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ABSTRACT

This paper is devoted to vector-valued optimization problems in Banach spaces whose objective

functions are cone-convex and the feasible sets are not assumed to be convex. By means of a

well-known nonlinear scalarizing function and the oriented distance function, we derive optimality

conditions for weak Pareto solutions and (ε, e)-Pareto solutions in terms of abstract subdifferentials

and the Clarke subdifferential.
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RESUMEN

Sea el problema de optimización vectorial en espacios de Banach cuya función objetiva es convexa

con respecto a un cono y el conjunto de soluciones factibles es no convexo. Usando funciones de es-

calarización conocidas y la función de distancia orientada, se derivan condiciones de optimalidad para

soluciones débiles de Pareto y (ε, e)-soluciones de Pareto en términos de sub-diferenciales abstractos

y del sub-diferencial de Clarke

PALABRAS CLAVE: Multiplicadoes de Lagrange, funciones convexas con respecto a un cono,

funcion Lipschitziana, puntos mı́nimo (débiles) de Pareto

1. INTRODUCTION

In this paper, we investigate necessary optimality conditions for solutions of the optimization problem

(VP) given by:

minimize f(x) subject to x ∈ D, (VP)

where f is a mapping between Banach spaces, f : X → Y , D is a subset of X, D is not supposed to

be convex and “minimization” is understood with respect to (w.r.t., for short) a partial order defined

based on a proper cone C in Y . The problem (VP) is considered as a problem of vector-valued

optimization .

†anh.vu@mathematik.uni-halle.de.
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In the specific case, D is a nonempty closed convex set in the normed vector space X and f : X → R :=

R ∪ {±∞} is a proper convex function, it is well-known that the necessary and sufficient optimality

condition for a minimum point x with f(x) ∈ R of the problem (VP) is given by:

0 ∈ ∂F f(x̄) +NF (x̄;D),

where ∂F and NF are the Fenchel subdifferential and the normal cone in the sense of convex analysis,

respectively. When D is not necessarily convex but f : X → R is Lipschitz and f attains a minimum

over D at x with f(x) ∈ R, then

0 ∈ ∂Cf(x) +NC(x;D),

where ∂C is the Clarke subdifferential and NC(x;D) is the Clarke normal cone to D at x; see

[3].

It is of interest to extend the aforementioned results to the case of vector-valued functions. A natural

way is using some scalarizing methods for the original problems in order to apply many results in

the cases of real functionals. When f is a C-convex function and D is a closed convex set, Jahn [15]

used a linear scalarizing function to characterize (weak) Pareto solutions of problem (VP); compare

[15, Theorem 5.4 and Theorem 5.13]. In the case that C is non-solid (intC = ∅), Durea et al. [4]

investigated the problem (VP), where the objective function is continuous Frechet differentiable C-

convex and D is convex. The case that intC = ∅ and D is not supposed to be convex is also very

interesting. However, to the best of our knowledge, there are not many papers concerning this problem.

Bao et al. [1] constructed a new appropriate nonempty interior cone such that the Pareto minimal

points w.r.t. the original cone C are also the Pareto minimal points w.r.t. the new cone. Durea et

al. [5] introduced and investigated optimality conditions for the so-called (ε, e)-Pareto minimum. It

is worth to mention that both [1] and [5] used the scalarizing functional introduced by Tammer et al.

[7, 8] and the objective function f was supposed to be Lipschitz.

In this paper, we derive necessary optimality conditions for solutions of (VP) equipped with both

solid and non-solid ordering structures under the assumptions that f is a cone-convex function and

D is not supposed to be closed or convex. To study weak Pareto solutions in case that intC 6= ∅, we

scalazize our problem by the nonlinear scalarizing functional. In the case C is non-solid, we investigate

(ε, e)-Pareto solutions by a different approach, that is using the oriented distance function introduced

by Hiriart-Urruty [10, 11]; see for instance [9, 20]. By means of these functions, we derive optimality

conditions for the solutions in terms of abstract subdifferentials and the Clarke subdifferential.

The paper is organized as follows: In Section 2, we present some preliminaries which will be used in

the next parts. We recall the definitions and some important properties for two nonlinear scalarizing

functions used to scalarize our problem. Section 3 introduces the abstract subdifferential satisfying

some certain axioms which still hold for other special subdifferentials of Ioffe or Mordukhovich in

infinite dimensional spaces. We recall the definition as well as some inportant properties of the Clarke

subdifferential. This section also contains our main results: Necessary optimality conditions in terms

of the abstract subdifferential and the Clarke subdifferential for weak Pareto optimal solutions and

(ε, e)-Pareto solutions of the problem (VP).
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2. VARIATIONAL ANALYSIS

Throughout the paper, unless otherwise specified, X and Y are two Banach spaces with their topolog-

ical duals X∗ and Y ∗, respectively. We use the notations ‖.‖X , UX for the norm and the closed unit

ball in space X, respectively, we omit the subscript X if there is no risk of confusion. For a nonempty

set A, intA, clA and bdA stand for the interior, closure and boundary of A, respectively. We denote

that dA(.) is the distance function associated with A and δA(.) is the indicator function associated

with A, i.e. δA(x) = 0 if x ∈ A and δA(x) = +∞ otherwise. Let C be a proper, convex, closed and

pointed cone which specifies a partial order ≥C on Y as follows:

for all x, y ∈ Y, x ≥C y ⇐⇒ x− y ∈ C.

The continuous dual cone of C is given by

C+ := {y∗ ∈ Y ∗ | ∀c ∈ C : y∗(c) ≥ 0}.

We begin this section by recalling the notions of the (weak) Pareto minimality of a subset A ⊆ Y and

corresponding solution concepts for the vector optimization problem (VP).

Definition 2.1. Let A be a nonempty subset of Y and C ⊂ Y be a proper, convex and pointed cone.

(i) We define the set of Pareto minimal points of A w.r.t. C by

Min(A;C) :=
{
ȳ ∈ A| A ∩ (ȳ − C) = {ȳ}

}
.

If f : X → Y is a vector-valued function and D ⊂ X is nonempty set, a point x̄ ∈ D is said to be a

Pareto minimizer of problem (VP) if f(x̄) ∈ Min(F (D);C).

(ii) If intC 6= ∅, then the set of weak Pareto minimal points of A w.r.t. C is given by

WMin(A;C) :=
{
ȳ ∈ A| A ∩ (ȳ − intC) = ∅

}
.

Similarly, a point x̄ ∈ D is said to be a weak Pareto minimizer of problem (VP) if f(x̄) ∈WMin(F (D);C).

Obviously, if x̄ is a Pareto solution of problem (VP) then it is also a weak Pareto solution. In this

paper, we will investigate necessary optimality conditions for solutions of problem (VP), where the

interior of C is empty or nonempty. For the case intC 6= ∅, we will study optimality conditions for

weak Pareto solutions by means of the scalarizing function introduced by Tammer and Weidner in

[7, 8]. For the case intC = ∅, we will derive optimality conditions for (ε, e)-Pareto minimal solutions,

given by Durea, Dutta and Tammer [4].

The definition of (ε, e)-Pareto minimum and relationship between this concept and Pareto minimum

are given as follows.

Definition 2.2. Let A be a subset of Y and C ⊂ Y be a proper, convex and pointed cone. Let e ∈ C
with ‖e‖ = 1 and ε > 0. We say that

• ā ∈ A is an (ε, e)-Pareto minimal point of A w.r.t. C if (A− ā) ∩ (−C − εe) = ∅. The set of all these

minima is denoted by (ε, e)−Min(A,C).
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• x̄ ∈ D is an (ε, e)-Pareto minimal solution of problem (VP) if f(x̄) ∈ (ε, e)−Min(f(D), C).

Note that [4] studied vector optimization problems, whose objective functions are locally Lipschitz.

The reason for this choice is that they are very close to the efficient frontier and qualify in a better way

as an approximate-minimum, cf. ([4, Page 199]). Furthermore, the concept of (ε, e)-Pareto minimizers

is beneficial for us to get the nontrivial multipliers y∗ 6= 0 using certain properties of the subdifferential

of the distance function.

Proposition 2.1. [4, Proposition 2.1] Let A be a subset of Y and C ⊂ Y be a proper, convex and

pointed cone. Then the following relation holds

Min(A,C) =
⋂

e∈C∩SY

⋂
ε>0

(ε, e)−Min(A,C).

The following definition presents some convexities of a vector-valued function where the ordering cone

C is involved.

Definition 2.3. Let f : X → Y , C ⊂ Y be a proper, convex and pointed cone and t ∈ R+, e ∈ C be

given. The function f is said to be

(i) C-convex if for all x, x′ ∈ X,λ ∈ (0, 1), one has

λf(x) + (1− λ)f(x′) ∈ f(λx+ (1− λ)x′) + C.

(ii) strictly C-convex if intC 6= ∅ and for all x, x′ ∈ X,λ ∈ (0, 1), one has

λf(x) + (1− λ)f(x′) ∈ f(λx+ (1− λ)x′) + intC.

(iii) (C, e, t)-strongly convex if for all x, x′ ∈ X,λ ∈ (0, 1), one has

λf(x) + (1− λ)f(x′) ∈ f(λx+ (1− λ)x′) + (C + te).

Remark 2.1. Obviously, we have that strictly C-convexity implies C-convexity. It is not necessary

to suppose that C has nonempty interior in parts (i) and (iii) of the Defintion 2.3.. In additiion,

(C, e, t)-strong convexity is considered as an extension of C-convexity since these two definitions are

coincident if we take e = 0 ∈ C and (C, e, t)-strongly convex is an extension of C-strictly convex if

e ∈ intC. If the element e belongs to the boundary of C, then the (C, e, t)-strong convexity does not

follow from the strict C-convexity.

In this paper, we will derive some necessary optimality conditions for solutions of the optimization

problem (VP) using the Fenchel subdifferential. Let X be a Banach space. Recall that the Fenchel

subdifferential of a convex function f : X → R at x with f(x) ∈ R is defined by

∂F f(x̄) := {x∗ ∈ X∗ | ∀x ∈ X : f(x)− f(x̄) ≥ x∗(x− x̄)}. (2.1)

For x with f(x) /∈ R, one puts ∂F f(x̄) = ∅. If ∂F f(x̄) is nonempty, f is said to be subdifferentiable

at x̄.
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Definition 2.4. Let Y be a Banach space, g : Y → R ∪ {+∞} and C ⊂ Y be a proper, convex and

pointed cone. We say that g is a C-nondecreasing function at y0 ∈ Y if

y ∈ Y
⋂(

y0 − C
)

=⇒ g(y) ≤ g(y0).

In the following, we recall a well known result presenting the formula of the Fenchel subdifferential of

a composition. The proof is omitted since it was presented in [17].

Lemma 2.1. ([17, Lemma 2.2]) Let X,Y be Banach spaces, C ⊂ Y be a proper, convex and

pointed cone. Suppose that f : X → Y is a C-convex vector-valued function and g : Y → R ∪ {+∞}
is a convex, C-nondecreasing function on Y . If there exists (x̄; ȳ) ∈ epi f such that g is continuous at

ȳ, then for ȳ = f(x̄) ∈ dom g := {y ∈ Y | g(y) < +∞} one has

∂F (g ◦ f)(x̄) =
⋃

y∗∈∂F g(ȳ)

∂F (y∗ ◦ f)(x̄).

The following lemma shows a sufficient condition for the Lipschitz property of a scalar convex function.

Lemma 2.2. ([21, Corollary 2.2.12])

Let X be a Banach space, f : X → R be a proper convex function on X and consider x0 ∈ X with

f(x0) ∈ R and D(x0, θ) := {x ∈ X| ||x− x0||X ≤ θ} with θ ≥ 0. Suppose that for some θ > 0, m ≥ 0,

∀x ∈ D(x0, θ) : f(x) ≤ f(x0) +m.

Then f is Lipschitz around x0 with a Lipschitz constant given by

∀θ′ ∈ (0, θ),∀x, x′ ∈ D(x0, θ
′) : |f(x)− f(x′)| ≤ m

θ
· θ + θ′

θ − θ′
· ‖x− x′‖X .

Definition 2.5. Consider f : X → Y and C ⊂ Y is a proper, convex and pointed cone. We say that

(i) f is C-bounded from above on a subset A ⊆ X if there exists a constant µ > 0 such that

f(A) ⊂ µUY − C.

(ii) f is C-bounded from above around a point x ∈ X if it is C-bounded from above on a neighborhood

of x.

In the following, we recall “the nonlinear scalarizing functional” or “Gerstewitz scalarizing functional”,

which was widely used in vector optimization and set optimization. It was intensively studied by

Tammer and Weidner in [7, 8]. This function will be used in this work to derive necessary optimality

conditions for weak Pareto solutions of the problem (VP). Let A be a given proper and closed subset

of Y and e ∈ Y \ {0} such that

A+ [0,+∞) · e ⊆ A. (2.2)

We consider the scalarizing functional ϕA,e : Y → R ∪ {±∞} defined by

ϕA,e(y) := inf{λ ∈ R | λ · e ∈ y +A}, (2.3)

where we use the conventions inf ∅ := +∞, sup ∅ := −∞ and (+∞) + (−∞) = +∞. To simplify the

notation, we use the symbol ϕ := ϕA,e if no confusion arises.

In the following, we present some important properties of ϕA,e that will be used in the sequel. For

the proof, we refer the reader to [5, 8, 18].
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Proposition 2.2. ([8, Theorem 2.3.1]) Let Y be a topological vector space and A ⊂ Y be a proper,

closed set. Let e be given in Y \ {0} such that (2.2) holds, then the following properties hold for

ϕ := ϕA,e:

(a) ϕ is lower semi-continuous and domϕ = Re−A.

(b) ∀y ∈ Y, ∀t ∈ R : ϕ(y) ≤ t if and only if y ∈ te−A.

(c) ∀y ∈ Y, ∀t ∈ R : ϕ(y + te) = ϕ(y) + t.

(d) ϕ is convex if and only if A is convex.

(e) ϕ(λy) = λϕ(y) for all λ > 0 and y ∈ Y if and only if A is a cone.

(f) ϕ is proper if and only if A does not contain lines parallel to e, i.e., ∀y ∈ Y,∃t ∈ R : y + te /∈ A.

(g) ϕ takes finite values if and only if A does not contain lines parallel to e and Re−A = Y .

(h) If we suppose that

A+ [0,+∞) · e ⊆ intA, (2.4)

then ϕ is continuous.

Definition 2.6. Let Y be a topological vector space and D be a nonempty subset of Y . A functional

ϕ : Y → R̄ is called D-monotone, if

∀y1, y2 ∈ Y : y1 ∈ y2 −D ⇒ ϕ(y1) ≤ ϕ(y2).

Moreover, ϕ is said to be strictly D-monotone, if

∀y1, y2 ∈ Y : y1 ∈ y2 −D \ {0} ⇒ ϕ(y1) < ϕ(y2).

The following result provides some further properties of the scalarizing functional ϕA,e.

Proposition 2.3. ([8, Theorem 2.3.1]) Under the assumptions of Proposition 2.2., and we take ∅ 6=
D ⊆ Y . Then the following properties hold:

(a) ϕA,e is D-monotone if and only if A+D ⊆ A.

(b) ϕA,e is subadditive if and only if A+A ⊆ A.

Note that if A is a closed, convex proper set and does not contain lines parallel to e then ϕA,e is a

proper convex function. Therefore, we can provide in the following some calculus for its subdifferential

in the sense of convex analysis.

Proposition 2.4. ([5, Theorem 2.2]) Let Y be a topological vector space and A ⊂ Y be a closed,

convex, proper set. Let e be given in Y \ {0} such that (2.2) holds and for every y ∈ Y there exists

t ∈ R such that y + te /∈ A. Consider the scalarizing function ϕ := ϕA,e determined by (2.3) and

ȳ ∈ domϕ. Then

∂Fϕ(ȳ) = {y∗ ∈ Y ∗ | y∗(e) = 1, y∗(d) + y∗(ȳ)− ϕ(ȳ) ≥ 0 ∀d ∈ A}. (2.5)
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Remark 2.2. Observe that if C is a proper, convex, closed and pointed cone, A := C then ϕC,e(ȳ) = 0.

Taking into account Proposition 2.4., we obtain that

∂FϕC,e(0) = {y∗ ∈ C+ | y∗(e) = 1}. (2.6)

The following proposition presents the Lipschitzianity of the function ϕC,e provided that C is a proper,

convex, closed cone with intC 6= ∅. We also illustrate how a (weak) Pareto minimizer of a set A w.r.t.

the cone C can be characterized by the scalarizing function ϕC,e. This result will be used in the proofs

of necessary optimality conditions for solutions of the problem (VP) in next sections.

Proposition 2.5. ([5, Lemma 2.4]) Let Y be a Banach space, C ⊂ Y be a proper, convex, closed cone

with nonempty interior. Let e be a given point in intC. Then the function ϕC,e : Y → R defined by

(2.3) is continuous, sublinear and strictly-intC-monotone. Moreover, ϕC,e is d(e, bd (C))−1-Lipschitz

and for every y ∈ Y and y∗ ∈ ∂ϕC,e(y) one has ||e||−1 ≤ ||y∗|| ≤ d(e, bd (C))−1.

If A ⊂ Y is a nonempty set such that ȳ ∈WMin(A;C), then one has

ϕC,e(y − ȳ) ≥ 0 for all y ∈ A. (2.7)

We introduce in the following the second scalarizing function, namely ”oriented distance function”,

which was introduced in [10, 11] to analyse the geometry of nonsmooth optimization problems.

Definition 2.7. The oriented distance function ∆A : Y → R defined for a set A ⊂ Y,A 6= Y , by

∆A(y) := dA(y)− dY \A(y), (2.8)

with convention that d∅(y) = +∞.

Some important properties of the oriented distance function are presented as follows. For the proof,

we refer the reader to [20, Proposition 3.2] and [20, Theorem 4.3].

Proposition 2.6. Consider the oriented distance function ∆A given by (2.8), where A is a subset of

Y . We have that

(i) ∆A is Lipschitzian of rank 1.

(ii) ∆A(y) < 0 for every y ∈ intA, ∆A(y) = 0 for every y in the boundary of A and ∆A(y) > 0 for every

y ∈ int(Y \A).

(iii) If A is convex, then ∆A is convex and if A is cone, then ∆A is positively homogeneous.

(iv) If A is closed and convex cone and y1, y2 ∈ Y with y1 − y2 ∈ A, then ∆A(y1) ≤ ∆A(y2).

(v) If intA = ∅, then cl (Y \A) = Y , it follows that dY \A(y) = 0 for every y ∈ Y , hence ∆A = dA.

(vi) Let A be a proper, convex and closed cone in Y . A point ȳ ∈M ⊂ Y is a Pareto minimal point of M

w.r.t. A if and only if ȳ is a solution of the problem miny∈M ∆−A(y − ȳ), i.e., ∆−A(y − ȳ) > 0, for

all y ∈M,y 6= ȳ.
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By the above proposition, the functional ∆A is convex, positively homogeneous and 1-Lipschitz for

every closed and convex cone A. Note that both ∆A and dA are convex functions provided that A is

convex, so we can take their subdifferentials in the sense of Fenchel. For the convenience of the reader,

we recall the calculus of subdifferential of the distance function dA in the following proposition. Since

the proof is presented in [2, Theorem 1], we omit it in this paper.

Proposition 2.7. ([2, Theorem 1]) Let A be a nonempty, closed and convex subset of Y . Then dA

is a convex function on Y with the Fenchel subdifferential

∂F dA(y) =

SY ∗ ∩NF (y;Ay), if y /∈ A

UY ∗ ∩NF (y;A), if y ∈ A,

where UY ∗ , SY ∗ are the closed unit ball and the unit sphere in Y ∗, Ay := A+ dA(y)UY and NF (ā;A)

is the normal cone at a point ā ∈ A and given as

NF (ā;A) =
{
y∗ ∈ Y ∗

∣∣y∗(a− ā) ≤ 0,∀a ∈ A
}
.

Remark 2.3. Suppose that C is a proper, convex, closed and pointed cone in Y with intC = ∅. It

follows from Proposition 2.6.(v) and Proposition 2.7. that

∂∆−C(0) = ∂d−C(0) = UY ∗ ∩NF (0;−C) = UY ∗ ∩ C+.

In addition, for every ε > 0 and e ∈ C, the interior of −C − εe is empty. Durea et al. [4, Remark

2.2] proved that the following relation holds true for every y /∈ (−C − εe)

∂∆−C−εe(y) = ∂d−C−εe(y) ⊆ SY ∗ ∩ C+. (2.9)

3. THE LAGRANGE MULTIPLIER RULES

3.1. Abstract subdifferential

We begin this section by presenting in the following the definition of abstract subdifferentials ∂, which

will be used in the sequel. Let X be a class of Banach spaces, X ∈ X . For every lower-semicontinuous

function f : X → R and x ∈ X, we denote by ∂f(x) the abstract subdifferential of f at x with

f(x) ∈ R. The abstract subdifferential is a (possible empty) subset in X∗ and satisfies the following

axioms:

(A1) If f is convex, then ∂f(x) coincides with the Fenchel subdifferential.

(A2) If x̄ is a local minimum point for f , then 0 ∈ ∂f(x̄).

(A3) If f is Lipschitz around x̄ and g is proper lower-semicontinuous around this point. Then one

has the inclusion

∂(f + g)(x̄) ⊆ ∂f(x̄) + ∂g(x̄).

We can mention here some subdifferentials with the above properties:
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• the approximate (or Ioffe) subdifferential when X is a class of Banach spaces [12, 13, 14].

• the limiting (or Mordukhovich) subdifferential when X is a class of Asplund spaces [16].

We denote by N∂(x;A) the normal cone to a set A at a point x ∈ A w.r.t. the abstract subdifferential

∂ and this normal cone is given by N∂(x;D) := ∂δA(x). Of course, if D is convex, then N∂(x;D) =

NF (x;D).

Remark 3.4.

• In [5], Durea et al. derived optimality conditions for solutions of the problem (VP) where the objective

function f is Lipschitz. They also defined the abstract subdifferentials with chain rule axiom. Observe

that, the class of our abstract subdifferentials is larger than one given in [5] since the conditions related

to chain rules in [5] are omitted in our work.

• We can see that our abstract subdifferential can be considered as a special case of the so-called generic

subdifferential given in [6]. The reason is that the axioms (A2) and (A3) imply the second axiom

of the generic subdifferential, see [6, page 638]. In [6], Theorems 2.1 and 2.2 presented optimality

conditions for minimal elements of geometric vector optimization problems Min(A;C) using the generic

subdifferential. Therefore, it is possible to use this generic subdifferential for dealing with the problem

(VP), since f(x0) ∈ Min(f(D), C) provided that x0 is a Pareto minimizer of (VP). However, these

optimality conditions only concerned the image set f(D) but not the properties of the objective function

f . Therefore, the chain rule axiom of generic subdifferential is not necessary to be assumed in [6].

In the following, we present our main results: the Lagrange multipliers for the vector-valued optimiza-

tion problem (VP) in Banach spaces, in which f is cone-convex and the feasible set D is not supposed

to be convex.

Theorem 3.1. Let X,Y ∈ X , D be a closed subset of X, C be a proper, convex, closed and pointed

cone in Y with nonempty interior. Consider the problem (VP) where the objective function f : X → Y

is C-convex. Suppose that ∂ satisfies the axioms (A1), (A2), (A3) and ∂F is the Fenchel subdifferential

given by (2.1). If f(x̄) ∈WMin(f(D);C) and f is C-bounded from above around x̄ ∈ D then for every

e ∈ intC there exists y∗ ∈ C+ with y∗(e) = 1 such that

0 ∈ ∂F (y∗ ◦ f)(x̄) +N∂(x̄;D). (3.10)

Proof: Let e ∈ intC. We consider the corresponding function ϕ := ϕC,e given by (2.3).

By using the assumption f(x̄) ∈ WMin(f(D);C) and applying Proposition 2.5., we get that x̄ is a

minimum of the problem

min ze(x) + δD(x), (3.11)

where ze : X → R and ze(x) = ϕ(f(x)− f(x̄)).

Since f is C-bounded from above around x̄, there is a neighborhood Ux̄ of x̄ and µ > 0 such that

f(Ux̄) ⊂ µUY − C.
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It follows that

f(Ux̄)− f(x̄) ⊂ µUY − f(x̄)− C.

As e ∈ intC, we have that Y = Re−C. Hence, there exists a real number t such that µUY − f(x̄) ⊆
te− C. Taking into account Proposition 2.3. (a), ϕ is C-monotone. Therefore, it holds that

ϕ(f(Ux̄)− f(x̄)) ≤ ϕ(µUY − f(x̄)) ≤ t.

Hence, ze(x) = ϕ(f(x)− f(x̄)) is bounded from above around x̄.

Since f is C-convex, so is g(x) := f(x) − f(x̄). Taking into account Propositions 2.2. and 2.3., ϕ

is convex and C-nondecreasing on Y and thus ze = ϕ ◦ g is convex. Because ze satisfies all the

assumptions given in Lemma 2.2., we have that ze is Lipschitz around x̄. Moreover, since D is a

closed subset in X, δD is a proper lower-semicontinuous function. By the axioms (A2) and (A3), we

have that

0 ∈ ∂ze(x̄) +N∂(x̄;D). (3.12)

As ze is convex, its abstract subdifferential coincides with the Fenchel subdifferential, i.e., ∂ze(x̄) =

∂F ze(x̄). Applying Lemma 2.1., we obtain that

∂F ze(x̄) =
⋃

y∗∈∂Fϕ(0)

∂F (y∗ ◦ g)(x̄) =
⋃

y∗∈∂Fϕ(0)

∂F (y∗ ◦ f)(x̄).

Substituting the above formula into (3.12) we can conclude that (3.10) holds for some y∗ ∈ ∂Fϕ(0).

From Remark 2.2. we get that y∗ ∈ C+ and y∗(e) = 1, which completes the theorem. �

Remark 3.5.

• In order to obtain necessary optimality conditions for solutions of the problem (VP) for the case X

is Asplund and ∂ is the Mordukhovich subdifferential, Tuan et al. [19, Theorem 5] assumed that C

is a closed normal cone, f is C-convex and C-bounded whereas Bao et al. [1] needed the strict Lips-

chitzianity of f . Theorem 3.1. considered that f is C-convex and C-bounded, however the assumption

that C is a closed normal cone is omitted since we only used the Lipschitzianity of the function ze(·)
instead of Lipschitzianity of the objective function f .

• Observe that if the abstract subdifferential in [5, Theorem 3.1] is the Mordukhovich subdifferential

(the Ioffe subdifferential) one needs to suppose that Y is finite dimensional (f is strongly compactly

Lipschitz, respectively), whereas, Theorem 3.1. holds true for general dimentional spaces provided that

the objective function is C-convex.

The following result presents optimality conditions in terms of the abstract subdifferential for (ε, e)-

Pareto solutions of the problem (VP) in the sense of Definition 2.2. where intC = ∅.

Theorem 3.2. Let X,Y ∈ X , D be a closed subset of X, C be a closed, convex and pointed cone in

Y with empty interior. Assume that ε > 0, e ∈ C, ‖e‖ = 1 and x0 is an (ε, e)-Pareto minimal solution

of the problem (VP). Suppose that ∂ satisfies the axioms (A1), (A2) and (A3) and ∂F is the Fenchel

subdifferential given by (2.1). If f is a (C, e, ε)- strongly convex function and f is C-bounded from

above around x0 ∈ D then there exist x̄ ∈ B(x0,
√
ε) ∩D, y∗ ∈ C+, ‖y∗‖ = 1 such that

0 ∈ ∂F (y∗ ◦ f)(x̄) +
√
εUX∗ +N∂(x̄;D), (3.13)
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Proof: Since e ∈ C, ‖e‖ = 1, it is obvious that d−C−εe(0) ≤ ε. Because f(x0) is an (ε, e)-Pareto

point of f over D, for every x ∈ D, we have that

d−C−εe(0) ≤ ε ≤ d−C−εe(f(x)− f(x0)) + ε. (3.14)

Consider a function zε,e : X → R given by zε,e(x) = d−C−εe(f(x)− f(x0)). From (3.14), we obtain

zε,e(x0) ≤ inf
x∈X

zε,e(x) + ε.

As f is C-bounded from above around x0, there is a neighborhood U0 of x0 and µ > 0 such that

f(U0) ⊂ µUY − C.

It follows that

f(U0)− f(x0) ⊂ µUY − f(x0)− C ⊆
(
µUY − f(x0) + εe

)
− C − εe.

Hence,

d−C−εe(f(U0)− f(x0)) ≤ d−C−εe(µUY − f(x0) + εe
)
,

Therefore, zε,e(x) = d−C−εe(f(x)− f(x0)) is bounded around x0.

From the assumption f is (C, e, ε)-strongly convex, so is g(x) := f(x) − f(x0). Taking into account

d−C−εe is (C+ εe)-nondecreasing on Y , zε,e = d−C−εe ◦ g is convex. By Theorem 2.2., zε,e is Lipschitz

around x0.

Applying the Ekeland variational principle (see [8, Proposition 3.10.1]) for zε,e on D, we get an element

x̄ ∈ B(x0,
√
ε) ∩D and x̄ is a minimum of the problem

min zε,e(x) +
√
ε‖x− x0‖+ δD(x).

Since D is a closed subset in X, δD is a proper lower-semicontinuous function. Applying the calculus

rules of the abstract subdifferential ∂, we obtain the following assertion

0 ∈ ∂zε,e(x̄) +
√
ε∂‖ · −x0‖(x̄) +N∂(x̄;D). (3.15)

As zε,e(·) and ‖ · −x0‖ are convex, their abstract subdifferentials coincide with the Fenchel subdiffer-

ential, i.e., ∂zε,e(x̄) = ∂F zε,e(x̄), ∂‖ · −x0‖(x̄) = ∂F ‖ · −x0‖(x̄). Then (3.15) becomes

0 ∈ ∂F zε,e(x̄) +
√
ε∂F ‖ · −x0‖(x̄) +N∂(x̄;D)

⇐⇒ 0 ∈ ∂F zε,e(x̄) +
√
εUX∗ +N∂(x̄;D). (3.16)

By Lemma 2.1.,

∂F zε,e(x̄) =
⋃

y∗∈∂F d−C−εe(0)

∂F (y∗ ◦ g)(x̄) =
⋃

y∗∈∂F d−C−εe(0)

∂F (y∗ ◦ f)(x̄).

Substituting the above formular into (3.16) we can conclude that (3.13) holds for some y∗ ∈ ∂F d−C−εe(0).

From (2.9), we get y∗ ∈ SY ∗ ∩ C+ which completes the theorem. �
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Remark 3.6. Observe that Theorem 3.2. considers the problem (VP) in Banach spaces while Durea

et al. [4] dealt with vector-valued problems in Asplund spaces. In addition, instead of using the strictly

Lipschitz property as in [4], we need the (C, e, t)-strong convexity of the objective funtion f .

Note that if D is closed then the indicator function of D is lower-semicontinuous. Therefore, the

closedness assumption of D is essential in all theorems of this section in order to apply the sum rule

of the abstract subdifferential ∂. In the next section, we can omit the closedness of the feasible set D

to get the necessary optimality conditions for solutions of the problem (VP) in terms of the Clarke

subdifferential.

3.2. Clarke subdifferential

In this section, we show that it is possible to derive necessary optimality conditions for the problem

(VP) in terms of the Clarke subdifferetial in Banach spaces; in particular, the feasible set is not

supposed to be closed.

Let X be a class of Banach spaces, X ∈ X . Recall that the Clarke generalized gradient or the Clarke

subdifferential of a locally Lipschitz function f : X → R at x̄ with f(x) ∈ R, is denoted by ∂C and

determined by

∂Cf(x̄) := {x∗ ∈ X∗| ∀v ∈ X : f◦(x̄, v) ≥ x∗(v)},

where f◦(x̄, v) := lim sup
y→x̄, t↓0+

1
t

(
f(y + tv) − f(y)

)
is the generalized directional derivative of f at x̄ in

the direction v. The normal cone to a set D ⊆ X at a point x in the sense of Clarke is denoted by

NC(x;D) and defined as:

NC(x;D) := cl ∗
( ⋃
t≥0

t ∂CdD(x)
)
, (3.17)

where cl∗ denotes weak* closure.

Observe that the Clarke subdifferential ∂C satisfies the axioms (A1) and (A2); see Subsection 3.1..

However, instead of (A3) the sum rule of the Clarke subdifferential requires that all the involved

functions are Lipschitz, i.e.,

(A3’) If f, g is Lipschitz around x̄ then one has the inclusion

∂C(f + g)(x̄) ⊆ ∂Cf(x̄) + ∂Cg(x̄).

To derive necessary optimality conditions for solutions of the problem (VP), we present in the following

an important result which will be used in the sequel. For the proof, we refer the reader to [3, page

52].

Proposition 3.8. [3, Corollary 2.4.3] Let X ∈ X and f : X → R be locally Lipschitz at x̄ with

f(x) ∈ R. If f attains a minimum at x̄ over D ⊆ X, then it holds that 0 ∈ ∂Cf(x̄) +NC(x̄;D).

The following result derives necessary optimality condition for weak Pareto miminizers of problem

(VP) in terms of the Fenchel subdifferential ∂F determined by (2.1) and the Clarke normal cone given

by (3.17). Proposition 3.8. shows that the closedness of the feasible set D is not necessary for the

proofs of next theorems.
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Theorem 3.3. Let X,Y ∈ X , D be a subset of X, C be a proper, convex, closed and pointed cone

in Y with nonempty interior. Consider the problem (VP) where the objective function f : X → Y is

C-convex. If f(x̄) ∈ WMin(f(D);C) and f is C-bounded from above around x̄ ∈ D then for every

e ∈ intC there exists y∗ ∈ C+ with y∗(e) = 1 such that

0 ∈ ∂F (y∗ ◦ f)(x̄) +NC(x̄;D). (3.18)

Proof: Let e ∈ intC. We consider the corresponding function ϕ := ϕC,e given by (2.3).

By using the assumption f(x̄) ∈ WMin(f(D);C) and applying Proposition 2.5., we get that x̄ is a

minimum of the problem

min
x∈D

ze(x), (3.19)

where ze : X → R and ze(x) = ϕ(f(x)− f(x̄)).

By using the same arguments presented in Theorem 3.1., we have that ze is locally Lipschitz at x̄.

Taking into account Proposition 3.8., we obtain that

0 ∈ ∂Cze(x̄) +NC(x̄;D). (3.20)

Because of the convexity of ze, applying Remark 2.2. and Proposition 2.5., there exist y∗ ∈ C+ with

y∗(e) = 1 such that (3.18) holds true. �

To the best of our knowledge, Ha [9] used the Clarke coderivative to obtain optimality conditions for

several types of solutions of set-valued optimization problems. In addition, optimality conditions in

terms of the Clarke subdifferential were only derived for (weakly) Pareto minimal solution for geometric

vector optimization problems; see e.g. [5, 22]. In this section, we obtain optimality conditions in terms

of the Clarke subdifferential for solutions of the problem (VP) without the closedness assumption of

the feasible set D.

We end this paper by the following theorem presenting a necessary optimality condition for (ε, e)-

Pareto solutions of the problem (VP) in the sense of Definition 2.2. where intC = ∅.

Theorem 3.4. Let X,Y ∈ X , D be a subset of X, C be a proper, closed, convex and pointed cone in Y

with empty interior and f : X → Y be a vector-valued function. Assume that ε > 0, e ∈ C, ‖e‖ = 1 and

x0 is an (ε, e)-Pareto minimal solution of the problem (VP). If f is a (C, e, ε)- strongly convex function

and f is C-bounded from above around x0 ∈ D then there exist x̄ ∈ B(x0,
√
ε)∩D, y∗ ∈ C+, ‖y∗‖ = 1

such that

0 ∈ ∂F (y∗ ◦ f)(x̄) +
√
εUX∗ +NC(x̄;D). (3.21)

Proof: Consider the functions d−C−εe(·) and zε,e(·) = d−C−εe(f(·)− f(x0)). As shown in Theorem

3.2., the function zε,e(·) is Lipschitz around x0. Applying the Ekeland variational principle for zε,e(·)
on D, we get an element x̄ ∈ B(x0,

√
ε) ∩D such that x̄ is a minimum of the problem

min
x∈D

zε,e(x) +
√
ε‖x− x0‖.

Taking into account Proposition 3.8., we obtain that

0 ∈ ∂Czε,e(x̄) +
√
ε∂C‖ · −x0‖(x̄) +NC(x̄;D). (3.22)

Following the same lines given in the proof of Theorem 3.2., we get the conclusion. �
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4. CONCLUSIONS

We have dealt with the problem (VP) for both cases intC 6= ∅ and intC = ∅ by using appropriate

scalarizing functionals. The optimality conditions are derived in terms of the abstract subdifferential

and the Clarke subdifferential. Although our abstract subdifferential is a special case of the generic

subdifferential given in [6] and it is possible to use this generic subdifferential for solving the problem

(VP), the optimality conditions in this paper concern the properties of the function f , not only the

image set f(D) as in [6]. In addition, in order to obtain the optimality conditions in terms of the

Clark subdifferential we can omit the closedness of the feasible set.
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New York, 2003.



[9] T. X. D. Ha. Optimality conditions for several types of efficient solutions of set-valued optimiza-

tion problems. In Nonlinear analysis and variational problems, volume 35 of Springer Optim.

Appl., pages 305–324. Springer, New York, 2010.

[10] J.-B. Hiriart-Urruty. New concepts in nondifferentiable programming. Bull. Soc. Math. France

Mém., (60):57–85, 1979. Analyse non convexe (Proc. Colloq., Pau, 1977).

[11] J.-B. Hiriart-Urruty. Tangent cones, generalized gradients and mathematical programming in

Banach spaces. Math. Oper. Res., 4(1):79–97, 1979.

[12] A. D. Ioffe. Approximate subdifferentials and applications. I. The finite-dimensional theory.

Trans. Amer. Math. Soc., 281(1):389–416, 1984.

[13] A. D. Ioffe. Approximate subdifferentials and applications. II. Mathematika, 33(1):111–128, 1986.

[14] A. D. Ioffe. Approximate subdifferentials and applications. III. The metric theory. Mathematika,

36(1):1–38, 1989.

[15] J. Jahn. Vector optimization. Springer-Verlag, Berlin, 2004. Theory, applications, and extensions.

[16] B. S. Mordukhovich. Variational analysis and generalized differentiation. I, volume 330 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences]. Springer-Verlag, Berlin, 2006. Basic theory.

[17] A. Taa. On subdifferential calculus for set-valued mappings and optimality conditions. Nonlinear

Anal., 74(18):7312–7324, 2011.
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