
REVISTA INVESTIGACIÓN OPERACIONAL VOL. 39, NO. 3,480-494, 2018

A REVIEW OF TERMINATION RULES OF AN

INEXACT PRIMAL-DUAL INTERIOR POINT

METHOD FOR LINEAR PROGRAMMING

PROBLEMS
Venansius Baryamureeba∗, Trond Steihaug∗∗∗and Mohamed El Ghami∗∗∗

∗Uganda Technology and Management University (UTAMU), Uganda.
∗∗University of Bergen, Norway.
∗∗∗Nord University, Norway.

ABSTRACT

In this paper we apply the Inexact Newton theory on the perturbed KKT-conditions that are derived

from the Karush-Kuhn-Tucker optimality conditions for the standard linear optimization problem.

We discuss different formulations and accuracy requirements for the linear systems and show global

convergence properties of the method.
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RESUMEN
En este trabajo, se aplica el método inexacto de Newton a la solución del sistema de KKT perturbado,

que se deriva de las condiciones de optimalidad de KKT del problema de optimización lineal standard.

Presentamos distintas formulaciones. Se prueban propiedades relativas a la convergencia global del

método.

PALABRAS CLAVE: convergencia global, dirección de búsqueda inexacta, método interior in-

factible, optimización lineal, primal-dual.

1. INTRODUCTION

Consider the primal linear programming problem

minimize cTx

subject to: Ax = b, x ≥ 0,
(1.1)

where A is an m-by-n matrix of full rank m, b an m-vector, and c an n-vector and its dual problem

maximize bT y

subject to: AT y + z = c, z ≥ 0.
(1.2)
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The optimality conditions for the linear program pair (1.1) and (1.2) are the Karush-Kuhn-Tucker

(KKT) conditions:

F (x, y, z) ≡

 Ax− b
AT y + z − c

XZe

 = 0, x ≥ 0, z ≥ 0, (1.3)

where X = diag(x), Z = diag(z) and e is the vector of all ones in <n.

An interior point algorithm solves a linear programming problem by generating a sequence of interior

points from an initial interior point. An interior point is said to be feasible if it satisfies all the equality

constraints, otherwise its infeasible. Further, an interior point algorithm that starts with an infeasible

point is known as an infeasible interior point algorithm.

Bellavia [1] proved global convergence of an inexact interior point method. Mizuno and Jarre [2]

proved global and polynomial-time convergence of an infeasible interior point algorithm using inexact

computation. Portugal et al. [3] presented a truncated primal-infeasible dual-feasible interior point

algorithm for linear programming. Portugal et al. [4] presented a truncated primal-infeasible dual-

feasible interior point algorithm for solving monotone linear complementarity problems. The methods

suggested in [3, 4, 5] have the major drawback of remaining primal-feasible once they become primal-

feasible. Thus if they happen to become primal-feasible before the complementarity gap is significantly

reduced satisfying the termination criteria in the iterative linear system solver is computationally

expensive. Also the termination criteria suggested in these methods can not be used with the hybrid

interior point algorithm where we alternate between a direct linear system solver and an iterative

linear system solver in some manner. Kojima et al. [11] proved global convergence of an infeasible

interior point algorithm and Zhang [7] proved polynomial complexity of a long-step path following

infeasible interior point method.

The inexact Newton framework in the context of interior point algorithms can be extended to convex

quadratic programming [9] and to nonlinear programming [10].

In this paper we discuss the convergence properties of an inexact interior point method which is a

variant of the algorithm by Kojima, Megiddo, and Mizuno [11]. The algorithm in [11] has been studied

by many researchers [13, 14, 15] and is known to be practically efficient among the numerous variations

and extensions of the primal-dual interior point algorithm. In this paper we extend the discussions

and results in [16, 17].

1.1. Overview and Notation

In Section 2. we formulate the linear programming problem in the augmented and normal equations

forms. We state the inexact interior point algorithm. Section 3. discusses the global convergence

results. We state the global convergence theorem and give its proof in this section. Lastly in Section 4.

we give our concluding remarks.

Throughout this paper we use the following notation: For any vector x, xk denotes x at the k-th

computation step and xkj denotes the j-th component of xk. For any matrix X, Xk denotes X at the

k-th computation step, Xk
j denotes the j-th column of Xk, and Xk

ij denotes the element in the i-th

row and j-th column of Xk.
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2. AN INEXACT INTERIOR POINT ALGORITHM

The perturbed KKT conditions for (1.3) with a positive µ is the nonlinear system

Fµ(x, y, z) ≡

 Ax− b
AT y + z − c
XZe− µe

 = 0, x ≥ 0, z ≥ 0. (2.1)

The parameter µ > 0 is referred to as the µ-complementarity parameter and the set of triples (x, y, z)

that satisfy (2.1) for all µ > 0 is called the (primal-dual) central path. Here we have adopted the

notation (u, v, w) = (uT , vT , wT )T .

Let (xk, yk, zk) with (xk, zk) > 0 be the iterate at interior point iteration k and consider the perturbed

KKT condition (2.1). Newton’s method defines the equation of directional change (the Newton step

equation)

F ′µk(xk, yk, zk)

 ∆xk

∆yk

∆zk

 = −Fµk(xk, yk, zk). (2.2)

If the linear system of equations is solved approximately, then equation (2.2) has a residual error rk

that satisfies

F ′µk(xk, yk, zk)

 ∆xk

∆yk

∆zk

 = −Fµk(xk, yk, zk) + rk. (2.3)

The residual rk will be partioned, rk = (r̄k, r̂k, r̃k) into the primal infeasibility r̄k, dual infeasibility

r̂k, and deviation in complementarity r̃k. An inexact Newton step (2.3) is an approximate solution of

the Newton step equation from (1.3)

F ′(xk, yk, zk)

 ∆xk

∆yk

∆zk

 = −F (xk, yk, zk) + rkF , (2.4)

where

rkF = µk

 0

0

e

+ rk.

This follows immediately since F ′ = F ′µ and Fµ = F − µ (0, 0, e).

A typical choice of the µ-complementarity parameter at iteration k is

µk = β1
(xk)T zk

n
, (2.5)

where β1 ∈ [0, 1) is the centering parameter. Bellavia [1] observed that

‖F (xk, yk, zk)‖2 ≥
(xk)T zk√

n
,
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so if

‖rk‖2 ≤ ηk(xk)T zk, (2.6)

then

‖rkF ‖2 ≤ µk
√
n+ ‖rk‖2

≤ (xk)T zk√
n

(
β1 + ηk

√
n
)

≤
(
β1 + ηk

√
n
)
‖F (xk, yk, zk)‖2. (2.7)

Hence the sequence {β1 + ηk
√
n} can be regarded as a forcing sequence of inexact Newton methods

[18] applied to the nonlinear system (1.3) ignoring the nonnegativity.

Numerical testing [20] indicates that ηk < (1− β1)/
√
n is overly restrictive and that we can tolerate

a much larger error in (2.3). To see this, consider the ‖ · ‖1, then

‖F (xk, yk, zk)‖1 ≥ (xk)T zk.

If

‖rk‖1 ≤ ηk(xk)T zk,

then

‖rkF ‖1 ≤ µkn+ ‖rk‖1
≤ (xk)T zk

(
β1 + ηk

)
≤

(
β1 + ηk

)
‖F (xk, yk, zk)‖1.

This suggests solving the linear system (2.3) with an accuracy

‖rk‖1 ≤ ηk (xk)T zk for 0 ≤ ηk < 1− β1 (2.8)

will be sufficient to achieve convergence. This forcing sequence is independent of the number of primal

unknowns n.

Similar derivation can be done using ‖ · ‖∞ that leads to an even more restrictive forcing sequence

than (2.7). To see this consider

‖rkF ‖∞ ≤
(xk)T zk

n

(
β1 + ηkn

)
≤
(
β1 + ηkn

)
‖F (xk, yk, zk)‖∞. (2.9)

The number of unknowns of problem (2.3) is m + 2n. However, by noticing the structure of the

Jacobian matrix

F ′µk(xk, yk, zk) =

 A 0 0

0 AT I

Zk 0 Xk

 ,
it will be evident that the linear system can be reduced to a system with either m+n or m unknowns.

However, in both cases the error r̃k in the complementarity equation is zero.
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Bellavia [1] establishes global convergence results for an inexact interior point method by interpreting

it as an inexact Newton method. The convergence theory and implementation [1, 21] is based on

solving the inexact Newton equation (2.4) with a forcing sequence ηk < (1− β1)/
√
n.

In this paper, we prove global convergence results based on the reduced linear systems (the augmented

systems or the normal equations), and we bound the residual rk by

‖rk‖ ≤ ηk(xk)T zk for 0 ≤ ηk < 1. (2.10)

The norm ‖ · ‖ can be any norm that satsfies

max{‖r̄k‖, ‖r̂k‖} ≤ ‖(r̄k, r̂k)‖.

The idea behind inexact interior point algorithms is to derive a stopping criterion to the iterative linear

system solvers that minimizes the computational effort involved in computing the search directions

that guarantee global convergence. It is evident that termination criteria (2.8) may be more demanding

to satisfy than termination criteria (2.10) especially for larger (close to 1) centering parameter β1.

Considering the inaccuracy in the reduced systems that are actually solved in interior point methods

seems to be a realistic approach. In our approach, we show global convergence of the complementarity

gap, the norms of the primal residual and the dual residual to zero. The global convergence of these

three imply the global convergence of the inexact Newton method (2.4). As shown in [1], the global

convergence of the inexact Newton method further implies the global convergence of the inexact

interior point method. Thus our approach deals directly with the inexact interior point algorithm

other than the inexact Newton method as in [1]. In [12] an inexact interior point method is derived

using error tolerances

‖r̄k‖ ≤ εkx and ‖r̂k‖ ≤ εky ,

where εkx, ε
k
y → 0. These tolerances depend on an estimate on the smallest singular value of A.

Let τ1, τ2ε(0, 1] and τ3ε[0, 1). For error tolerances

‖r̄k‖ ≤ (1− τ1)‖Axk − b‖,

‖r̂k‖ ≤ (1− τ2)‖AT yk + zk − c‖,

‖r̃k‖ ≤ τ3
(xk)T zk

n
,

[19, Theorem 4.3] shows that the method terminates after a finite number of steps and thus has global

convergence. For (xk, yk, zk) primal and dual feasible all further iterates will remain feasible.

To simplify the notation, we follow [5] and introduce the residuals

ξk = b−Axk

ζk = c−AT yk − zk.

Let Gk be defined by Gk = (Zk)
−1
Xk. Solving for ∆zk in (2.2) leads to a (n+m)× (n+m) indefinite

augmented system[
O A

AT −(Gk)
−1

](
∆yk

∆xk

)
=

(
ξk

zk + ζk − (Xk)
−1
µke

)
(2.11)
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and

∆zk = (Xk)
−1

(µke− Zk∆xk)− zk. (2.12)

An inexact solution of (2.11) satisfies[
O A

AT −(Gk)
−1

](
∆yk

∆xk

)
=

(
ξk

zk + ζk − (Xk)
−1
µke

)
+

(
r̄k

r̂k

)
. (2.13)

After computing (∆yk,∆xk), ∆zk can be found from (2.12). The approximate step (∆yk,∆xk,∆zk)

is thus an inexact Newton step of (2.3) with rk = (r̄k, r̂k, 0). This is the form used in [5, 6].

Solving for ∆xk in (2.11) gives the normal equations with m unknowns

AGkAT∆yk = AGk(zk − (Xk)
−1
µke+ ζk) + ξk. (2.14)

An inexact solution for (2.14) satisfies

AGkAT∆yk = AGk(zk − (Xk)
−1
µke+ ζk) + ξk + r̄k. (2.15)

After computing ∆yk then ∆xk and ∆zk are computed from

∆xk = −Gk(c−AT (yk + ∆yk)− µk(Xk)
−1
e) (2.16)

∆zk = (Xk)
−1

(µke− Zk∆xk)− zk. (2.17)

The linear system (2.13) is equivalent to (2.15) and (2.16) when r̂k = 0 and the approximate step

(∆yk,∆xk,∆zk) is an inexact Newton step of (2.3) with rk = (r̄k, 0, 0).

Consider the dual and complementarity equations (2.3) and for simplicity eliminate the iteration index

k. [
O AT I

Z 0 X

] ∆x

∆y

∆z

 =

(
ζ

−XZe+ µe

)
+

(
r̃

r̂

)
. (2.18)

Let ∆̃z = ∆z − r̃. The linear shift −r̃ in ∆z will give A 0 0

O AT I

Z 0 X


 ∆x

∆y

∆̃z

 =

 ξ

ζ

−XZe+ µe

+

 r̄

0

r̂ −Xr̃

 .

Moving the residual from the dual equation to the complementarity equation is used to simplify the

analysis in [8]. If A = [B N ] where B is a m×m nonsigular matrix then a linear shift −(B−1r̄, 0) in

∆x will give a zero residual in the primal equation also

 A 0 0

O AT I

Z 0 X


 ∆̃x

∆y

∆̃z

 =

 ξ

ζ

−XZe+ µe

+


0

0

r̂ −Xr̃ − Z

(
B−1r̄

0

)
 .
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The algorithm we discuss in this paper is a variant of the infeasible primal-dual interior point algorithm

by Kojima et al. [11]. For any given accuracy ε > 0 required for the total complementarity, any

tolerance εp > 0 for the primal feasibility, any tolerance εd > 0 for the dual feasibility define

N = {(x, y, z) ∈ Q :

xjzj ≥ γxT z/n for j = 1, 2, . . . , n, (2.19)

xT z ≥ γp‖Ax− b‖ or ‖Ax− b‖ ≤ εp, (2.20)

xT z ≥ γd‖AT y + z − c‖ or ‖AT y + z − c‖ ≤ εd}, (2.21)

where Q = {(x, y, z) ∈ <n+m+n : x > 0, z > 0}. The constants 0 < γ < 1, γp > 0, γd > 0 will in a

weak sense depend on the starting point, but will be chosen so that the neighborhood N is as large

as possible.

Further, let ω∗ be any large number and let ε∗ = min{ε, γpεp, γdεd}. Then the neighborhood [11]

N ∗ = {(x, y, z) ∈ N : ε∗ ≤ xT zk ≤ ω∗}, (2.22)

is a compact set. We will show that either (xk, yk, zk) ∈ N ∗ or satisfies the termination criteria

(xk)
T
zk ≤ ε, ‖Axk − b‖ ≤ εp and ‖AT yk + zk − c‖ ≤ εd, (2.23)

or

(xk)T zk > ω∗, (2.24)

after a finite number of steps.

The inequalities xkj z
k
j ≥ γ(xk)T zk/n for j = 1, 2, . . . , n, in (2.19) prevent the generated sequence

{(xk, yk, zk)} from reaching the boundary of Q before the total complementarity (xk)T zk becomes 0.

On the other hand, the inequalities (2.20) and (2.21) prevent the possibility of the generated sequence

{(xk, yk, zk)} converging to an infeasible complementary solution [11].

We choose any initial point (x1, y1, z1) ∈ Q and parameters γ, γp, γd and ω∗ so that (x1, y1, z1) ∈ N
and (x1)T z1 ≤ ω∗. Let 0 < β1 < β2 < β3 < 1. We state the algorithm below:

Algorithm 2.1. Inexact Infeasible Primal-Dual Algorithm

Step 1. Set k = 1. Assume (x1, y1, z1) ∈ N such that (x1)
T
z1 ≤ ω∗.

Step 2. If (2.23) or (2.24) is satisfied then terminate.

Step 3. Let µk = β1(xk)
T
zk/n.

Step 4. Compute the inexact solution (∆xk,∆yk,∆zk) of (2.2).

Step 5. Let 0 < ᾱk < 1 such that

(xk, yk, zk) + α(∆xk,∆yk,∆zk) ∈ N , (2.25)

(xk + α∆xk)T (zk + α∆zk) ≤ (1− α(1− β2))(xk)
T
zk, (2.26)

hold for every α ∈ (0, ᾱk].

Step 6. Choose a primal step length αkp ∈ [ᾱk, 1], a dual step length αkd ∈ [ᾱk, 1] and a new iterate

(xk+1, yk+1, zk+1) = (xk + αkp ∆xk, yk + αkd ∆yk, zk + αkd ∆zk), (2.27)
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such that

(xk+1, yk+1, zk+1) ∈ N , (2.28)

(xk+1)
T
zk+1 ≤ (1− ᾱk(1− β3))(xk)

T
zk. (2.29)

Step 7. Increase k by 1. Go to Step 2.

In this algorithm we take relatively short steps when the search directions are computed to a relatively

low accuracy. In Section 4. we will show the existance of an ᾱk > 0 for all k as long as (2.23) is not

satisfied for feasible problems.

3. CONVERGENCE

For (xk, yk, zk) ∈ N the following inequalities will be used in the discussion of the algorithm.

(xk)
T
zk ≥ γp‖Axk − b‖ or ‖Axk − b‖ ≤ εp, (3.1)

(xk)
T
zk ≥ γd‖AT yk + zk − c‖ or ‖AT yk + zk − c‖ ≤ εd, (3.2)

(xk)
T

∆zk + (∆xk)
T
zk = −(1− β1)(xk)

T
zk, (3.3)

xki ∆zki + ∆xki z
k
i = β1(xk)

T
zk/n− xki zki , (3.4)

Inequalities (3.1) and (3.2) follow from (xk, yk, zk) ∈ N and (2.19) and (2.20). Equation (3.3) and

(3.4) follow from simple manipulations of (2.12) with µk = β1(xk)
T
zk/n.

Let

0 ≤ ηmax < min

{
β1

max{γp, γd}
, 1

}
. (3.5)

The neighborhood N is made large by making γp and γd small and ηmax < 1.

The inexact Newton direction (∆xk,∆yk,∆zk) computed in (2.13) and (2.12) satisfies A 0 0

0 AT I

Zk 0 Xk


 ∆xk

∆yk

∆zk

 =

 b−Axk

c−AT yk − zk

µke−XkZke

+

 r̄k

r̂k

0

 , (3.6)

where the residual satsifies

‖(r̄k, r̂k)‖ ≤ ηk (xk)
T
zk, (3.7)

for

0 ≤ ηk ≤ ηmax, (3.8)

Note that ηk(xk)
T
zk = ηk n

β1
µk.

The coefficient matrix on the left hand side of (3.6) is F ′µ which is nonsingular and continuous for

(x, y, z) ∈ N ∗ defined in (2.22). Since ‖(r̄k, r̂k)‖ in (3.7) is bounded for (xk, yk, zk) ∈ N ∗ the inexact

Newton direction (∆xk,∆yk,∆zk) determined in (3.6) of equations is well defined (in the sense that

for a residual that satisfies (3.7) and (3.15) is unique) and is bounded over the compact set N ∗. Hence

there exists a positive constant τ such that the inexact Newton direction (∆xk,∆yk,∆zk) from (3.6)

computed at Step 4 of every interior point iteration satisfies the inequalities

|∆xki ∆zki − γ(∆xk)
T

∆zk/n| ≤ τ and |(∆xk)
T

∆zk| ≤ τ. (3.9)
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From equation (3.5) we see that the choice of η depends on the values of γp and γd. Thus we can relax

the termination criteria (3.7) for the iterative method if we carefully choose γp and γd. Further, to

avoid primal or dual infeasibility γp and γd should have approximately the same values. This prevents

the norm of the primal or dual residual from converging to zero faster than the other which might

lead to an infeasible solution. Since by the definition of the neighborhood N the complementarity

gap, the norms of the primal and dual residuals are supposed to converge to zero at approximately

the same rate then termination criteria (3.7) avoids unnecessarily many iterations as would have been

the case if we had used

‖(r̄k, r̂k)‖ ≤ ηk max
{
‖Axk − b‖, ‖AT yk + zk − c‖

}
,

or ‖r̄k‖ ≤ ηk ‖Axk − b‖‖, see [5].

We will now show that for an inexact Newton direction from Step 4 we can find 0 < ᾱk < 1 so that

the conditions (2.25) and (2.26) in Step 5 are satisfied. It will be shown that for a given N ∗ there

exists α∗ > 0 such that α∗ ≤ ᾱk. Let ξ(α) and ζ(α) be defined by

ξ(α) ≡ b−A(xk + α∆xk) = ξk − αA∆xk, (3.10)

ζ(α) ≡ c−AT (yk + α∆yk)− zk = ζk − α(AT∆yk + ∆zk). (3.11)

For ∆yk and ∆xk given by (2.13), and ∆zk by (2.12) it follows from (3.6) that the expressions for

ξ(α) and ζ(α) simplify to

ξ(α) = (1− α)ξk − αr̄k, (3.12)

ζ(α) = (1− α)ζk − αr̂k. (3.13)

Define the real-valued functions fi, i = 1, 2, . . . , n, gp, gd, and h as follows:

fi(α) = (xki + α∆xki )(zki + α∆zki )− γ(xk + α∆xk)T (zk + α∆zk)/n,

gp(α) = (xk + α∆xk)T (zk + α∆zk)− γp‖ξ(α)‖,

gd(α) = (xk + α∆xk)T (zk + α∆zk)− γd‖ζ(α)‖, and

h(α) = (1− α(1− β2))(xk)
T
zk − (xk + α∆xk)T (zk + α∆zk).

Consider Step 5 in the Inexact Infeasible Primal-Dual Algorithm. From the definition of the neigh-

borhood N condition (2.25) is equivalent to

fi(α) ≥ 0 (i = 1, 2, . . . , n),

gp(α) ≥ 0 or ‖ξ(α)‖ ≤ εp,

gd(α) ≥ 0 or ‖ζ(α)‖ ≤ εd,

for 0 < α ≤ ᾱk. Similarly, (2.26) is equivalent to

h(α) ≥ 0,

for 0 < α ≤ ᾱk.
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Consider the function gp and the simplified expression for ξ in (3.12). Then

gp(α) ≥ (xk + α∆xk)T (zk + α∆zk)− γp(1− α)‖ξk‖ − γpα‖r̄k‖

≥ (xk)T zk + α[(∆xk)T zk + (xk)T∆zk] + α2(∆xk)T∆zk

−(1− α)(xk)T zk − γpα‖r̄k‖

≥ αβ1(xk)T zk + α2(∆xk)T∆zk − γpα‖r̄k‖. (3.14)

using (2.20), and (3.3). By (3.7)

‖r̄k‖ ≤ ‖(r̄k, r̂k)‖ ≤ ηk (xk)T zk, (3.15)

the condition on the norms ‖ · ‖, and ηk ≤ ηmax lead to

gp(α) ≥ α (β1 − ηmax γp) (xk)T zk + α2(∆xk)T∆zk.

For (xk, yk, zk) ∈ N ∗ and (3.9) (xk)T zk ≥ ε∗ and (∆xk)T∆zk ≥ −τ we have

gp(α) ≥ α [(β1 − ηmax γp) ε
∗ − ατ ] . (3.16)

Hence for α ≥ (β1−ηmax γp)ε
∗

τ we see that gp(α) ≥ 0.

Similarly, for the function gd and

‖r̂k‖ ≤ ‖(r̄k, r̂k)‖ ≤ ηk (xk)T zk,

then

gd(α) ≥ (xk + α∆xk)T (zk + α∆zk)− γd(1− α)‖ζk‖ − αγd‖r̂k‖

≥ αβ1(xk)T zk + α2(∆xk)T∆zk − αγd‖r̂k‖

≥ α (β1 − ηmax γd) (xk)T zk + α2(∆xk)T∆zk

≥ α [(β1 − ηmax γd) ε
∗ − ατ ] ≥ 0. (3.17)

Hence for α ≥ (β1−ηmax γd)ε
∗

τ , we see that gd(α) ≥ 0.

Next consider

fi(α) = (xki + α∆xki )(zki + α∆zki )− γ(xk + α∆xk)T (zk + α∆zk)/n

= (xki z
k
i − γ(xk)

T
zk/n)(1− α) + αβ1(1− γ)(xk)

T
zk/n+

(∆xki ∆zki − γ(∆xk)
T

∆zk/n)α2

≥ β1(1− γ)(ε∗/n)α− τα2 = α[β1(1− γ)(ε∗/n)− τα]. (3.18)

Inequality (3.18) follows from application of (3.3), (3.4) and (3.9) on the expression for fi(α) above.

Next consider

h(α) = (1− α(1− β2))(xk)
T
zk − (xk + α∆xk)T (zk + α∆zk)

= α(β2 − β1)(xk)
T
zk + α2(∆xk)

T
∆zk

≥ α[(β2 − β1)ε∗ − ατ ]. (3.19)
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The inequality (3.19) follows from application of (3.3) and (3.9).

Let ηmax be given by (3.5), γ̄ = max{γp, γd} and define

α∗ = min

{
1,

(β1 − ηmax γ̄)ε∗

τ
,
β1(1− γ)ε∗

nτ
,

(β2 − β1)ε∗

τ

}
. (3.20)

For α∗ defined in (3.20) we observe that for every α ∈ [0, α∗]

fi(α) ≥ 0 (i = 1, 2, . . . , n),

gp(α) ≥ 0 if gp(0) = (xk)
T
zk − γp‖Axk − b‖ ≥ 0 or

‖A(xk + α∆xk)− b‖ ≤ εp if gp(0) < 0, (3.21)

gd(α) ≥ 0 if gd(0) = (xk)
T
zk − γd‖AT yk + zk − c‖ ≥ 0 or

‖AT (yk + α∆yk) + (zk + α∆zk)− c‖ ≤ εd if gd(0) < 0, (3.22)

h(α) ≥ 0.

Consider (3.21). The condition gp(0) < 0 is equivalent to γp‖Axk − b‖ > (xk)T zk. Further

‖A(xk + α∆xk)− b‖ ≤ (1− α)‖Axk − b‖+ αηk(xk)T zk

≤ (1− α)‖Axk − b‖+ αηk γp‖Axk − b‖

≤ (1− α(1− β1))‖Axk − b‖

≤ ‖Axk − b‖ (3.23)

from the choice of ηk in (3.5). From the definition ofN and Step 5 of Algorithm 2.1 we know the iterate

(xk, yk, zk) generated satisfies (xk, yk, zk) ∈ N for all k. Thus gp(0) < 0 implies that ‖Axk − b‖ ≤ εp.
From (3.23) it follows that ‖A(xk + α∆xk)− b‖ ≤ εp if gp(0) < 0. This verifies observation (3.21).

Next we note also that ηk γd < β1 for ηk ≤ ηmax and ηmax defined by (3.5). By a similar argument as

for (3.21), observation (3.22) follows.

Thus, we have shown that there exists an α∗ > 0 such that ᾱk ≥ α∗ in Algorithm 2.1 for all k. By

the construction of the real-valued functions fi(i = 1, . . . , n), gp, gd, and h, this is equivalent to saying

that (2.25) and (2.26) hold for every α ∈ [0, α∗].

The following theorem was stated in [17] without proof. For the completeness we include the proof in

this paper.

Theorem 3.1. Choose ηmax that satisfies (3.5), and let α∗ be given by (3.20).

Let ψk = max
{
‖ξk‖, ‖ζk‖, (xk)

T
zk
}

. If the norm of (r̄k, r̂k) in (2.13) is bounded as in (3.7) then

ψk+1 ≤ (1− α∗(1−max{β3, ηmax}))ψk < ψk.

Proof: From (3.12) we have

‖ξ(αkp)‖ ≤ (1− αkp)‖ξk‖+ αkp‖r̄k‖

≤ (1− αkp)‖ξk‖+ αkpηmax(xk)
T
zk

≤ (1− αkp(1− ηmax))ψk, (3.24)
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since max
{
‖ξk‖, (xk)

T
zk
}
≤ ψk. Similarly from (3.13) we get

‖ζ(αkd)‖ ≤ (1− αkd(1− ηmax))ψk. (3.25)

We also observe from (2.29) that

(xk+1)
T
zk+1 ≤ (1− ᾱk(1− β3))ψk. (3.26)

Using (3.24), (3.25) and (3.26) with ψk+1 we get

ψk+1 ≤ max
{

1− αkp(1− ηmax), 1− αkd(1− ηmax), 1− ᾱk(1− β3)
}
ψk

≤ max
{

1− ᾱk(1− ηmax), 1− ᾱk(1− β3)
}
ψk

≤ max
{

1− ᾱk (1−max {ηmax, β3})
}
ψk

≤ max {1− α∗ (1−max {ηmax, β3})}ψk.

Theorem 3.1 implies that ‖ξk‖ → 0, ‖ζk‖ → 0 and (xk+1)T zk+1 → 0 as k →∞. Thus as k →∞ there

exists a k after which the algorithm generates a point (xk+1, yk+1, zk+1) which is either an approximate

optimal solution (xk+1, yk+1, zk+1) satisfying (2.23) or satisfies (2.24). Therefore Algorithm 2.1 is

globally convergent.

Theorem 3.1 is based on the termination criteria ‖(r̄k, r̂k)‖ ≤ ηk (xk)
T
zk. A criteria based on a

measure that includes the sizes of the dual and primal infeasibility is ‖(r̄k, r̂k)‖ ≤ ηk (‖ξk‖ + ‖ζk‖ +

(xk)T zk) and the next result shows that for this termination ηk must be uniformly bounded away

from a constant less than 1
2 if the step size is close to 1.

Let λ =
(

1
γp

+ 1
γd

+ 1
)

and

0 < ηk ≤ ηmax < min

{
β1

max{γp, γd}λ
,

1

2
ᾱk(1− β3)

}
. (3.27)

Let the norm of (r̄k, r̂k) in (2.13) be bounded such that

‖(r̄k, r̂k)‖ ≤ ηk
(
‖ξk‖+ ‖ζk‖+ (xk)T zk

)
,

where ηk is given by (3.27). It follows that

‖(r̄k, r̂k)‖ ≤ ηkλ(xk)T zk. (3.28)

Next we consider (3.14) and (3.28) to get

gp(α) ≥ αβ1(xk)T zk + α2(∆xk)T∆zk − γpαηk λ(xk)T zk

≥ α(β1 − γpαλ ηk)(xk)T zk + α2(∆xk)T∆zk

≥ α((β1 − γpαλ ηmax)ε∗ − ατ) ≥ 0. (3.29)

Similarly, from (3.17) we can show that

gd(α) ≥ α((β1 − γdαλ ηmax)ε∗ − ατ) ≥ 0. (3.30)

From (3.18), (3.19),(3.29) and (3.30) there exists a positive α∗ that satisfies

α∗ = min

{
1,

(β1 −max{γp, γd}λ ηmax)ε∗

τ
,
β1(1− γ)ε∗

nτ
,

(β2 − β1)ε∗

τ

}
. (3.31)
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Theorem 3.2. Let ψk = ‖ξk‖+ ‖ζk‖+ (xk)T zk, and the norm of (r̄k, r̂k) in (2.13) be bounded such

that

‖(r̄k, r̂k)‖ ≤ ηkψk,

where ηk is given by (3.27). Then

ψk+1 ≤ (1− α∗(1− β3) + 2ηmax)ψk.

Proof: Considering (3.12) and (3.13) leads to

‖ξ(αp)‖ ≤ (1− αp)‖ξk‖+ αp ηmax ψ
k (3.32)

‖ζ(αd)‖ ≤ (1− αd)‖ζk‖+ αd ηmax ψ
k. (3.33)

Hence from (2.29), (3.32) and (3.33) we get

ψk+1 ≤ (1− ᾱk(1− β3))ψk + (αp + αd)ηmax ψ
k

≤ (1− ᾱk(1− β3) + 2 ηmax)ψk.

When we compute an exact search direction (∆xk,∆yk,∆zk) at every Step 4 of Algorithm 2.1, Algo-

rithm 2.1 reduces to the globally convergent infeasible interior point algorithm in [11]. In other words

the algorithm in this paper is an inexact variant of the algorithm in [11]. It follows that a mixed

interior point algorithm, where we alternate between a direct method and an iterative method at dis-

tinct interior point iterations, in some manner, to solve the linear system (2.13) is globally convergent

if the norm of (r̄k, r̂k) is bounded as in (3.7). Hence the class of preconditioners in [20, 22, 23, 24]

can be applied in the implementation of mixed interior point algorithm, and still maintain global

convergence.

4. CONCLUDING REMARKS

In this paper we have reviewed different termination criteria for inexact infeasible interior-point

method for linear optimization. Termination criteria for the iterative method that guarantees global

convergence of the interior point algorithm have been suggested. For the algorithm discussed in this

paper, we have established a relationship between the accuracy of the solution of the linear system and

the step length parameter. In particular, for low accuracy we need to carry out short step length in

order to have global convergence. We have shown that we can make a hybrid method that alternates

between inexact search directions and exact search directions and still have global convergence.
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