order condition (2.3) is less important than the stability conditions which,
stated rather simplified, ensure that the error recursion for a large number of (possibly very small)
time integration steps, the numerical errors do not grow exponentially [8, 16]. All stability notions
that we address in this paper are defined in the appendix.

Proposition 2.1. (Classical stability of Newmark-type methods, [11]) The second order New-
mark-type method (2.2) is

1. zero stable, i. e. computes stable solutions for maxn hn → 0, provided that

αm ≤
1

2
or αm = αf . (2.4)

2. strictly stable at infinity and unconditionally stable if and only if

αm < αf <
1

2
,

1

4
+

1

2
(αf − αm) < β . (2.5)

The second stability notions involve the analysis of the method for the linear test equation of the
harmonic oscillator, see [9]. The proofs rely on the onestep error recursion which we investigate
further below. In the case αm = αf , the algorithm degenerates to the classical time integration
scheme of Newmark [25] which has already extensively been studied in the literature and is only
second order accurate for the trapezoidal rule γ = 1

2 , β = 1
4 which incorporates no numerical damping

%∞ = 1 and is therefore not additionally taken into account from now on. For this parameter setting,
the error recursion can be substantially simplified (to a 2-by-2 structure) and dealt with analytically,
see [12].
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3. A NEW PARAMETER SET WITH CONTROLLABLE OVERSHOOT BEHAVIOR

The original parameter set of the algorithm (2.2) in the given form are dependent solely on one
value which can be provided by the user. Using this numerical damping parameter %∞ ∈ [0, 1], the
coefficients read

CH(%∞): αm =
2%∞ − 1

%∞ + 1
, αf =

%∞
%∞ + 1

, β =
1

(1 + %∞)2
, γ =

3− %∞
2 + 2%∞

. (3.1)

In [6], the authors develop the algorithm as a generalization of the two already established Newmark-
type methods of Hilber, Hughes, and Taylor (HHT, [18]) with

HHT: αm = 0, αf =
1− %∞
%∞ + 1

, β =
1

(%∞ + 1)2
, γ =

3− %∞
2 + 2%∞

, %∞ ∈ [ 12 , 1] , (3.2)

and the algorithm of Wood, Bossak, and Zienkiewicz (Bossak-Newmark, WBZ, [32]) where the pa-
rameters are given by

WBZ: αm =
%∞ − 1

%∞ + 1
, αf = 0, β =

1

(%∞ + 1)2
, γ =

3− %∞
2 + 2%∞

, %∞ ∈ [0, 1] . (3.3)

In any case, the parameter %∞ serves as the only user input and controls the behavior of the numerical
solutions for large frequency problems. Additionally, all these methods inherit the so-called optimal
dissipation relation from the classical Newmark integration scheme [25], i. e.

β =
(γ + 1/2)2

4
, (3.4)

which is the analytically optimal choice (with respect to numerical damping) for this easier family (with
αm = αf ). The requirements for a profitable and robust time integration scheme in the engineering
sciences, however, comprise more than this.

Design paradigms for time integration methods in structural dynamics According to [21],
an ODE time integration method for structural mechanics should serve the following properties:

(a) It should be (at least) second order accurate.

(b) It should show unconditional linear stability.

(c) Each time integration step should necessitate the solution of no more than one set of implicit
equations of dimension nq + nλ .

(d) It should be self-starting, i. e., except of the initialization of all involved quantities from the
initial data, no further computations should be necessary to start the time integration.

(e) The algorithmic damping of high frequency modes should be controllable by the user using a
parameter. Advisable are schemes that allow for a smooth transition from no numerical damping
%∞ = 1 to instantaneous annihilation %∞ = 0 (L-stability).

For requirements (a) and (b), the famous results of Dahlquist [9] lay the foundation: The so-called
second Dahlquist barrier [16] states, that a linear multistep scheme (the generalized-α method (2.2)
can equivalently be stated as a partitioned linear multistep method, see [23, Remark 4.2] and [7])
that is unconditionally linear stable can have at most order two of consistency. The “best” among
those methods is the trapezoidal rule (Verlet scheme) judging only from the viewpoints of a minimal
error constant [9] and structure preservation [15]. For the development of the new parameter choice
“Gen(%∞, φ0)” below, we will thus add the condition that
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(e2) It should be possible to obtain the trapezoidal rule when the numerical damping is switched off,
i.e. when %∞ → 1.

Condition (c) is naturally fulfilled for all methods in the family (2.2) which is probably one of the
main reasons for their steady success in the areas of mechanical system engineering and structural
dynamics. One can, nevertheless, observe that HHT falls short of requirement (e): An L-stable version
is not achievable but instead the possible values of the numerical dissipation only range from %∞ = 1

2
to %∞ = 1, where the method coincides with the trapezoidal rule.
Overshoot comes in at requirement (d) since an out-of-the-box initialization should encompass a
stable and free-of-artifacts transient phase. For an introduction to the construction principles of the
methods below we will shortly review the basics of the linear analysis of Newmark-type methods and
the theoretical foundations of overshoot. All details can be found in [4, 17, 21].
The initial point for the numerical analysis of the methods is the scalar second order differential
equation of the damped harmonic oscillator

q̈(t) + 2ξωq̇(t) + ω2q(t) = 0 , q(0) = q0 , q̇(0) = q̇0 , (ω, ξ ∈ R) , (3.5)

which for weak damping 0 ≤ ξ < 1 obeys the analytic solution

q(t) = e−ξωt (C1 cos(ω̄t) + C2 sin(ω̄t)) , C1 = q0 , C2 = (q0ξω + q̇0)/ω̄ , ω̄ = ω
√

1− ξ2 . (3.6)

From a stability point of view, the most important observation is the global boundedness of solutions
(3.6) for any values of the frequency parameter ω. One step (with constant time step size hn = h,
n = 0, 1, . . .) can thus be stated as a linear update formula. 1 0 −β

0 1 −γ
(1− αf )z2 (1− αf )w 1− αm

 qn+1

hvn+1

h2an+1

 =

 1 1 1/2− β
0 1 1− γ

−αfz2 −αfw −αm

 qn
hvn
h2an

 , (3.7)

with z := hω, w := zξ. As, locally, all smooth dynamical systems in technical system simulation
can be approximated by linear surrogate models and (apart from external forces) the discretized
finite-element models from structural dynamics are in this linear form, it serves—despite its rather
simple structure and low dimensionality—as a viable model equation for studying the behavior of the
methods. This approach can also be seen as a quasi-standard, cf. [12, 21].
Since no external forces are active in (3.5) (no inhomogeneity terms in the right hand side), the
numerical solution of the time integration scheme at any point tn = n · h is explicitly given by
(qn, hvn, h

2an)> = (T(z))n(q0, hv0, h
2a0) with given initial values q0, v0, and an approximation

a0 ≈ q̈(0). The involved error amplification matrix T(z) for the most important case of physically
undamped systems (ξ = 0) is, after plugging in the second order condition (2.3), explicitly given by

T(z) =


αfβz

2+αm−1
(αf−1)βz2+αm−1

αm−1
(αf−1)βz2+αm−1

αm+2β−1
2((αf−1)βz2+αm−1)

(2αf−2αm+1)z2

2((αf−1)βz2+αm−1) 1− (αf−1)(2αf−2αm+1)z2

2((αf−1)βz2+αm−1)
−2α2

fz
2+(−2αm−4β+1)z2+αf((2αm+4β+1)z2+4)−2

4((αf−1)βz2+αm−1)
z2

(αf−1)βz2+αm−1 − (αf−1)z2
(αf−1)βz2+αm−1

(αf−1)(2β−1)z2+2αm

2((αf−1)βz2+αm−1)

 .

(3.8)
The limit of infinite stiffness (“infinite frequency” oscillations) can also be evaluated analytically:

T(∞) = lim
z→∞

T(z) =


αf

αf−1 0 0

− 2αf−2αm+1
2β−2αfβ

−2αf+2αm+2β−1
2β

−2αf+2αm+4β−1
4β

1
(αf−1)β − 1

β 1− 1
2β

 . (3.9)

From this, it is evident that the stability behavior of the numerical solutions depends on the growth
of matrix powers Tn. For the long-term behavior, it is convenient to simply take the spectral radius
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σ(T) (maximum absolute value of eigenvalues of T) as a measure for this growth. For an analysis of
the short-term behavior, however, one should take into account that the error amplification matrix is
non-normal [31] and a more detailed look is necessary: As has been pointed out by various authors
[2, 5, 17], overshoot can be studied by using the Jordan canonical form

T(∞) =: CJ∗C
−1 , (3.10)

which for the most prominent representants, CH(%∞), HHT, and WBZ (see (3.1), (3.2), (3.3) above)
are given by

JCH =

−%∞ 1 0
0 −%∞ 1
0 0 −%∞

 ,

JHHT =

−%∞ 1 0
0 −%∞ 0
0 0 (%∞ − 1)/(2%∞)

 ,

(
%∞ >

1

2

)
, JHHT =

−%∞ 1 0
0 −%∞ 1
0 0 −%∞

 ,

(
%∞ =

1

2

)
,

JWBZ =

−%∞ 1 0
0 −%∞ 0
0 0 0

 ,

(3.11)

such that for the matrix powers (T(∞))n the non-diagonal entries cause an amplification since the
values (JnCH)1,3 = 1

2n(n − 1)(−%∞)n−2, (JnHHT/WBZ)1,2 = n(−%∞)n−1 may grow large unless the
damping parameter is chosen very small, cf. Figure 3 below.
The design idea behind our new proposal for the parameter choice is to keep the requirement that the
absolute values of the eigenvalues of T(z) in the limit case z →∞ attain the value of %∞ but make sure
that, whenever a method with numerical damping is required, the eigenvalues remain separate of each
other. This way, it is assured that the Jordan canonical form is a diagonal matrix and no off-diagonal
elements can cause error growth. Since T(∞) is a real valued 3x3-matrix, at least one eigenvalue
λ1(T(∞)) is also-real valued (the “spurious root” [21]). For a good low-frequency approximation, it is
advisable to find parameters such that the two other eigenvalues (the “principal roots”; their branches
for varying z are locally well-defined since for z = 0, the amplification matrix has a double eigenvalue
λ2(T(0)) = λ3(T(0)) = 1 and a spurious root at λ1(T(0)) = 0) are not real-valued in a neighborhood
of z = 0.
As opposed to the parameter sets from the literature in which these roots attain a real value for
z → ∞, we will furthermore require that they lie on the complex unit circle of radius %∞. With
respect to the design paradigm (e2) stated above, we add another parameter φ0 ∈ (0, π) and the
requirement

arg( lim
z→∞

λ2(T(z)))
!
= π − (π − φ0)(1− %∞) , %∞ ∈ (0, 1] .

Keeping αf = %∞/(%∞ + 1), such that the spurious root tends towards −%∞ for z → ∞, we have
enough equality constraints to attain a nonlinear system for the parameters which can uniquely be
solved for the parameters of the method (2.2) as functions of %∞ and φ0.
This leads to the parameter set

αm =
%∞

%∞ + 1
+

%2∞ − 1

1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞)
,

αf =
%∞

%∞ + 1
,

β =
1

1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞)
,

γ =
1

2
− αm + αf .


Gen(%∞, φ0) (3.12)
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Note that for φ0 → π, the methods approach the CH(%∞) setting. The numerical dissipation and
dispersion behavior of these methods is slightly inferior compared to CH(%∞) as we will see in Figure 2
below, but the overshoot in the sense of the above growth of Jordan block powers is diminished. With
respect to the requirements stated above, our method naturally fulfills (a), (c), (d), (e), and (e2) since
it builds up upon the known Newmark-type methods with other parameters and the parameters were
chosen using the conditions (e) and (e2). It remains to be shown that theses methods are also zero-
and unconditionally stable as this was not declared part of the method’s construction. Proposition 2.1.
explicitly gives necessary and sufficient conditions for stability. Instead of giving a formal proof via
algebraic manipulations, we show that all conditions of Proposition 2.1. are fulfilled graphically in
Figure 1. All the shown surface plots remain clearly non-negative which strongly indicates that the

0 0.5
1

0

π
0

1

%∞
φ0

1
2 − αm

0 0.5 1
0

π
0

0.5

%∞
φ0

αf − αm

0 0.5 1
0

π
0

0.2
0.4
0.6

%∞
φ0

β − 1
4 − αf−αm

2

Figure 1: Numerical verification of the stability requirement for the parameter set Gen(%∞, φ0)

parameters that depend smoothly on the two parameters %∞ and φ0 form stable methods.

Remark 3.2. As for the stability requirements, it is also crucial for practically viable methods to
guarantee bounded parameters which is important for an internally stable computation and bounded
error constants for the third order terms as well. For the Gen(%∞,φ0) parameter set, it can be shown
that

αf ∈ [0, 12 ) , αm ∈ [−1.1761, 12 ) , β ∈ ( 1
4 , 1.41326] , γ ∈ ( 1

2 , 1.8423] ,

are fulfilled for all %∞ ∈ [0, 1) and all φ0 ∈ (0, π). For the Chung/Hulbert parameter set (3.1) it holds

αf ∈ [0, 12 ) , αm ∈ [−1, 12 ) , β ∈ ( 1
4 , 1] , γ ∈ ( 1

2 ,
3
2 ] ,

for all %∞ ∈ [0, 1).

In Figure 2 we display the spectral radius of the amplification matrix T(z) as a function of the product
of time step size and frequency of the system z = hω in a semi-logarithmic scale, compare e. g. [17].
As required, for large values of z, the absolute value of the eigenvalues approaches the given numerical
damping %∞. For comparison, we included the corresponding curves for the backward differentiation
formulae (BDF, cf. [16]) and the parameter set of Chung/Hulbert which could have also been attained
by formally setting φ0 = π. One can observe that the low-frequency behavior of Gen(%∞, φ0) is
slightly influenced.
The algorithms show stronger damping for medium frequency which might be regarded as inferior to
CH(%∞) as the methods might also damp out components of the solution that are in a mechanically
relevant frequency range, see Definition 4.2. below. On the other hand, one could argue that the
steeper descent in case of the the Gen(%∞,φ0) parameters is advantageous since it does not smear the
frequency response of the method so strongly an thereby produces more reliable results.
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Figure 2: Spectral radii of amplification matrices for CH(%∞) and Gen(%∞, φ0) for varying z

Remark 3.3. Note that the optimal dissipation relation (3.4) is not fulfilled for this set of parameters.
From the viewpoint of the above analytic consideration, it ensures that the principal roots attain a real
value for z →∞. The design idea of Gen(%∞, φ0) was exactly to avoid this behavior.

Bounding the growth of the Jordan matrices in (3.10) is not indispensably enough to also avoid
overshoot; the transient error growth is guided by powers of the amplification matrix T itself. In
Figure 3 we show the growth of the norm of the matrix powers Jn and (T(∞))n over n (representing
the number of time integration steps) for the well-known parameter sets (3.1) and (3.2) as well as two
representatives. We will use the same values in the definition of the measure of overshoot in Section 4.
below. Note that, formally, we ruled out the case φ0 = 0 in the definition of the methods but since this
defines the limit case when seen as the ‘distance from CH(%∞)’, the plots also present the boundaries
of our approach. Note also that in the figures on the left, the plots for Gen(%∞, 0) and Gen(%∞, π/4)
coincide as the Jordan canonical forms are equivalent.
At first, we observe that, as intended, the norms of matrix powers that directly affect the errors of
the integration method in the first time steps are indeed much faster declining for the Gen(%∞,φ0)
parameters than for the two established settings. This is strongly to be seen in the left plots of
Figure 3, for the right sides we emphasize that the norm and power function, contrary to the Jordan
canonical forms, is a smooth function and the initial growth cannot be immediately ruled out.

Remark 3.4. One could argue that the choice λ∞1 = −%∞ is rather arbitrary and instead also λ∞1 =
+%∞ could have been chosen. This case also leads to a nonlinear system which can analytically be
solved for the parameters as functions of %∞ and φ0

αm =
1− %2∞ + 2%3∞ − 2%2∞ cos(φ0 − φ0%∞ + π%∞)

(%∞ − 1)(1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞))
,

αf =
%∞

%∞ − 1
,

β =
1

1 + %2∞ − 2%∞ cos(φ0 − φ0%∞ + π%∞)
,

γ =
1

2
− αm + αf .

This approach, however, on the one hand leads to significantly less performance with regards to the low-
frequency behavior (i. e., the numerical damping measure, see Section 4. below), and on the other hand
violates requirement (e2) as we cannot approach the (arguably best) trapezoidal rule. Nevertheless, also
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Figure 3: Norm of powers of the Jordan matrices for CH(%∞), HHT and Gen(%∞, φ0)

for this parameter set the basic stability properties from Proposition 2.1. are fulfilled for all parameters
%∞ ∈ [0, 1), φ0 ∈ (0, π) as can be shown by algebraic manipulations as well.

4. MULTICRITERIA OPTIMIZATION OF THE PARAMETERS

In this section, we will use a vector optimization approach to find out whether it is possible to improve
the novel parameters from the previous section. To this end, we will at first give a mathematically
tractable definition for our two main design goals.

Definition 4.1. (Measure of overshoot) For the Newmark-type methods (2.2), let the amplifica-
tion matrix for z → ∞ be denoted by T(∞) as in (3.9). Furthermore, let a matrix norm ‖•‖∗ be
given. The measure of overshoot m∗os(T) is then given by

m∗os(T) := max
n=0,1,2,...

‖(T(∞))n‖∗ .

From the above short introduction on the numerical analysis of Newmark-type methods, the definition
is self-evident: The overshoot phenomenon stems from the transient amplification of spurious error
terms in the initial phase of the time integration. If the powers of this amplification matrix grow
heavily, this directly results in large overshoot.
Note that the superscript (the asterisk “(·)∗” in the definition) is used to indicate the dependency
of the actual value of the measure of overshoot from the chosen matrix norm. Because of norm
equivalence in Rn, the explicit choice of a norm in the definition does not play an important role for
now. As a design objective, we will use the 2-norm, i. e., the maximum singular value of the matrix
Tn which is compatible with the (standard) Euclidean vector-norm and therefore use m2

os(T) in the
experiments below.
The second performance measure is not as straightforward and reads as follows.
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Definition 4.2. (Numerical damping measure) The numerical damping measure md(T) of a
Newmark-type method (2.2) with numerical dissipation %∞ = limz→∞ σ(T(z)) ∈ [0, 1) is defined
as

md(T) :=

∫ 6

−6 (σ(T(z))− %∞) dlg(z)

12 · (1− %∞)
, (4.1)

where lg(·) denotes the logarithm for base 10 and σ(·) signifies the spectral radius.

From a practical viewpoint, a small numerical damping measure corresponds to a tendency of the
method to ‘over-damp’ the frequency response of the (e. g., mechanical) system which could lead to a
violation of the energy balance and remove physically relevant modes in the numerical solution. The
scaling in the definition of md(T) above is for comparability: A (hypothetical) method showing no
numerical dissipation over the entire frequency range z ∈ [10−6, 106] thus has a numerical damping
measure of one.

Remark 4.5. The choice of the lower and upper integration limits in (4.1) might be regarded as rather
arbitrary and could be adapted as could the specific choice of the basis of the logarithm. The important
requirement is solely that the relevant frequency range of mechanical systems can be covered. Using
12 orders of magnitude is arguably sufficient to cover most mechanical applications.

Since, at this point, we have no prior knowledge regarding the actual form of the set of feasible points
in the parameter space or the objective functions we will approach the vector optimization problem
using a very general computational approach that does not rely on any convexity or smoothness
assumptions. A very natural way for scalarization that is able to fully cope with any partially ordered
space is the Tammer-Weidner (Gerstewitz) nonlinear scalarization.

Definition 4.3. (Nonlinear scalarizing functional [13]) Let Y be a linear topological space, C ⊆
Y be a proper closed convex cone, and k ∈ C \ {0∗} with 0∗ denoting the zero-element in Y . We
introduce the nonlinear scalarization functional zC,k(y) : Y → R∪{±∞} by

zC,k(y) := inf{t ∈ R | y ∈ tk − C} with inf ∅ := +∞ .

The functional zC,k(y) has been used in various applications to obtain optimality conditions in very
general settings. For additional details and a more comprehensive investigation of its properties, we
refer to [14]. A way for the efficient numerical calculation of the nonlinear scalarization functional in
case of polyhedral ordering cones has been proposed in [30]: If the cone C ⊂ Y = Rn can be expressed
as

C := {y ∈ Rn | Wy ∈ Rm≥0} , (4.2)

for some given matrix W ∈ Rm×n where Rm≥0 denotes the natural ordering cone and where each row

of W does not only consist of zeros. If, furthermore, it holds k ∈ intC, then the functional zC,k can
be evaluated as

zC,k(y) = max
l=1,...,m

〈Wl,:, y〉
〈Wl,:, k〉

,

where •l,: denotes the l-th row in matrix •. For the special case of the natural ordering cone in Rn,
C = Rn≥0, it holds W = In (identity matrix) and therefore

zC,k(y) = max
i=1,...,n

yi
ki
.

At first, it is our goal to treat the task as an unconstrained optimization problem and, after appropriate
scalarization, apply the simplex-method of Nelder & Mead [24] as this is known for its robustness in
various application contexts. In order to apply this algorithm, we will use penalty techniques for
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the constraints in the model to get good approximative solutions. The explicit choice of the penalty
function φpenalty(αm, αf , β, γ) will be given below.
Using the obtained solutions as initial guesses, we then conduct further optimization runs using an
active-set approach, see [26], keeping the constraints exactly fulfilled. Nevertheless, this might still
lead to approximations that are not Pareto-optimal since the algorithms only find local minimizers of
the objective function

fobj(αf , αm, β, γ; k, θ) := zC,k( (m2
os(T),−md(T))> )

∣∣∣
T=T(z;αf ,αm,β,γ)

+ θ · φpenalty(αf , αm, β, γ) ,

(θ ∈ {0, 1}) . (4.3)

So, as a post-processing step, we sorted out the falsely identified candidates using the Graef-Younes
method [33], see also [22], and then projected these solutions to fulfill all constraints to machine
precision. The overall procedure is summarized in the following pseudo-code:

Algorithm for determining efficient parameters
Input: %∞ ∈ [0, 1), set of vectors {ki ∈ C}i=1,...,nk

, polyhedral ordering cone C.
Step 0) Set S := ∅.
For i = 1, . . . , nk:

Step 1) Set θ := 1 and k := ki in the objective function (4.3).

Step 2) Determine a crude approximation of the objective values by sampling the argument space

for (αf , αm, β) ∈
(
[−10, 1

2 ]× [−10, 1
2 ]× [ 14 , 10]

)
, γ := 1

2 − αm + αf .
Step 3) Use the Nelder-Mead simplex algorithm with

(a) the best performing values of the sampling in Step 2) in this loop cycle and
(b) the best performing values in S

as initial guesses to obtain approximations to new parameter sets.
Step 4) Set θ := 0 and use an active-set scalar optimization method with

(a) the best performing values of Step 3) in this loop cycle and
(b) the best performing values in S

as initial guesses. Denote the best performing solution by (α
(i)
f , α

(i)
m , β(i), γ(i)).

Set S := S ∪ {(α(i)
f , α

(i)
m , β(i), γ(i))}.

End For
Step 5) Sample out non-efficient elements of S using the Graef-Younes procedure.

Step 6) Use a higher precision engine and project the parameter sets in S to fulfill all constraints

from Proposition 2.1. to machine precision.
Output: New parameter sets S.

The term “best performing” is always to be understood as the parameter sets (not necessarily just
one) leading to the lowest objective values for fobj using the current values for θ and k. Note that it
is computationally very cheap to calculate the values of the nonlinear scalarization functional zC,k(y)
once the vector y := (m2

os(T),−md(T))> in the objective space has been calculated which is the
computationally more demanding part. So, for performance reasons, these values should be stored for
the candidates in S as well as the ones obtained in Step 3) of the algorithm.

Remark 4.6. (Technical details) We emphasize the following specific points regarding the actual
calculations:

• For all results, we used the natural ordering cone R2
≥0 to get all Pareto optimal parameter sets with

respect to the given design objectives. We multiplied m2
d(T) by (−1) for convenience only; the results

would have been the same if we had chosen the ordering cone

C := {(y1, y2) ∈ R2 |y1 ≥ 0, y2 ≤ 0} or matrix W :=

(
1 0
0 −1

)
in (4.2)
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imposing an alternative ordering structure in the objective space. The choice of R2
≥0 as ordering cone

is based on the intention not to prefer any of the two objectives to the other.

• The numerical evaluation of md(T) has been carried out using adaptive quadrature formulae with
crude error tolerances of 10−8. For the active-set methods in Step 4), we used error tolerances for
fobj and y = (αf , αm, β)> of tolf,y = 10−7. The constraints were ensured for all iteration steps to be
fulfilled to a tolerance of tolconstr = 10−12.

• Based on the range of results for Gen(%∞, φ0), we performed a linear transformation (shift and scaling
of mos(T) and md(T)) such that all resulting parameters have objective values in the positive orthant
of R2 and are bounded by five. That way, it is secured that by using the nonlinear scalarizing functional
zC,k all solutions of the vector optimization problem can be found and that we obtain a satisfactory
distribution of points along the critical line if the vectors k are also equally distributed in intC.

• From the construction principles stated above, we are initially faced with four types of constraints:

(a) The spectral radius of T in the limit of infinite stiffness z → ∞ has to be equal to %∞ as
only then a fair comparison of the methods is possible. (That means that the absolute value of each
eigenvalue has to be smaller than or equal to %∞ and, for at least one of the eigenvalues, equality is
required.)

(b) The stability requirements of Proposition 2.1. need to be fulfilled. This imposes three linear
inequality constraints as zero stability is implied by unconditional stability for second order methods.

(c) The parameters of the method should be of moderate size such that the optimization algorithms
do not approach theoretically relevant solution that, however, cannot be used in an actual implemen-
tation. We used the bounds

lb ≤ αf , αm, β ≤ ub , with lb := −10 , ub := 10 .

(d) The second order condition (2.3) was analytically eliminated, i. e., we used matrices T(z) in
(3.8) and T(∞) in (3.9) which already do not include the parameter γ anymore.

Summarizing, this leads to a penalty function φpenalty of the following form:

φpenalty(αm, αf , β, γ) :=
1

ε(a)
· ‖σ(T(∞))− %∞‖2

+
1

ε(b)

∥∥∥∥∥∥min

b(b) −A(b)

αfαm
β

 ,

0
0
0

∥∥∥∥∥∥
2

+
1

ε(c)

∥∥∥∥∥∥min

ub − αfub − αm
ub − β

 ,

0
0
0

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥min

αf − lbαm − lb
β − lb

 ,

0
0
0

∥∥∥∥∥∥
2

 ,

with penalty parameters ε∗ ≥ 0 for ∗ ∈ {(a), (b), (c)} and

A(b) :=

−1 1 0
1
2 − 1

2 −1
1 0 0

 , b(b) :=

0
1
4
1
2

 .

The minimum in the penalization of inequality constraints is to be taken component-wise. Note that
we did not square the norm since differentiability is no requirement for the Nelder-Mead algorithm.
(Numerical tests using squared norms also gave inferior results.) For the results presented below we
used rather strong penalization by setting

ε(a) = 10−10 , ε(b) = 10−6 , ε(c) = 10−1 ,
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taking into account that the equality constraint has to be almost exactly fulfilled to ensure comparability
while a projection onto the piecewise linearly bounded convex set {y ∈ R3 |A(b) · y ≤ b} is very easily
done and the box constraints were taken rather arbitrarily anyway, see Remark 4.5.

• We used Matlab
TM,1 to carry out the optimization steps 1), 2), 3), and 4) and the preselection by

Graef-Younes method in Step 5). Ensuring the constraint fulfillment to machine precision requires
high precision computing which was done using Mathematica R©,2.

In Figure 4 we display the numerical results for the very common setting %∞ = 0.9 which is known
to cause relatively large overshoot for the Chung/Hulbert parameter choice but also popular for
practitioners because of the good structure preservation. In the upper plot the results are displayed
as they appear in the objective space (m2

os(T),md(T)). It can be observed that the parameter choice of
Chung/Hulbert [6] (magenta) is indeed the ‘best’ choice one can aim at when designing methods only
with regards to an optimal dissipation behavior. The green and cyan markers/lines show the results for
the well-established methods of Hilber/Hughes/Taylor and Wood/Bossak/Zienkiewicz, respectively.
These methods are often favored to the parameter set of Chung/Hulbert because of their much lower
overshoot tendency. The results show that the new parameter set from Section 3. can indeed be viewed
as a compromise between the aforementioned candidates as the parameters smoothly transition away
from the Chung/Hulbert point.
More importantly, it is revealed that neither the new parameter set Gen(%∞, φ0) nor the well-
established parameters of Hilber/Hughes/Taylor and Wood/Bossak/Zienkiewicz are efficient in the
sense of Pareto optimality in the space overshoot-measure vs. dissipation measure. The highlighted
methods will be used in the numerical experiments in Section 5. below and referenced by their enu-
meration in the plot.

%∞ = 0.9 αm αf β γ

1 -9.268154485718 -9.000000000456 1.395330688022 0.768154485261

2 0.278333634277 0.340749149711 0.328502712812 0.562415515434

3 0.375191048106 0.429550535614 0.286102565819 0.554359487508

4 0.398295719396 0.451534067142 0.280201830242 0.553238347746

All requirements in the design paradigms above are fulfilled for the new parameter sets (except that
we cannot just plug in the parameter %∞ but have to find the parameter values in a numerical way.)
Also the additional requirement (e2) (arrival at the trapezoidal rule for %∞ → 1) cannot be guaranteed
by the construction of the method but both requirements are only relevant for algorithms with explicit
parameters, anyway.
Note that the objective function (m2

os(T),−md(T)) is not convex; a simple linear scalarization would
not have been able to find all the displayed solutions. The lower two plots in Figure 4 show a
comparative view of the overall dissipation and overshoot behavior of all the displayed points in the
objective space. It can be observed that the maximum overshoot as in the definition of mos(T) may
indeed be higher but on average the norm powers of T(∞) decrease much faster for the new parameter
sets than for the classical choices HHT and WBZ. From this, it can be expected (and we will indeed
confirm this hypothesis numerically in Section 5. below) that the practically observed overshoot may
in fact even be drastically less for Gen(%∞,φ0) and the optimized methods.

5. NUMERICAL TESTS

In this section we will provide some insight on the actual performance gains that can be reached using
the novel parameters developed so far. The implementation of the Newmark-type integrator is based
on the pseudocodes given in [1], see also [12]. We restrict our experiments to constant time step sizes.

1MATLAB is a trademark of The MathWorks, Inc., http://www.mathworks.com
2MATHEMATICA is a registered trademark of Wolfram Research, Inc., http://www.wolfram.com
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For variable step size schemes there are various approaches known from the literature and we want
to keep this presentation concise. The acceleration-like variable a0 is always initialized as this was
originally proposed by in [6], i. e., a0 := q̈(t0).
In Figure 5, we display the numerical solution (some chosen components of the Lagrange multiplier
λ(t)) for the well-known benchmark “Andrews Squeezer Mechanism”, see [16, 27]. The problem is
formulated in Carthesian coordinates of the centers of mass of the seven bodies in the plane leading
to a differential-algebraic system of dimension nq + nλ = 41. The dynamic equations are described
and solved in their index-3 formulation; from the literature [5], it is known that this description is
particularly prone to overshoot. We used a numerical damping of %∞ = 0.95 and a time step size of
h = 10−5. The initial values where computed from a very accurate numerical solution of the initial
values given in [16] at t0 = 0.01 which where then additionally projected to the constrained manifold
on position and velocity level such that they are consistent to machine precision. We did not use
the original initial values for this benchmark since it is known [2] that for vanishing initial velocities,
algorithm (2.2) does not show overshoot.
It can be observed that for all three experiments overshoot is apparent, yet the algorithm of Hilber,
Hughes, and Taylor (HHT), see (3.2), shows considerably less overshoot than the parameter settings
of Chung and Hulbert (CH), see (3.1). The new parameters from (3.12) perform even better and the
numerical results are in good agreement to the more theoretical predicted error amplifications from
Figure 3.
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Gen(%∞, 0)Figure 5: Observed overshoot in the numerical approximations of selected Lagrange multipliers for

CH(%∞), HHT, and the new parameter set Gen(%∞, φ0) for the benchmark “Andrews Squeezer
Mechanism”

The second test benchmark was developed in [28] and describes the planar motion of a crank mech-
anism with a flexible crank shaft that is propelled to have a constant angular velocity. The flexi-
ble crank’s deformation is approximated using a finite-element approach with polynomial Galerkin
functions for the longitudinal and sine functions for vertical displacements with a nonlinear model
describing the internal strain energy. It is particularly suited as a test benchmark since
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(i) it includes external input forces (known to cause higher overshoot),

(ii) its construction as a lumped parameter surrogate model makes it an ideal benchmark for appli-
cations with coupled PDE-DAE problems,

(iii) as the ‘squeezer mechanism’ example above, it is one of the best studied benchmarks in the
multibody system community.

The system has nq = 7 differential variables constrained by nλ = 3 algebraic conditions and allow-
ing for four degrees-of-freedom. In Figure 6 we show the numerical approximations of the three
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Figure 6: Numerical results (approximation of Lagrange multipliers) for the slider crank benchmark
using classical and optimized Newmark-type methods

Lagrange multipliers. In all experiments, we used h = 5 · 10−4 and projected the velocity co-
ordinates after nproj = 50 time integration steps to fulfill the constraints on velocity level, i.e.,
adapted the numerical approximations vn such that not only Φ(tn, qn,vn,λn) = 0 is fulfilled but
also (dΦ)/(dt)|(t,q,v,λ)=(tn,qn,vn,λn) = 0. The time instances where projection is applied are marked
in Figure 6 by gray vertical lines. It has been reported in the literature [3] that velocity projection
can cause Newmark-type integrators to show overshoot behavior even beyond the transient phase of
the time integration.
Indeed, one can observe that for the CH, the HHT, and method 4 (first row) rather heavy overshoot
occurs, while the numerical solutions for the other three methods (second row) remain smooth. In
each step, the nonlinear systems are solved using the Newton-Raphson method with a first order
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approximation of the Jacobi matrix. The computational advantage of the smoother approximation
can also be measured with regards to the average number of Newton-Raphson iterations (which for
large scale problems often states the most computational effort). In our experiments it drops from
4.8358 for CH(0.9) over 4.4726 and 4.2736 for HHT and method 4 , respectively, to 4.1393 and 4.0945
for methods 3 and 2 . For method 1 this decrease is no longer present but instead the average
number increases again to 4.5522. This can be explained by the inferior accuracy for this method
implied by a large third order error constant.

6. CONCLUSION AND ASPECTS OF FURTHER RESEARCH

Using the theoretical background of the one-step error analysis of Newmark-type integrators we derived
a novel parameter set Gen(%∞,φ0). In particular, the degenerate Jordan canonical form for the test
equation of the harmonic oscillator in the limit of infinite frequency can be seen as one of the main
reasons for spurious and unphysical oscillations in the numerical approximation. So, the basic idea
behind the new method is to choose the parameters in a way that this behavior is decimated. Numerical
results show an improvement with respect to overshoot.
Furthermore, we presented a mathematical framework that allowed for a systematic optimization of
this important class of time integration methods in technical simulations with respect to two of the
main requisites from a practical/experimental viewpoint. On the one hand, the dissipation behavior
over the entire frequency-range was taken into account, but on the other hand we also included the
overshoot-problem into the method’s design which has not been done for the established parameter sets
of Chung/Hulbert, Hilber/Hughes/Taylor and Wood/Bossak/Zienkiewicz. Well-established nonlinear
scalarization methods from vector optimization were substantial for gaining an encompassing under-
standing of the analytical properties of the integration family. Small numerical examples show that
this approach can in fact have a tremendous impact on the quality of the numerical approximation.
For the proposed class of algorithms, there are other ways (see for example [2]) to overcome overshoot
analytically by adapting the initial values on velocity level in a way to avoid error artifacts that are
later on amplified from the very start. This approach, however, requires additional knowledge of
certain values in the model that might not be so easily computed (and depend on a certain problem
structure) and involves changes in the implementation, while our concept can be used to adapt existing
codes right away.
In a more general setting and depending on the application cases at hand, one might—as a next step—
take more aspects of the algorithm’s design into account and treat them as additional objectives. Other
possible measures include, for example, dispersion, relative period error [21] and the error constants of
the third order error terms in the Taylor expansion [16]. It is also possible to tailor the optimization
for other special application cases like strongly damped mechanical systems [29]. This would indeed
require some extensions of the involved terms, as in that case we need to consider (3.5) with ξ > 0.
Some authors recommend that the spurious root should remain zero when z → 0 in (3.7) (a property
called “optimal zero-stability”). This would pose an additional constraint in the optimization prob-
lem. The technical necessities for an extension to this more general analysis are all available in the
framework presented in Section 4.
Here, we did not explore the scalarization functional fully. For specific applications one might be
interested in weighting certain areas in the objective space which could be accomplished by the use of
different ordering cones or even variable ordering. The approach taken here is very general and can
therefore be generalized to this case in a straightforward way.
In the numerical experiments, we saw that the new parameter sets outperform the classical algorithms
much better than would be expected from the simple comparison of the values of the measure of
overshoot as given in Definition 4.1. above. That is evident from the fact that, practically speaking,
overshoot is not only to be measured by magnitude but also by its duration. So, alternatively, one could
also think of a discrete measure like ‘overshoot is the exponent of the first matrix power with a lower
norm than T itself’ or take an integral value for the definition of overshoot. For some applications, a
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steeper decline of spectral radius might be considered superior to a gradual descent since this stronger
resembles the frequency behavior of an optimal low-pass filter.
At last, one could also consider an extension to the more general class of algorithms like the one that
was proposed in [19, 20] and includes algorithm (2.2) as a special case. These more intricate algorithms
might require to interpret the search for optimal damping measure as an optimal control problem or
base the analysis on the amplification matrices pseudospectra [31] whose study might provide an even
better understanding.
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A STABILITY NOTIONS IN MULTIBODY SYSTEM DYNAMICS

Definition A1. (Stability Concepts) Consider the integration method (2.2) applied to the linear
test equation (3.5). We say that the method is

1. zero-stable if there exists an h0 > 0 such that in exact arithmetics the method provides bounded
solutions on finite time horizons t ∈ [t0, tend] for ω = ξ = 0 and any h < h0,

2. optimally zero-stable if it is zero stable and, additionally, the amplification matrix T(0) has one eigen-
value that is exactly zero,

3. (linearly) stable at infinity if the amplification matrix T(∞) has a spectral radius less or equal to one,

4. strictly (linearly) stable at infinity if the amplification matrix T(∞) has a spectral radius strictly less
than one,

5. unconditionally (linearly) stable (or I-stable) if for all ω ∈ [0,∞) the spectral radius of T(z) for
z := hω is bounded by one, (In particular, this includes stability at infinity.)

6. L-stable if it unconditionally stable and additionally all eigenvalues of T(∞) vanish,

7. internally stable if it is zero-stable and the requirement of using exact arithmetics in the definition of
zero-stability can be dropped.

If the method is zero-stable, unconditionally stable and strictly stable at infinity, we just refer to it as
stable. Note that in the literature, the term ‘stable’ is often used equivalently to zero-stability.
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