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ABSTRACT
Recently, in many papers intensity modulated radiotherapy treatment problems are studied as multi-

criteria optimization problems with respect to a constant ordering cone. In these problems, the goal

is to maximize the dose delivered to cancer tumor as well as to reduce side effects. However, from

a practical perspective, it is more convenient to consider such problems with respect to a variable

ordering structure. In this paper, we introduce an appropriate cone-valued mapping based on the

goal of cancer treatment. We consider a mathematical formulation of beam intensity optimization

equipped with this ordering structure. In addition, we investigate necessary optimality conditions

for solutions of a vector-valued approximation problem with respect to a general ordering cone and

the proposed variable ordering structure as well. Finally, we calculate in detail necessary optimality

conditions for solutions of the mathematical model of beam intensity optimization in radiotherapy

treatment.
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RESUMEN
Recientemente, en muchos art́ıculos los problemas relacionados con determinar tratamientos de ra-

dioterapia con intensidad modulada se estudian como problemas de optimización multicriterio con

respecto a un orden dado por un cono constante. En estos problemas, el objetivo es maximizar la

dosis para tratar el tumor mientras se reducen los efectos secundarios. Sin embargo, desde un punto

de vista práctico , es mejor considerar estructuras de orden variable. Ene ste trabajo se introduce una

aplicación cono evaluada para este problema. Se considera la formulacón matemática del problema.

Además, se investigan condiciones necesarias de optimalidad con respecto al cono que da el orden en

el caso constante y la estructura variable. Finalmente se analiza el caso particular correspondiente

al modelo de optimizar la intensidad en la radioterapia.

PALABRAS CLAVE: co-derivadas, cono normal, curva de dosis d respuesta, dosis umbral, es-

tructura de orden variable, norma vectorial, tratamiento de radioterapia de intensidad modulada,
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1. MOTIVATION

Intensity Modulated Radiotherapy Treatment (IMRT) is an advancement in radiotherapy that allows

modulating radiation intensity across a beam. Currently, it is being used to treat cancers of the

prostate, head and neck, breast, lung as well as certain types of sarcomas. The basic idea of IMRT is

to reduce the intensity of rays going through particularly sensitive critical structures and to increase

the intensity of those rays seeing primarily the target volume.

The problem of calculating those intensities based on dose prescription in the target volume and the

surrounding critical structures is called inverse planning. This problem is modeled as a multicriteria

optimization problem with an objective function depending on the specific goal that the treatment

planner wants to achieve. In general, a level dose of radiation in the cancer organ should be closed

to desired dose while it is absolutely necessary to avoid radiation in the organs outside the tumor

(the critical organs) as much as possible. This inverse problem with respect to (w.r.t.) a constant

cone is studied by several authors and can be divided into two categories, multiobjective nonlinear

programming and multiobjective linear programming. For a general survey we refer the reader to [4].

However, from a practical perspective, it may seem more appropriate to concern this inverse problem

as a multicriteria optimization problem w.r.t. a variable ordering structure, see [5]. This will be

illustrated for a special problem in radiotherapy treatment in the following.

We consider the treatment of a lung cancer, lung is the most sensitive organ to radiotherapy damage.

The dose delivered to lung is limited by spinal cord and heart (critical organs). Thus, to reduce side

effects, the doses delivered to spinal cord and heart have to be minimized. A dose response curve

describes the change in effect on an organ caused by differing levels of doses delivered to it. We

suppose that the dose response curves for lung, spinal cord and heart in lung cancer treatment are

illustrated in Fig1.

These curves can be used to estimate a threshold dose for each organ. The threshold dose is defined

as the dose of radiation, below which the organism does not suffer from any effect. In mathematical

point of view, it is the dose, below which the response is zero and above which it is nonzero, see [7, 12].

In this case, we assume that θ1, θ2 and θ3 are respectively the threshold doses of lung, spinal cord

and heart. We now have a look at three treatment plans (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3)

where Ai, Bi, Ci are the doses delivered to lung, spinal cord and heart respectively, i = 1, 2, 3. From a

practical point of view, if the response of the organ on dose variations is relatively small, a rise of the

dose delivered to that organ in favor of an improvement of the value for another organ is preferred,

see [5]. In more detail, we would not only prefer an improvement of the dose level in lung, spinal

cord and heart but also to rise the dose delivered to spinal cord from B1 to B2 for reducing the dose

amount in heart, for instance, from C1 to C2. The reason is that a large improvement in the effect

on heart is reached by changing the dose to C2 while the effects on lung and spinal cord are changed

mildly.

We assume that all treatment plans is a subset of R3 and consider a closed convex cone C ⊂ R3.

Suppose that we derive a mathematical model for this problem w.r.t C. We denote (A2, B2, C2) ≤C
(A1, B1, C1) if d := (A1, B1, C1) − (A2, B2, C2) ∈ C. Since C is a cone, λd ∈ C for all λ > 0 and

therefore if (A3, B3, C3) satisfies (A2, B2, C2)− (A3, B3, C3) = βd with β > 0 we have (A3, B3, C3) ≤C
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(a) Dose response curve for lung (b) Dose response curve for spinal cord

(c) Dose response curve for heart

Figure 1: Dose response curves in lung cancer treatment

(A2, B2, C2) i.e., (A3, B3, C3) is “better” than (A2, B2, C2).

On the other hand, having a look at the dose response curve of spinal cord, the increase in the effect

for spinal cord is large by changing the dose from B2 to B3. Therefore, (A3, B3, C3) might not be a

preferred solution from a practical point of view. Thus, the choice of variable ordering cone depending

on the actual doses in this circumstance seems to be more appropriate. Note that this illustration has

the same idea as that in [5] for the case of prostate cancer treatment.

The rest of this paper is organized as follows: In Section 2, we recall some preliminaries which will

be used in this work. In Section 3, we construct a variable ordering structure based on the goal

of cancer treatment and formulate a mathematical problem for IMRT beam intensity optimization.

Many important properties of this ordering structure are also investigated in this part. Section 4

introduces a multiobjective approximation problem equipped with the proposed structure as well as a

general cone-valued mapping. This section is also concerned with providing optimality conditions for

nondominated solutions and minimal solutions of this problem. In Section 5, we present an application

in radiotherapy treatment by giving specific conditions for solutions of the mathematical formulation
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introduced in Section 3.

2. PRELIMINARIES

2.1. Some notions related to variable ordering structures

In this part, we consider some notions related to variable ordering structures in Rn, which will be used

in the next sections. A set Q ⊂ Rn is a cone if for every q ∈ Q and for all λ ≥ 0, λq ∈ Q holds true. A

cone Q is called convex if Q+Q ⊆ Q. In addition, a cone Q is called pointed if Q ∩ (−Q) = {0} and

Q is proper if Q 6= Rn and Q 6= {0}. For a cone Q ⊂ Rn we set Q+ := {y∗ ∈ Rn| ∀ y ∈ Q : y∗(y) ≥ 0}
for the positive dual cone of Q. For a nonempty set A ⊆ Rn we define

coneA := {ta : t ∈ R+, a ∈ A} where R+ = [0,∞).

Recall that the affine hull of A is defined as

aff A := {
l∑
i=1

λixi| xi ∈ A, λi ∈ R,
l∑
i=1

λi = 1, l ∈ N},

which is the smallest affine set containing A. The closure of aff A in Rn is called the closed affine hull

of A and is denoted by affA. The relative interior rintA of A is the interior of A w.r.t. affA.

In this paper, we are concerning a model of beam intensity optimization equipped with variable

ordering structures. For an introduction to variable ordering structures and some recent results in

this area, we refer the reader to [1, 2, 3, 5, 16, 17].

Definition 2.1. (Variable ordering structure, [5]) Let K : Rn ⇒ Rn be a set-valued map such that

for every y ∈ Rn, K(y) is a proper convex cone. Then, for every y1, y2 ∈ Rn, we define

y1 ≤N,K y2 if y2 ∈ y1 +K(y1), (2.1)

and

y1 ≤P,K y2 if y2 ∈ y1 +K(y2). (2.2)

If elements in the space Rn are compared using the binary relation (2.1) or (2.2), then it is said that

K defines a variable ordering structure on Y.

For convenience, from now on we write the notations ≤N,K, ≤P,K by relaxed forms ≤N and ≤P .

Before deriving the definitions for efficient solutions of a vector optimization problem w.r.t. a variable

ordering structure, it is necessary to concern the definition of nondominated elements and minimal

elements of sets w.r.t. variable ordering structures.

Definition 2.2. Let A be a nonempty subset of Rn, ā ∈ A, and K : Rn ⇒ Rn be a cone-valued map.

We say that:

(i) ā is a nondominated element of A w.r.t. K(·) if there is no a ∈ A \ {ā} such that a ≤N ā, i.e.,

ā ∈ a+K(a) or equivalently ā /∈ ∪
a∈A

({a}+K(a) \ {0Rn}). The set of all nondominated elements of A

w.r.t. K(·) is denoted by ND(A,K(·)).
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(ii) ā is a minimal element of A w.r.t. K(·) if there is no a ∈ A\{ā} such that a ≤P ā, i.e., ā ∈ a+K(ā),

or equivalently ({ā} − K(ā)) ∩ A = {ā}. The set of all minimal elements of A w.r.t. K(·) is denoted

by Min(A,K(·)).

Remark 2.1.

(i) Obviously, when K(·) = C where C is a closed, convex and pointed cone of Rn, the concepts of non-

dominated elements and minimal elements are identical. It this case, we called them Pareto efficient

elements of the set A in Rn w.r.t. the cone C.

(ii) [5, Lemma 2.15] An element ā is a minimal element of A w.r.t. K(·) if and only if it is an efficient

element of A in Rn w.r.t. the cone K(ā).

We now consider a vector optimization problem w.r.t. a variable ordering structure and some concepts

of its solution in the preimage space.

Let f : Rm → Rn be a continuous mapping, Ω ⊆ Rm be a nonempty closed set and K : Rn ⇒ Rn be

a cone-valued ordering map. Let f(Ω) := {f(x)| x ∈ Ω}. We consider the following problem:

K −min
x∈Ω

f(x). (PK)

Definition 2.3. (Nondominated solutions and minimal solutions of a vector optimization problem

w.r.t. a variable ordering structure)

Consider the vector optimization problem (PK) and x̄ ∈ Ω. We say that:

(i) x̄ is a nondominated solution of problem (PK) if f(x̄) is a nondominated element of the set f(Ω).

(ii) x̄ is a minimal solution of problem (PK) if f(x̄) is a minimal element of the set f(Ω).

Remark 2.2.

(i) When K(·) = C where C is a closed, convex and pointed cone of Rn, the concepts of nondominated

solutions and minimal solutions are identical. It this case, we called them Pareto efficient solutions

of the problem C −Min
x∈Ω

f(x).

(ii) If x̄ ∈ Ω is a minimal solution of problem (PK), then it is also a Pareto efficient solution of the

problem K(f(x̄))−Min
x∈Ω

f(x).

2.2. Normal cones and Coderivatives

In this section, we present some definitions of normal cones and coderivatives which will be used to

derive optimal conditions for vector optimization problems w.r.t. variable ordering structures. We

begin with recalling notions of limits for set-valued mappings. Let F : Rm ⇒ Rn be a set-valued

mapping with the domain and the graph respectively defined by

domF := {x ∈ Rm| F (x) 6= ∅},

and

gphF := {(u, v) ∈ Rm × Rn| v ∈ F (u)}.
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We denote the upper limits and lower limits of F as x → x̄ by lim sup
x→x̄

F (x) and lim inf
x→x̄

F (x) which

are defined by, respectively,

lim sup
x→x̄

F (x) := {y ∈ Rn| ∃ {xk} → x̄ and yk → y with yk ∈ F (xk) for all k ∈ N},

and

lim inf
x→x̄

F (x) := {y ∈ Rn| ∀ {xk} → x̄, ∃ yk ∈ F (xk) with k ∈ N : yk → y as k →∞}.

Definition 2.4. (Normal cones, [11])

Let S be a nonempty subset of Rn, and let x ∈ S, ε > 0. We define the set of ε−normals to S at x as:

N̂ε(S, x) := {x∗ ∈ Rn| lim sup

v
S−→x

x∗(v − x)

‖v − x‖
≤ ε}. (2.3)

When ε = 0, the elements in the right hand side of (2.3) are called Fréchet normals and their collection,

denoted by N̂(S, x) is the Fréchet normal cone to S at x.

Let x̄ ∈ S. The (basic, limiting, Mordukhovich) normal cone to S at x̄ is defined by

N(S, x̄) := {x∗ ∈ Rn| ∃ xk
S−→ x̄, x∗k

w∗−−→ x∗, x∗k ∈ N̂(S, xk), ∀k ∈ N}.

Now we introduce the definition of coderivative of a general set-valued mapping F : Rm ⇒ Rn. This

definition will be used in Section 4. for two special mappings: a vector-valued mapping f : Rm → Rn

and a cone-valued mapping K : Rn ⇒ Rn.

Definition 2.5. (Fréchet coderivative and normal coderivative, [11])

Let F : Rm ⇒ Rn be a set-valued mapping and (x̄, ȳ) ∈ gphF. The Fréchet coderivative of F at (x̄, ȳ)

is the set-valued map D̂∗F (x̄, ȳ) : Rn ⇒ Rm defined by:

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rm| (x∗,−y∗) ∈ N̂(gphF, (x̄, ȳ))}.

The normal coderivative of F at (x̄, ȳ) is the set-valued map D∗F (x̄, ȳ) : Rn ⇒ Rm given by:

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ Rm| (x∗,−y∗) ∈ N(gphF, (x̄, ȳ))}.

In order to provide specific optimality conditions for solutions of our problems, we recall some results

of normal cone to some special sets in Rn. These results are given by Rockafellar and Wets [15], so

we omit their proofs in this paper.

Proposition 2.1. (Normal cones to product sets, [15, Theorem 6.41])

Let Ci be closed subsets of Rni , i = 1, . . . , k and Rn = Rn1 × . . .× Rnk . If C = C1 × . . .× Ck, then

at any x̄ = (x̄1, . . . , x̄k) with x̄i ∈ Ci, it holds that

N(C, x̄) = N(C1, x̄1)× . . .×N(Ck, x̄k).
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Proposition 2.2. (Normal cones to boxes, [15, Example 6.10])

Assume that C = C1 × . . . × Cn in which Ci is a closed interval in R, i = 1, . . . , n. Then, at any

x̄ = (x̄1, x̄2, . . . , x̄n) with x̄i ∈ Ci, one has

N(C, x̄) = N(C1, x̄1)× . . .×N(Cn, x̄n), where

N(Ci, x̄i) =



[0,∞) if x̄i is (only) the right end point of Ci,

(−∞, 0] if x̄i is (only) the left end point of Ci,

{0} if x̄i is an interior point of Ci,

(−∞,∞) if Ci is a one-point interval.

In order to provide necessary conditions for our problems in the next section, we present in the

following a result concerning nondomination conditions for vector optimization problem w.r.t. a cone-

valued mapping. This result is given by Bao [2] for Asplund spaces, i.e. a Banach space X such

that any convex continuous function ϕ : U → R defined on an open convex subset U of X is Fréchet

differentiable on a dense subset of U , see [13, Definition 1.22]. However, since we do not consider

infinite dimensional spaces in this paper, we present this result for the case finite dimensional spaces.

For the proof, we refer to [2, Theorem 4.2].

Theorem 2.1. [2, Theorem 4.2] Let f : Rm → Rn, K : Rn ⇒ Rn and a nonempty closed subset

Ω ⊂ Rm. Let x̄ be a nondominated solution of problem (PK). Set ȳ := f(x̄) and suppose that K(·)
satisfies the following conditions:

(a) For all y ∈ Rn, K(y) is a nonempty convex cone;

(b) There exists e ∈ Rn, e 6= 0 such that e ∈
⋂

y∈Rn

K(y) \ (−K(ȳ));

(c) There is a unique point y∗ satisfying −y∗ ∈ D∗K(ȳ, 0)(y∗).

Moreover, assume that D∗f(x̄)(0) ∩ (−N(Ω, x̄)) = {0}. Then, there is y∗ ∈ Rn \ {0} such that

0 ∈ D∗f(x̄)(y∗ +D∗K(f(x̄), 0)(y∗)) +N(Ω, x̄).

2.3. Vector-valued norm and its subdifferential

In this part, we denote the linear space of the continuous linear maps from Rm to Rn by L(Rm,Rn).

We begin this section by recalling the definition of the vectorial norm and the subdifferential of a

vector-valued function.

Definition 2.6. (Vectorial norm, [8]) Let C be a convex cone in Rn. A map ||| · ||| : Rm → C is called

a vectorial norm if for all x, x1, x2 ∈ Rn and all λ ∈ R the following conditions hold:

(i) |||x||| = 0Rn ⇐⇒ x = 0Rm ;

(ii) |||λx||| = |λ| |||x|||;

(iii) |||x1 + x2||| ∈ |||x1|||+ |||x2||| − C.
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Definition 2.7. (Subdiferential of vector-valued function, [8]) Let C ⊂ Rn be a convex cone, and

f : Rm → Rn be a given map. For an arbitrary x̄ ∈ Rm, the set

∂f(x̄) := {T ∈ L(Rm,Rn)| ∀h ∈ Rm : f(x̄+ h)− f(x̄)− T (h) ∈ C}

is called the subdifferential of f at x̄.

Remark 2.3. We present in the following the subdifferential of some special kinds of vector-valued

function.

(i) [8, Example 2.22] For the vector-valued norm function ||| · ||| : Rm → Rn, x̄ ∈ Rm, we have that

∂|||x̄||| = {T ∈ L(Rm,Rn)| T (x̄) = |||x̄||| and for all x ∈ Rm : T (x) ∈ |||x̄||| − C},

where C is a pointed convex cone in Rn.

(ii) [6, Theorem 4.1.12] Let A ∈ L(Rm,Rn) and A∗ denotes the adjoint operator to A, a ∈ Rn, x0 ∈ Rm.

Then,

∂‖A(·)− a‖(x0) = {A∗T | T ∈ L(Rn,R), T (Ax0 − a) = ‖Ax0 − a‖ and ‖T‖∗ ≤ 1},

where ‖ · ‖ is a norm in Rn.

In order to derive the relationship between coderivative of a vector function and subdifferential of its

scalarization, we need the Lipschitz properties of a mapping which are defined in the following.

Definition 2.8. ( [11]) Let f : Rm → Rn be a vector-valued mapping.

(i) f is Lipschitz on U ⊂ Rm if U ⊂ dom f , and there exists ` ≥ 0 such that

‖f(x)− f(x′)‖Rn ≤ `‖x− x′‖Rm , ∀x, x′ ∈ U.

(ii) f is said to be locally Lipschitz at x ∈ Rm if there is a neighbourhood Ux of x such that f is Lipschitz

on Ux.

(iii) f is locally Lipschitz on a nonempty subset D of Rm if f is Lipschitz around every point x ∈ D.

It is known that a proper convex function f : Rm → R is locally Lipschitz at any interior point of

its domain [14, Theorem 10.4]. In addition, in [10], the authors proved that a convex vector function

from a convex subset D of Rm to Rn is locally Lipschitz on rintD.

Proposition 2.3. [11, Theorem 3.28] Let f : Rm → Rn. Then, for all y∗ ∈ Rn, it holds that

D∗f(x̄)(y∗) = ∂(y∗ ◦ f)(x̄) 6= ∅,

provided that f is locally Lipschitz at x̄.
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3. BEAM INTENSITY PROBLEM WITH VARIABLE ORDERING STRUCTURES

3.1. A variable ordering cone relevant to radiotherapy treatment

As illustrated in [4], in order to derive a mathematical model for beam intensity optimization, the

beam is discretized into p bixels or beamlets. The 3D volume of patient is divided into l voxels which

include lT tumor voxels, lC critical organ voxels (l = lT + lC) in which T represents the tumor, C

represents critical organs. The dose deposited in voxel i at unit intensity for bixel j is denoted by

aij ∈ R. We assume that the dose deposition matrix A = (aij) ∈ Rl×p is given. We denote the beam

intensity by x ∈ Rp. Then, the beam intensity and the dose have the following relationship

d = Ax,

where d ∈ Rl is a dose vector and its element di correspond to the dose deposited in voxel i. We assume

that A can be partitioned and reordered into sub-matrices AT ∈ RlT×p and AC ∈ RlN×p whose rows

corresponding to tumor and normal voxels. It is obvious that the dose delivered to tumor and critical

radiation

volume elements (voxels)

source
beam elements (bixels)

Figure 2: Discretization of patient into voxels and of beam into bixels ([4])

organ voxels are ATx and ACx respectively. ACx can be partitioned into AC1
x, . . . , ACk

x according

to the doses delivered to k different organs C1, . . . , Ck. Because different tissues can tolerate different

amounts of radiation, the radiation oncologist need to determine a “prescription dose” which consists

of the target dose for the tumor TG ∈ RlT , the lower bounds and upper bounds on the dose to tumor

voxels TLB, TUB ∈ RlT , the upper bounds on the dose to normal voxels CUB. CUB can be divided

into C1UB,C2UB, . . . , CkUB according to the voxels corresponding to different critical organs. In

radiation treatment, threshold dose is defined as the amount of radiation that is required to cause a

specific tissue effect.
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As has been outlined before, a vector optimization w.r.t. a variable ordering cone modeling for

radiotherapy treatment is more appropriate than that one w.r.t. a constant cone. Therefore, it is

necessary to construct a suitable ordering structure in order to find the desired dose for our beam

intensity optimization problem. From a practical perspective, a dose delivered to a critical organ

should be reduced when it exceeds the threshold dose of that organ. If not, we can increase this dose

in favor of an improvement in the value of another critical organ. This leads us to a variable ordering

structure in the space Rn determined as follows:

Given θ ∈ Rn, for every y = (y1, y2, . . . , yn) ∈ Rn we set

I>(y) := {i ∈ {1, 2, . . . , n}| yi > θi},

and

I≤(y) := {i ∈ {1, 2, . . . , n}| yi ≤ θi}.

Obviously, for each y ∈ Rn, it holds that I>(y) ∪ I≤(y) = {1, 2, . . . , n}.
We define the variable ordering map K : Rn ⇒ Rn as follows:

y ∈ Rn, K(y) := {d ∈ Rn| di ≥ 0 for i ∈ I>(y)}. (3.1)

This set-valued mapping will be used in the following section to construct a formulation of the intensity

problem in radiotherapy treatment when θ is chosen appropriately .

3.2. A formulation for beam intensity optimization in radiotherapy treatment

We begin this section by presenting a mathematical formulation of beam intensity optimization which

is discussed in the previous parts. Assume that θCi
is given threshold dose of critical organ i, where

i ∈ {1, . . . , k}. Since the deviation from the dose delivered to tumor organ to the target dose is

always nonnegative and should be minimized, we set θ := (0, θC1
, . . . , θCk

) ∈ Rk+1. The set of bound

conditions for beam intensity is given by

Ω := {x ∈ Rp| 0 ≤ x, TLB ≤ ATx ≤ TUB,ACix ≤ CiUB for i = 1, . . . , k}.

By using the variable ordering mapping K(·) given by (3.1) with n := k + 1, the problem of finding

beam intensity in radiotherapy treatment can now be formulated as a special case of (PK) introduced

in Section 2.1..

Minimize f(x) subject to x ∈ Ω w.r.t. K(·), (P1)

where

f : Rp → Rk+1

f(x) :=


‖ATx− TG‖∞
‖AC1

x‖∞
. . .

‖ACk
x‖∞

 .
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The first criterion can be interpreted as the deviation from the prescribed dose to the tumor. ‖ACix‖∞
is the dose to the critical organ i (i = 1, . . . , k). The objective function can be constructed by using

Euclidean norm, see [9]. However, this norm allows the averaging out of large deviations on a small

tissue by small or no deviation on a large tissue. Therefore, it seems to be more reasonable to use the

maximum norm.

In the following, we present some properties of the proposed variable ordering cone K(·) given by

(3.1).

Proposition 3.1. Consider the variable ordering structure K : Rn ⇒ Rn determined by (3.1) and let

Ω be a subset of Rn. Then, the following assertions hold true

(i) For each y ∈ Rn, K(y) is a closed and convex cone and Rn+ ⊆ K(y). In addition, K(y) is pointed if

and only if yi > θi, ∀ i = 1, 2, . . . , n.

(ii) For all y1, y2 ∈ Rn, y1 − y2 ∈ Rn+ implies K(y1) ⊆ K(y2).

(iii) If ȳ ∈ Ω satifies I>(ȳ) 6= ∅, then there exists e 6= 0 such that

e ∈
⋂
y∈Ω

K(y) \ (−K(ȳ)).

(iv) gphK is a closed subset of Rn × Rn.

Proof.

(i) Obviously, for all y ∈ Rn we have that K(y) is a closed and convex cone. K(y) is pointed if and

only if K(y) ∩ (−K(y)) = {0}. By the definition of K(·), it holds that

K(y) ∩ (−K(y)) = {d ∈ Rn| di = 0 with i ∈ I>(y)}.

Thus, K(y) is pointed if and only if I>(y) = {1, 2, . . . , n}. This condition also means that

yi > θi, ∀ i = 1, 2, . . . , n.

(ii) It follows from y1 − y2 ∈ Rn+ that y1
i ≥ y2

i for all i = 1, 2, . . . , n. Therefore, for all i ∈ I>(y2) we

have y1
i ≥ y2

i > θi, i.e., i ∈ I>(y1). Thus, I>(y2) ⊆ I>(y1) and K(y1) ⊆ K(y2) holds true.

(iii) Assume that i0 ∈ I>(ȳ) i.e., ȳi0 > θi0 . It follows from the definition of K(·) that if

d = (d1, . . . , dn) ∈ (−K(ȳ)) then di0 ≤ 0. Take e := (e1, . . . , en), where ei > 0 for all i = 1, 2, . . . , n,

i.e., e ∈ Rn+. Since Rn+ ⊆
⋂
y∈Ω

K(y), e ∈
⋂
y∈Ω

K(y). Because ei0 > 0, we have that e 6∈ (−K(ȳ)). There-

fore, e ∈
⋂
y∈Ω

K(y) \ (−K(ȳ)).

(iv) Consider a consequence {(yk, dk)} ⊂ gphK which convergences to (y, d) when k → ∞. We

need to show that (y, d) ∈ gphK.

Suppose that

(yk, dk) = (yk1 , y
k
2 , . . . , y

k
n, d

k
1 , d

k
2 , . . . , d

k
n),

and

(y, d) = (y1, y2, . . . , yn, d1, d2, . . . , dn).
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To proceed, we consider the following cases.

Case 1: I>(y) 6= ∅. Let i ∈ I>(y) be arbitrary. We will prove that di ≥ 0.

Because

yi > θi and {yki } → yi when k →∞,

it holds that

∃ k0 ∈ N∗ such that for all k ≥ k0 : yki > θi.

Taking into account (yk1 , y
k
2 , . . . , y

k
n, d

k
1 , . . . , d

k
n) ∈ gphK, we get that

dki ≥ 0, ∀ k ≥ k0.

Since dki → di when k →∞, it yields di ≥ 0 for all i ∈ I>(y). Thus, (y, d) ∈ gphK.
Case 2: I>(y) = ∅, i.e., yi ≤ θi, ∀ i = 1, 2, . . . , n. It follows directly from the definition of K(·) that

(y, d) ∈ gphK. The proof is complete. �

4. OPTIMALITY CONDITIONS FOR SOLUTIONS OF MULTIOBJECTIVE AP-

PROXIMATION PROBLEMS

4.1. Optimality conditions for nondominated solutions of approximation problems w.r.t.

a general ordering structure

We begin this section by introducing in the following a vector approximation problem which is con-

sidered as a general problem of the problem (P1).

Let Ai be linear mappings from Rm to Rmi , ai ∈ Rmi , i = 1, 2, . . . , n, ‖ · ‖i be norms in Rmi . Given

a nonempty closed set Ω ⊆ Rm and a set-valued map K : Rn ⇒ Rn satisfying K(y) is a closed and

convex cone for each y ∈ Rn. We consider the following problem:

Minimize f(x) subject to x ∈ Ω w.r.t. K(·), (P2)

where

f : Rm → Rn

f(x) :=


‖A1x− a1‖1
‖A2x− a2‖2

. . .

‖Anx− an‖n

 .

In Section 4.2., we will discuss the problem (P2) for the case K(·) is given by (3.1). Now, we present a

necessary optimality condition for nondominated solutions of the vector approximation problem (P2).

Theorem 4.1. We consider the problem (P2) w.r.t. a cone-valued mapping K : Rn ⇒ Rn. Suppose

that x̄ ∈ Ω is a nondominated solution of (P2) and let ȳ := f(x̄). We assume that the following

conditions hold:

(i) ∀ y ∈ Rn, K(y) is a nonempty convex cone.
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(ii) There exists e ∈ Rn, e 6= 0 with e ∈
⋂

y∈Rn

K(y) \ (−K(ȳ)).

(iii) There is a unique point y∗ satisfying −y∗ ∈ D∗K(ȳ, 0)(y∗).

Then, there are y∗ ∈ Rn \ {0} and corresponding z∗ ∈ (y∗ + D∗K(ȳ; 0)(y∗)) and Ti ∈ L(Rmi ,R)

satisfying Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1 such that

0 ∈
n∑
i=1

A∗i z
∗Ti +N(Ω, x̄).

Proof. Since f is Lipschitz and by using the relationship between coderivative of a vector function

with subdiferential of its scalarization (Proposition 2.3.), we get the following assertion:

∀ y∗ ∈ Rn, ∀ x̄ ∈ Ω : D∗f(x̄)(y∗) = ∂(y∗ ◦ f)(x̄).

This implies that D∗f(x̄)(0) = {0} and thus D∗f(x̄)(0) ∩ (−N(Ω, x̄)) = {0}.
Applying Theorem 2.1., there exists y∗ ∈ Rn \ {0} such that

0 ∈ D∗f(x̄)(y∗ +D∗K(ȳ, 0)(y∗)) +N(Ω, x̄).

This means that there is z∗ ∈ (y∗ +D∗K(ȳ, 0)(y∗)) satisfying

0 ∈ D∗f(x̄)(z∗) +N(Ω, x̄)

⇐⇒ 0 ∈ ∂(z∗ ◦ f)(x̄) +N(Ω, x̄).

Taking into account the formulation of coderivative of a vector-valued norm function in Remark 2.3.,

we have that

∃ Ti ∈ L(Rmi ,R), Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1, (i = 1, . . . , n)

such that

0 ∈
n∑
i=1

A∗i z
∗Ti +N(Ω, x̄).

The proof is complete. �

In the following, we present a corollary of Theorem 4.1. concerning a necessary optimality condition

for Pareto efficient solutions of problem (P2) w.r.t. a constant cone.

Corollary 4.1. We consider the problem (P2) w.r.t. a fixed valued mapping K(·) = Q, where Q is a

closed, convex and pointed cone in Rn. Suppose that x̄ ∈ Ω is a Pareto efficient solution of (P2) and

let ȳ := f(x̄). In addition, suppose that there exists e ∈ Rn, e 6= 0 with e ∈ Q \ (−Q). Then, there

are y∗ ∈ −N(Q, 0) \ {0} and Ti ∈ L(Rmi ,R) satisfying Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1

such that

0 ∈
n∑
i=1

A∗i y
∗Ti +N(Ω, x̄).
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4.2. Optimality conditions for solutions of vector approximation problems w.r.t. the

proposed ordering structure

This section is concerned with deriving optimality conditions for solutions of the following problem

which is a special case of (P2) when the ordering K(·) is given by (3.1):

Minimize f(x) subject to x ∈ Ω w.r.t. K(·), (P3)

where

f : Rm → Rn

f(x) :=


‖A1x− a1‖1
‖A2x− a2‖2

. . .

‖Anx− an‖n

 ,

and K(·) is determined by (3.1).

Notice that (P3) reduces to the problem (P1) when we choose θ := (0, θ1, . . . , θk), a1 = TG,

a2 = .... = an = 0, m := p, n := k + 1, A1 := AT , Aj+1 := ACj
, j = 1, . . . , k and ‖ · ‖i := ‖ · ‖∞, ∀ i =

1, . . . , n. It is necessary to determine D∗K(ȳ, 0)(y∗) in order to derive a specific optimality conditions

for nondominated solutions as well as minimal solutions of the problem (P3). For this aim, we will

calculate the normal cone N(gphK, (ȳ, 0)). First, we suppose that Ω is a subset of Rn. We consider

the associated distance function

dist(x,Ω) := inf
u∈Ω
‖x− u‖,

and define the Euclidean projector of x to Ω by

P (x,Ω) := {ω ∈ Ω| ‖x− ω‖ = dist(x,Ω)}, (4.1)

where ‖ · ‖ is Euclidean norm in Rn. The following theorem describes the formulation of the basic

normal cone to a subset Ω ⊆ Rn which is locally closed around x̄ ∈ Ω.

Theorem 4.2. [11, Theorem 1.6] Let Ω ⊆ Rn be locally closed around x̄ ∈ Ω. Then, it holds that

N(Ω, x̄) = lim sup
x→x̄

N̂(Ω, x),

and

N(Ω, x̄) = lim sup
x→x̄

[cone(x− P (x; Ω))].

In order to compute N(gphK, (ȳ, 0)), we rewrite the graph of mapping K(·) as follows:

For each I ⊆ {1, 2, . . . , n}, we set:

UI := {y ∈ Rn| I>(y) = I},

and

RnI := {d ∈ Rn| di ≥ 0, ∀ i ∈ I}.
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Obviously, if y ∈ UI then K(y) = RnI . Therefore, we obtain

gphK =
⋃

I⊆{1,2,...,n}

UI × RnI .

Since gphK is closed (Proposition 3.1.) and taking into account Theorem 4.2., we have that

N(gphK, (ȳ, 0)) = lim sup
(y,d)→(ȳ,0)

[cone((y, d)− P ((y, d);
⋃

I⊆{1,2,...,n}

UI × RnI ))].

This analysis leads to the question if we can provide the results of Euclidean projector to graph of K(·)
which gives the formulation of the normal cone to its graph by using Theorem 4.2.. This is discussed

in the following theorem.

Theorem 4.3. Given a point θ = (θ1, . . . , θn) ∈ Rn and the set-valued mapping

K : Rn ⇒ Rn determined by (3.1). For each element (y, d) ∈ Rn × Rn we set

J≥(d) := {i ∈ {1, 2, . . . , n}| di ≥ 0},

and

I>(y) := {i ∈ {1, 2, . . . , n}| yi > θi}.

Then, it holds for the Euclidean projector given by (4.1) that

(i) If I 6⊆ I>(y) then P ((y, d);UI × RnI ) = ∅.

(ii) If I ⊆ I>(y) then

(a)

P ((y, d);UI × RnI ) ={(yI , dI) ∈ UI × RnI },

where (yI , dI) := (yI1 , . . . , y
I
n, d

I
1, . . . , d

I
n) determined by:

dIi =di,∀ i ∈ ({1, 2, . . . , n} \ I)
⋃
J≥(d);

dI =0, ∀ i ∈ I \ J≥(d);

yIi =θi, ∀ i ∈ I>(y) \ I;

yIi =yi, ∀ i ∈ ({1, 2, . . . , n} \ I>(y)) ∪ I.

(b) dist((y, d), UI × RnI ) =
√ ∑
i∈I>(y)\I

(yi − θi)2 +
∑

i∈I\J≥(d)

(di)2;

(iii) P ((y, d); gphK) =
⋃
I

P ((y, d);UI × RnI ),

where I = argminI⊆I>(y) dist((y, d), UI × RnI ).
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Proof. Let I and I ′ be two arbitrary subsets of {1, 2, . . . , n}. We have that

(UI × RnI )
⋂

(UI′ × RnI′) = ∅ with I 6= I ′.

Therefore,

P ((y, d);∪I⊆{1,2,...,n}UI × RnI ) = argmin(yI ,dI)∈UI×Rn
I
(‖(y, d)− (yI , dI)‖2).

Thus, for each I ⊂ {1, 2, . . . , n}, we need to find P ((y, d);UI × RnI ).

(i) I 6⊆ I>(y) i.e., ∃ i0 ∈ I but i0 /∈ I>(y). We will prove that

P ((y, d);UI × RnI ) = ∅.

Indeed, suppose that there is an element (yI , dI) ∈ UI × RnI such that

‖(yI , dI)− (y, d)‖2 = inf(ω,γ)∈UI×Rn
I
‖(ω, γ)− (y, d)‖2.

Since yI ∈ UI and i0 ∈ I, we assume that

(yI , dI) = (yI1 , y
I
2 , . . . , y

I
n, d

I
1, d

I
2, . . . , d

I
n),

and yIi0 = θi0 + ε with ε > 0. We consider the point

(y∗, d∗) := (y∗1 , y
∗
2 , . . . , y

∗
n, d
∗
1, d
∗
2, . . . , d

∗
n),

determined by

y∗i0 = θi0 +
ε

2
, y∗i = yIi for i ∈ {1, 2, . . . , n} \ {i0},

and

d∗k = dIk, k = 1, 2, . . . , n.

Obviously, (y∗, d∗) ∈ UI × RnI . Now we get

‖(y∗, d∗)− (y, d)‖2 =

n∑
i=1

((y∗i − yi)2 + (d∗i − di)2)

=
∑

i∈{1,2,...,n}\{i0}

(y∗i − yi)2 + (y∗i0 − yi0)2 +

n∑
i=1

(d∗i − di)2

=
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (θi0 +
ε

2
− yi0)2 +

n∑
i=1

(dIi − di)2

<
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (θi0 + ε− yi0)2 +

n∑
i=1

(dIi − di)2

(yIi0 = θi0 + ε)

=
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (yIi0 − yi0)2 +

n∑
i=1

(dIi − di)2

=

n∑
i=1

((yIi − yi)2 + (dIi − di)2)

= ‖(yI , dI)− (y, d)‖2
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Thus, (y∗, d∗) ∈ UI × RnI and ‖(y∗, d∗) − (y, d)‖2 < ‖(yI , dI) − (y, d)‖2, this is a contradiction with

the definition of (yI , dI):

‖(yI , dI)− (y, d)‖2 = inf(ω,γ)∈UI×Rn
I
‖(ω, γ)− (y, d)‖2.

(ii)

(a) Let I ⊆ I>(y) and take an arbitrary element (yI , dI) ∈ UI × RnI . It holds that

‖(yI , dI)− (y, d)‖2 =

n∑
i=1

(yIi − yi)2 +

n∑
i=1

(dIi − di)2

=
∑
i∈I

(yIi − yi)2 +
∑

i∈I>(y)\I

(yIi − yi)2 +
∑

i∈{1,2,...,n}\I>(y)

(yIi − yi)2

+
∑

i∈({1,2,...,n}\{I∪J≥(d)})

(dIi − di)2 +
∑

i∈I\J≥(d)

(dIi − di)2

+
∑

i∈J≥(d)\I

(dIi − di)2 +
∑

I∩J≥(d)

(dIi − di)2

≥
∑

i∈I>(y)\I

(yIi − yi)2 +
∑

i∈I\J≥(d)

(0− di)2

≥
∑

i∈I>(y)\I

(θi − yi)2 +
∑

i∈I\J≥(d)

(0− di)2.

The last conclusion is obtained since:

∀ i ∈ I>(y) \ I : yi > θi and yIi ≤ θi,

∀ i ∈ I \ J≥(d) : dIi ≥ 0 and di < 0.

Therefore, ‖(yI , dI)− (y, d)‖2 ≥
∑

i∈I>(y)\I
(θi − yi)2 +

∑
i∈I\J≥(d)

(0− di)2,

and the equation holds true if we choose

dIi =di, ∀ i ∈ ({1, 2, . . . , n} \ I) ∪ J≥(d);

dI =0, ∀ i ∈ I \ J≥(d);

yIi =θi, ∀ i ∈ I>(y) \ I;

yIi =yi, ∀ i ∈ ({1, 2, . . . , n} \ I>(y)) ∪ I.

(b) It is obviously that if I ⊆ I>(y) then

dist((y, d), UI × RnI ) =

√ ∑
i∈I>(y)\I

(yi − θi)2 +
∑

i∈I\J≥(d)

(di)2.

(iii) Since gphK is a closed set, P ((y, d), gphK) 6= ∅ [15, Example 1.20]. Suppose that

(ŷ, d̂) ∈ P ((y, d), gphK),

then

∃ J ⊂ {1, 2, . . . , n} such that (ŷ, d̂) ∈ UJ × RnJ .
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It holds that

d((y, d), (ŷ, d̂) = d((y, d), gphK)

≤ d((y, d), UJ × RnJ)

≤ d((y, d), (ŷ, d̂)).

The equation holds true if (ŷ, d̂) = P ((y, d), UJ × RnJ). Taking into account (i) and (ii), we get

J ⊆ I>(y) and this completes the proof. �

The following remark shows how one obtains the Euclidean projector of an arbitrary point in Rn×Rn

to the graph of the mapping K(·), the normal cone to its graph as well as its coderivative.

Remark 4.1.

(i) We can get the projection of (y, d) to gphK through these following steps:

Step 1: Determine I>(y).

Step 2: For each I ⊆ I>(y), calculate d((y, d), UI × RnI ) = σI and

P ((y, d);UI × RnI ) = {(yI , dI) ∈ UI × RI : d((yI , dI), UI × RnI ) = σI}.

Step 3: Find σ := minI⊆{1,2,...,n}{σI} and

P ((y, d), gphK) = ∪IP ((y, d);UI × RnI ),

where I satisfies I ⊆ I>(y) and d((y, d), UI × RnI ) = σ.

(ii) From the Theorem 4.3. above we obtain that

N(gphK, (ȳ, 0)) = lim sup
(y,d)→(ȳ,0)

cone((y, d)− P ((y, d), gphK), (4.2)

where P ((y, d), gphK) is determined in Theorem 4.3. (iii). In addition, it holds that

D∗K(ȳ, 0)(y∗) = {x∗ ∈ Rn| (x∗,−y∗) ∈ N(gphK, (ȳ, 0))}, (4.3)

where N(gphK, (ȳ, 0)) given by (4.2).

Now we are ready to derive the optimality condition for nondominated solutions of the problem (P3).

Theorem 4.4. Let K : Rn ⇒ Rn be a set-valued map given by (3.1). Suppose that x̄ ∈ Ω is a

nondominated solution of the problem (P3), ȳ := f(x̄) and the following assertions hold true

(i) I>(ȳ) 6= ∅.

(ii) There is a unique point y∗ such that −y∗ ∈ D∗K(ȳ, 0)(y∗).
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Then, there exist y∗ ∈ Rn \ {0} and corresponding z∗ ∈ (y∗ + D∗K(ȳ; 0)(y∗)) and Ti ∈ L(Rmi ,R)

satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1(i = 1, 2, . . . , n) such that

0 ∈
n∑
i=1

A∗i z
∗Ti +N(Ω, x̄),

where D∗K(ȳ, 0)(y∗) is determined by (4.3).

Proof. For every y ∈ Rn, K(y) is a closed convex cone (Proposition 3.1. (i)). Taking into account

I>(ȳ) 6= ∅ and Proposition 3.1.(iii), it holds that

∃ e ∈ Rn, e 6= 0 : e ∈
⋂
y∈Rn

K(y) \ (−K(ȳ)).

Applying directly Theorem 4.1. and the formulation of D∗K(ȳ, 0)(y∗) given in Remark 4.1.(ii), we

obtain the desired conclusion. �

The following result provides a specific optimality condition for minimal solutions of (P3) by calculating

the normal cone to K(ȳ) at 0.

Theorem 4.5. Let K : Rn ⇒ Rn be a set-valued map given by (3.1).

(i) Let x̄ ∈ Ω and ȳ := f(x̄). Then, the normal cone to K(ȳ) at 0 is given by:

N(K(ȳ), 0) = N1 × . . .×Nn,

where for i = 1, 2, . . . , n : Ni := (−∞, 0] with i ∈ I>(ȳ),

Ni := {0} with i 6∈ I>(ȳ).

(ii) Suppose that x̄ is a minimal solution of (P3) w.r.t. K(·). In addition, assume that I>(ȳ) 6= ∅, then

there exist y∗ ∈ K(ȳ)+ \ {0} and Ti ∈ L(Rmi ,R) satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1 such that

0 ∈
n∑
i=1

A∗i y
∗Ti +N(Ω, x̄).

Proof.

(i) By the definition of K(·), we get that

K(ȳ) = K1 × . . .×Kn,

where for i = 1, 2, . . . , n : Ki := [0,+∞) with i ∈ I>(ȳ),

Ki := R with i 6∈ I>(ȳ).
(4.4)
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Taking into account Proposition 2.2. and the formula of Ki in (4.4), it holds that

N(K(ȳ), 0) = N(K1, 0)×N(K2, 0)× . . .×N(Kn, 0) = N1 × . . .×Nn,

where for i = 1, 2, . . . , n: Ni := (−∞, 0] if Ki = [0,+∞),

Ni := {0} if Ki = R.
(4.5)

Thus, from (4.4) and (4.5) it yields:

N(K(ȳ), 0) = N1 × . . .×Nn,

where for i = 1, 2, . . . , n: Ni := (−∞, 0] with i ∈ I>(ȳ),

Ni := {0} with i 6∈ I>(ȳ).
(4.6)

(ii) Suppose that x̄ is a minimal solution of the problem (P3) w.r.t. K(·). Then, x̄ is a Pareto efficient

solution of (P3) w.r.t the closed and convex cone K(ȳ). In addition, since I>(ȳ) 6= ∅, it holds from

Proposition 3.1.(iii) that there is e ∈ Rn \ {0} such that

e ∈
⋂
y∈Rn

K(y) \ (−K(ȳ)) ⊆ K(ȳ) \ (−K(ȳ)).

Applying Corollary 4.1. for the constant cone Q := K(ȳ), we have that there exist y∗ ∈ −N(K(ȳ), 0))\
{0} and Ti ∈ L(Rmi ,R) satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1(i = 1, 2, . . . , n) such that

0 ∈
n∑
i=1

A∗i y
∗Ti +N(Ω, x̄).

To obtain the desired conclusion, it is sufficient to prove that −N(K(ȳ), 0) = K(ȳ)+. Indeed, taking

d ∈ K(ȳ), we have that

di ≥ 0, ∀ i ∈ I>(ȳ) and di ∈ R, ∀ i 6∈ I>(ȳ). (4.7)

Let t∗ ∈ −N(K(ȳ), 0) arbitrary and taking into account (4.6), it holds for i = 1, 2, . . . , n thatt∗i ≥ 0, ∀ i ∈ I>(ȳ)

t∗i = 0, ∀ i 6∈ I>(ȳ).
(4.8)

(4.7) and (4.8) imply that for all d ∈ K(ȳ), it holds that t∗(d) ≥ 0.

Therefore,

−N(K(ȳ, 0)) = {t∗ ∈ Rn| t∗(d) ≥ 0,∀d ∈ K(ȳ)},

i.e., −N(K(ȳ), 0) = K(ȳ)+. This completes our proof. �
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5. APPLICATION IN RADIOTHERAPY TREATMENT

Now we concern the problem (P1) which is a mathematical model of beam intensity optimization in

radiotherapy treatment. Suppose that θT := 0 and θCi
≥ 0, i = 1, . . . , k are threshold doses of k

critical organs. We propose here two methods to get a desired beam intensity x̄. As for the first one,

the doctor looks for x̄ ∈ Ω, ȳ := f(x̄) such that there is no y ∈ f(Ω) \ {ȳ} satisfying y ∈ ȳ − K(ȳ),

where K(·) is given by (3.1). This means that x̄ is a minimal solution of (P1) w.r.t. K(·) in the sense

that there is no y ∈ f(Ω) \ {ȳ} being ’better’ than ȳ. On the other hand, if there is no y ∈ f(Ω) \ {ȳ}
satisfying ȳ ∈ y + K(y) i.e., ȳ is not ’worse’ than any y 6= ȳ. This means that the doctor seeks for

a nondominated solution of our problem. The following remark shows that if x̄ is a desired beam

intensity then I>(ȳ) 6= ∅.

Remark 5.1. From the practical point of view, we can see that if x̄ is a desired beam intensity,

ȳ := f(x̄) then I>(ȳ) 6= ∅. Indeed, suppose that I>(ȳ) = ∅, i.e., ȳ1 ≤ 0 and ȳi ≤ θCi
, ∀ i = 1, 2, . . . , k.

Since ȳ1 = ‖AT x̄ − TG‖ ≥ 0, it yields ȳ1 = 0. This condition means that the dose AT x̄ delivered to

the tumor is equal to TG. Because of this large dose, some other critical organs will suffer from some

effects. From this circumstance, there exists i ∈ {1, 2, . . . , k} such that ȳi > θCi
. Thus, we arrive at a

contradiction to I>(ȳ) = ∅.

To this end, we present the following a corollary about the conditions for the beam intensity which

we search when dealing with the inverse problem in IMRT. It is concerned as a direct consequence of

Theorem 4.5. (ii). Since the proof is mostly similar to that of Theorem 4.5.(ii) with the only exception

being the condition I>(ȳ) 6= ∅ is relaxed, the proof is omitted. For the sake of the shortness, we only

present in this paper an optimality condition for a desired beam intensity which is considered as a

minimal solution of problem (P1). The case of nondominated solutions of problem (P1) can be derived

similarly by using Theorem 4.4..

Corollary 5.1. Let θ = (0, θC1
, . . . , θCk

) ∈ Rk+1 is given and suppose that x̄ ∈ Ω is a minimal

solution of the problem (P1) w.r.t. the ordering cone K(·) determined by (3.1). Let ȳ := f(x̄), then

there exist y∗ ∈ K(ȳ)+ \ {0} and T1 ∈ L(RlT ,R), Ti ∈ L(RlCi−1 ,R), i = 2, . . . , k + 1 satisfying

T1(AT x̄− TG) = ‖AT x̄− TG‖∞, Ti(ACi−1 x̄) = ‖ACi−1 x̄‖∞, i = 2, . . . , k + 1

and

‖Tj‖∞ ≤ 1 for all j = 1, . . . , k + 1

such that

0 ∈
k+1∑
j=1

A∗jy
∗Tj +N(Ω, x̄).

6. CONCLUSION

This paper investigated a mathematical model of beam intensity optimization in radiotherapy treat-

ment and introduced an appropriate variable order depending on the value of the objective function
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which relates to the doses delivered to the tumor organ as well as the critical organs. A vector approx-

imation problem is also considered as a generation for the formulation for the inverse beam intensity

optimization problem. We derived the optimal conditions for solutions of the vector approximation

problem w.r.t. a general cone-valued mapping as well as the proposed variable order. The beam

intensity we look for in IMRT is concerned as a minimal solution (or a nondominated solution) of

this problem equipped with our ordering structure. In this work, we also calculated and obtained

a specific formulation of optimality conditions for these solutions. Our future research is deriving

numerical methods and applying these presented results in practical problems.
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