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ABSTRACT    
The outranking approach is an important method in multi-criteria decision aid. Nevertheless, it requires information about the 
preferences of the decision maker that sometimes is difficult to determine. When it is ignored, often this difficulty causes 
vagueness or imprecision generating a poor performance in the overall model. The vagueness and imprecision generated this 
way can be considered in the form of interval numbers containing all possible values for the actual parameters. Evidently, the 
consideration of interval numbers instead of real numbers in the outranking approach demands restructuring the original method. 
In this study, we present a generalization of the outranking method that incorporates vagueness and imprecision in its parameters 
through interval numbers. Additionally, we propose a novel function to establish the possibility that an interval number is greater 
than or equal to another. The results of the experiments indicate that the method proposed is able to characterize uncertainty 
satisfactorily. Finally, we conclude that the classic outranking approach is a specification of the proposed method and that 
several intuitive requirements are accomplished. 
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RESUMEN 
El enfoque de outranking es un método importante en la ayuda a la decisión multicriterio. Sin embargo, requiere información 
acerca de las preferencias del tomador de decisiones que algunas veces es difícil determinar. Cuando es ignorada, a menudo esta 
dificultad causa vaguedad o imprecisión que genera un desempeño pobre en el modelo general. La vaguedad e imprecisión 
generadas de esta forma pueden ser consideradas en forma de números intervalos conteniendo todos los valores posibles de los 
parámetros reales. Evidentemente, la consideración de números intervalos en lugar de números reales en el método de 
outranking demanda reestructurar el método original. En este trabajo, presentamos una generalización del método de outranking 
que incorpora vaguedad e imprecisión en sus parámetros a través de números intervalo. Además, proponemos una función 
novedosa para establecer la posibilidad de que un número intervalo sea mayor o igual a otro. Los resultados de los experimentos 
indican que el método propuesto es capaz de caracterizar la incertidumbre de manera satisfactoria. Finalmente, concluimos que 
el método clásico de outranking es una especificación del método propuesto y que varios requerimientos intuitivos son 
conseguidos. 
 
PALABRAS CLAVE: ayuda a la decisión, enfoque de outranking, manejo de la incertidumbre, modelación preferencial, teoría 
de números intervalo. 
 

1. INTRODUCTION 
 
Multi-criteria decision aid (MCDA) is a relevant field within operational research. It encompasses several 
methods to support decision making. The outranking approach, and in particular the methodologies in the 
ELECTRE family methods [1, 12] are a popular research field within MCDA.  The ELECTRE approach was 
first introduced in [3]. Later, this first version evolved into a series of variants. From which the most 
mentioned version is ELECTRE III [11]. A comprehensive survey of the ELECTRE family methods for 
multiple criteria decision analysis is provided by Figueira et al. in [4].  
The ELECTRE family of methods is based on a common concept, the outranking relation. Through the so-
called concordance and discordance sets, we can compare pairs of alternatives and exploit an outranking 

                                                           
1 Corresponding author. E-mail address: efrain.solaresL@gmail.com 



 

 

502 

relation that leads to a particular choice or ranking of the alternatives. The construction of the outranking 
relation demands the elicitation of a set of parameters. Generally, this elicitation is not trivial. Probably, the 
most outstanding limitation of the ELECTRE methods is the need for precise measurements of their 
parameters. Elicitation of the performance of alternatives, thresholds, and weights and veto power of the 
criteria, frequently comprises some part of arbitrariness and imprecision. We conclude that the values of the 
parameters are assigned under conditions of uncertainty that, if ignored, can cause a poor performance in the 
overall decision model. The information about the value of the parameters is imprecise or uncertain because 
of limited information-processing capabilities, lack of data and/or ill-determined information. This type of 
uncertainty may be satisfactorily represented by interval analysis theory.  
In this context, some authors have developed interesting extensions of the ELECTRE method for decision-
making problems. In [1], Amiri et al. proposed the use of interval data in ELECTRE I and illustrated the 
approach for the assessment of 15 bank branches in Iran. Vahdani et al. [16] go beyond the interval data and 
generalize the ELECTRE methods incorporating also interval weights. Balali et al. [2] look for an integration 
of ELECTRE III and PROMETHEE II decision-making methods with an interval approach. Vahdani et al. 
[17] propose an extension of the ELECTRE method based on interval-valued fuzzy sets. 
Here, we assume that the uncertainty related with the definition of all the outranking's parameters is embraced 
by interval numbers. Thus, generalizing the classic outranking approach in terms of the interval analysis 
theory. We propose a novel possibility function based on interval theory's arithmetic that allows us to obtain 
the credibility index of the outranking relation.  We show that this possibility function has some attractive 
properties, such as a [0, 1] range and monotonicity. 
The structure of the paper is structured as follows. In section 2 a brief background fundamental for this work 
is presented. Our proposal for generalizing the outranking approach through interval theory is presented in 
section 3, as well as an overview of some of the most outstanding properties of the generalization. Section 4 
shows the experimental validation. Finally, section 5 concludes this work. 
 
2. BACKGROUND 
 
2.1. Outranking approach 

 
The outranking approach proceeds by a pair-wise comparison of alternatives in order to rank those 
alternatives in terms of their priority. Within the framework of the ELECTRE family of methods, the 
outranking approach supposes that the following is given (see [12]). 
• A set � of potential actions (or alternatives). 
• A consistent family � of � criteria �� that allow the actors involved in the decision process (decision 
maker, DM) to reflect their points of view on the performance of the alternatives. Furthermore, ��(�) ∈ ℝ is 
called the performance of � ∈ � in the ��
 criterion. And, ∀�� ∈ � and ∀� ∈ �, ��(��) ≥ ��(�) ⇒ �� is at 
least as good as � in the ��
 criterion. 
The outranking approach assumes that by considering the whole family of criteria it is possible to define a 
binary relation between �� and � called outranking relation, �. ���� is true if the values of the performances 
of �� and � give a sufficiently strong argument for considering the following statement as true (see [12]): “��, 
with respect to the � criteria, is at least as good as �”. The sentence “at least as good as” is synonymous with 
“not worse than”.    
In order to evaluate the outranking relation �, it is necessary to consider that no all criteria in � are equally 
important from the DM's perspective. When building �, this situation is considered by means of two 
parameters assigned to each criterion: the weight and the veto of the criterion. The weight (or importance 
coefficient) of the ��
 criterion, ��, sets the importance of this criterion in relation with the rest of the criteria 
and is only considered in the definition of the  concordance degree (defined below). The veto threshold of the ��
 criterion, ��, reflects the capacity given to the ��
 criterion for rejecting the assertion ���� without any 
help of other criteria. 
It is also possible to build a binary marginal relation between �� and � called ��. ����� holds if the values ��(��) and ��(�) give a sufficiently strong argument for considering the following statement as true: “��, 
with respect to the ��
 criterion only, is at least as good as �”. 
 
2.1.1. Concordance and Discordance Concepts 
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In order to define if the ��
 criterion is in concordance with the assertion ���� it must be true that �����. ����� is true iff ��(��) ≥ ��(�) − ��. Where �� is a real positive indifference threshold, associated with ��. �� represents the hesitation in the internal preference model of the DM about when to declare that ��(��) and ��(�) are equivalent. The subset of all criteria in � that are in concordance with the assertion ���� is called 
the concordant coalition. It is denoted by �(����). 
The ��
 criterion is in discordance with the assertion ���� if the difference ��(�) − ��(��) is sufficiently 
large. This situation is denoted as ����. ���� iff ��(�) ≥ ��(��) + ��, where �� is the threshold that 
indicates when the difference is sufficiently large. The subset of all criteria in � that are in discordance with 
the assertion ���� is called the discordant coalition. It is denoted by �(����) since it can also be viewed as 
the concordant coalition with the assertion  ����. 
Evidently, there might be some criteria that are neither concordant nor discordant with the assertion ����. 
These are the criteria � for which it is true ��(�) − �� ≤ ��(��) < ��(�) − �� with �� > ��. The subset of � 
defined by the criteria satisfying this condition is denoted by �(� ��). 
 
Concordance index 
 
The concordance index, !(��, �), reflects the strength of the assertion ����. !(��, �) is defined in ELECTRE 
III as 
 !(��, �) = $ ��!�(��, �)%

�&'  

 

(1) 

Where 

!�(��, �) =
()*
)+ 0 ��(��) ≤ ��(�) − ��,1 ��(��) ≥ ��(�) − �� ,��(��) − ��(�) + ���� − �� otherwise. 7 

 
Discordance index 
 
We can be sure that when ��(�) − ��(��) is too large (i.e., at least ��) then the ��
 criterion is incompatible 
with the assertion ����  whatever the other performances are. Nevertheless, the veto effect can occur in 
different degree for a difference ��(�) − ��(��) smaller than �� as long as ��(�) − ��(��) > ��. Based on 
this, the outranking method builds the following discordance index. 
  

9�(��, �) =
()*
)+ 1 ��(��) ≤ ��(�) − ��,0 ��(��) ≥ ��(�) − �� ,��(�) − ��(��) − ���� − �� otherwise. 7 

Which leads to a non-discordance predicate based on Eq. (2) (see [5]). 
 :9(��, �) = min�∈=(�>�?)@1 − 9�(��, �)A. (2) 

 
Credibility of � and some preferential relations 
 
From !(��, �) and :9(��, �) we can build a fuzzy relation B: � × � ⟶ ℝ, where B ∈ F0,1G, such that B(��, �) represents the degree of credibility of the statement “�� is at least as good as �” as given in Eq. (3). 
 B(��, �) = !(��, �) ⋅ :9(��, �). (3) 
Finally, assume there is a I ∈ (0.5,1G threshold such that ���� iff B(��, �) ≥ I. Then for all (��, �) ∈K� × �L, B(��, �) lets us set the following relations of preference between �� and �. 
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Strict preference, �. � is an asymmetric binary relation that indicates that there is clear evidence justifying a 
significant preference in favor of one of two alternatives. � is denoted as ����: “�� is strictly preferred to �”. ���� ⇔ B(��, �) ≥ I ∧ B(�, ��) < 0.5. 
Indifference, O. O is a symmetric relation that indicates that there is clear evidence justifying an equivalence 
between two alternatives. O is denoted as ��O�: “�� is indifferent with �”. ��O� ⇔ B(��, �) ≥ I ∧ B(�, ��) ≥I. 
Weak preference,  .   is an asymmetric binary relation that indicates that there is clear evidence justifying a 
preference in favor of one of two alternatives. Nevertheless, this preference is not significant, so strict 
preference and indifference are indistinguishable.   is denoted as �� �: “�� is weakly preferred to �”. �� � ⇔ B(��, �) ≥ I ∧ B(��, �) > B(�, ��) ∧ ¬���� ∧ ¬��O�. 
Incomparability, Q. Q is a symmetric binary relation indicating that there are no clear evidence that justify any 
of the above relations. Q is denoted as ��Q�: “�� and � are incomparable”. ��Q� ⇔ B(��, �) < 0.5 ∧B(�, ��) < 0.5. 
Where ∧ indicates conjunction and ¬ indicates negation. 
 
2.2. Interval analysis theory 

 
2.2.1. Interval arithmetic 

 
An interval number is an imprecise quantity whose true value is contained in a range of numbers. For this 
reason, interval numbers are naturally expressed as range of numbers:  FRS, RTG = KR ∈ ℝ: RS ≤ R ≤ RTL. 
The idea is simple. Each interval number represents a parameter. The true value of this parameter is unknown 
-due to problems of inaccuracy in the estimation methods, for instance- but we are certain that it is contained 
within a lower and an upper bound. It is possible to refer to any U ∈ FRS, RTG as a realization of the interval 
number R. 
If R and V are two interval numbers such that R = FRS, RTG and V = FVS, VTG, then the theory of interval 
numbers sets the following arithmetic operations between them (see [10]). R + V = FRS + VS, RT + VTG, R − V = FRS − VT, RT − VSG, R ⋅ V = FminKRSVS, RSVT, RTVS, RTVTL , maxKRSVS, RSVT, RTVS, RTVTLG, RV = FRS, RTG ⋅ Y 1VS , 1VTZ, R = V ⇔ RS = VS	and	RT = VT, \�R� = 12 �RS + RT�, ��R� = 12 �RT − RS�. 
 
2.2.2. Ordering of interval numbers 
 
Several authors have worked on the ranking of interval numbers. For example, Ishibuchi and Tanaka in [6] 
established that V ≤ R ⇔ VS ≤ RS ∧ VT ≤ RT; and that V < R ⇔ V ≤ R ∧ V ≠ R. They also proposed a 
method to rank interval numbers through \�R� and ��R� in the following way. V ≤ R ⇔ \�V� ≤ \�R� ∧��V� ≥ ��R�; and V < R ⇔ V ≤ R ∧ V ≠ R. Sengupta and Pal [13] also used \�R� and ��R� to rank interval 
numbers. They suggested a condition-based method to establish the grade of acceptability of the expression 
“the interval number V is inferior to the interval number R”, V ⋖ R: 

V ⋖ R ` = 0 \�V� = \�R�,∈ �0,1� \�V� < \�R� ∧ VT > RS,≥ 1 \�V� < \�R� ∧ VT ≤ RS 7 
and define it as 

V ⋖ R = \�R� − \�V���R� + ��V�, 
where ��R� + ��V� ≠ 0. 
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Later, Shi et al. in [14] defined a different way to rank interval numbers through a so called grey possibility 
function -given that it was proposed in the context of grey theory (see [8]), an extension of interval theory. 
This grey possibility function is defined as �(V ≤ R) = maxK0, 9 − \aRK0, VT − RSLL9  

where 9 = (VT − VS) + (RT − RS	� > 0. 
The latter is the most broadly mentioned in the literature. 
All these ways to compare and rank interval numbers are highly interesting and intuitively appealing; 
nevertheless, all of them suffer of at least one of the following problems. 
• There are some cases when it is not possible to rank interval numbers. 
• They concentrate in the midpoint of the interval, ignoring most of the uncertainty within the 
intervals. 
• They do not consider areas of certainty; that is, areas where it is sure that an interval number is 
strictly lesser or greater than another. We speak about this in the next section. 
In order to take into account these situations when comparing alternatives, we propose a different possibility 
function that allows us to establish the parameters of the outranking approach as interval numbers. We 
suppose that due to imprecision/vagueness the parameters of the outranking method (i.e., performance of the 
alternatives, weights, preference, indifference, veto and pre-veto thresholds) are defined as interval numbers. 
Therefore, we use the basic terminology of the classic outranking theory combined with the interval numbers 
theory. Let us start by defining the marginal information of the outranking method. 
 
3. INTERVAL-BASED OUTRANKING APPROACH 
In this section, the generalization of the classic outranking approach is presented. This section proceeds by 
generalizing each component of the classic outranking to an interval based approach. 
 
3.1. Interval based marginal concordance 
 
If ���R� = bR�T, R�Sc and ���V� = bV�T, V�Sc are the performances of alternatives R and V in the ��
 criterion, 

and �� = b��T, ��Sc and �� = b��T, ��Sc are the preference and indifference thresholds in the same criterion, then 
we can identify three conditions that can occur when comparing ���R� and ���V� incorporating these 
thresholds: 
i) R�T ≤ dV�S − ��Te. 
ii)  R�S ≥ dV�T − ��Se. 
iii)  None of the above conditions are fulfilled.  
Only when the first condition is met we can be sure that there will never be a realization of R that is at least as 
good as V in the ��
 criterion. Thus, the level of concordance of this criterion with the expression R�V must be 
zero if and only if the upper bound of ���R� is lesser than or equal to the lower bound of ���V� when the 
highest possible realization of �� is considered. More formally: !��R, V� = 0 ⇔ R�T ≤ dV�S − ��Te. 
Similarly, only when the second condition is met we can be sure that R will be always at least as good as V in 
the ��
 criterion. So the level of concordance of this criterion must be one if and only if the lower bound of ���R� is greater than or equal to the upper bound of ���V� when the lowest possible realization of �� is 
considered. More formally:  !��R, V� = 1 ⇔ R�S ≥ dV�T − ��Se. 
In the other hand, when none of the above conditions are met then it is true that dV�S − ��Te < dV�T − ��Se and 
there will be some realizations for which the expression “R is at least as good as V in the ��
 criterion” is met. 
In order to estimate the proportion of realizations for which this expression might be true we propose the 
following procedure. 
Let U�S = dV�S − ��Te and U�T = dV�T − ��Se. Then, when comparing ���R� = bR�T, R�Sc and U� = bU�S, U�Tc, 
exactly one of the following scenarios will be true: 
(1) dR�S < U�Se and dR�T < U�Te. 
(2) dR�S < U�Se and dR�T ≥ U�Te. 
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(3) dR�S ≥ U�Se and dR�T < U�Te. 

(4) dR�S ≥ U�Se and dR�T ≥ U�Te. 

Scenario (1). When dR�S < U�Se and dR�T < U�Te, the only zone where R can be at least as good as V in the ��
 
criterion is when there are realizations of ��(R) and U� between U�S and R�T. The proportion of realizations in 
this zone is given by f�(') = R�T − U�SU�T − R�S. 
This means that the proportion of realizations in the ��
 criterion that are in favor of R�V will be no more than f�('). Doubtless, it is also possible that none of these realizations is in favor of the expression. So the marginal 
concordance in the Scenario (1) must be between zero and f�('). More formally: !�(')(R, V) = b0, f�(')c. 
Scenario (2). When dR�S < U�Se and dR�T ≥ U�Te, we can be sure that R is at least as good as V in the ��
 
criterion in the following proportion.  g�(h) = R�T − U�SR�T − R�S. 
While the following proportion express the quantity of realizations where R can be at least as good as V in the ��
 criterion:  f�(h) = U�T − U�SR�T − R�S. 
So the proportion of realizations that are in favor of R��V is between g�(h) and (g�(h) + f�(h)) and the 
marginal concordance in this scenario is !�(h)(R, V) = bg�(h), (g�(h) + f�(h))c. 
The marginal concordance for the scenarios three and four are defined in a very similar way. In general, the 
marginal credibility of the ��
 criterion being in concordance with R�V is calculated by 
 !�(R, V) = i F0,0G R�T ≤ V�S − ��T,F1,1G R�S ≥ V�T − ��S,bΔk, Δk + fkc otherwise 7 (4) 

where Δk = dgkSlkS + gkTlkTe, gkS = R�S − U�SfmT − fnS, 
gkT = R�T − U�TfmT − fnS, 

lkS = o0 U�S ≥ R�S,1 otherwise.7 lkT = o0 U�T ≥ R�T,1 otherwise.7 fk = fmS − fnTfmT − fnS, fnS = min@R�S, U�SA, fnT = max@R�S, U�SA, fmS = min@R�T, U�TA, fmT = max@R�T, U�TA. 
 
3.2. Interval-based marginal discordance 
 
Let p�S = dV�S − ��Te and p�T = dV�T − q�Se. If �� = b��S, ��Tc and q� = bq�S, q�Tc are the veto and pre-veto 
thresholds in the ��
 criterion, then similarly as above and following the simplification of Mousseau and Dias 
[9], the marginal discordance of the ��
 criterion with R�V is defined as 
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 9�(R, V) = i F1,1G R�T ≤ V�S − ��T,F0,0G R�S ≥ V�T − q�S,bΓk, Γk + skc otherwise 7 (5) 

 
where Γk = dtkSukS + tkTukTe, tkS = p�S − R�SsmT − snS, 

tkT = p�T − R�TsmT − snS, 
ukS = o1 p�S > R�S,0 otherwise.7 ukT = o1 p�T > R�T,0 otherwise.7 sk = smS − snTsmT − snS, snS = min@R�S, p�SA, snT = max@R�S, p�SA, smS = min@R�T, p�TA, smT = max@R�T, p�TA. 

 
3.3. Interval-based concordance index 
 
Considering a problem with � criteria, the concordance index associated with R�V is obtained by 
 !(R, V) = $ ��!�(R, V).%

�&'  (6) 

With !(R, V) ∈ F0,1G. The importance that the DM assigns to the ��
 criterion is represented by v� =bv�S, v�Tc. With the purpose of ensuring consistency in the affirmation !(R, V) ∈ F0,1G, we need to be sure that ∑ v� = 1%�&' . Nevertheless, the uncertainty contained in v� (and represented as an interval number) makes 
this a complicated work. Hence, we establish a procedure of whitening2 in the following way. 
 ��S = ��T = v�S + v�T∑v�S + ∑v�T. (7) 

 
3.4. Interval-based non-discordance index 
 
The non-discordance level associated with R�V is calculated as 
 :9(R, V) = min�∈=(x>y)@F1,1G − 9�(R, V)A. (8) 

Where �(V�R) = @�: R�S ≤ V�T − ��SA. 
Finally, we define the concept of a minimum among a set of interval numbers as follows. Let ℬ be a set of 
interval numbers, {∗ ∈ ℬ is the minimum of ℬ, denoted by minKℬL, if and only if �({∗ ≥ {) ≤ 0.5 for all { ∈ ℬ. �(⋅) is calculated as in Eq. (11). 
 
3.5. Interval-based outranking 
 
Consequently, we obtain the credibility of R�V in the classic way: 
 B(R, V) = �(R, V) ⋅ :9(R, V). (9) 
 

                                                           
2 It is not uncommon to find whitening procedures in the interval theory. These procedures define the realization that represents an 
interval number as a real number. See for example [11]. 
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Moreover, we say that “R is at least as good as V” if and only if the possibility that   is greater than or equal to 
an uncertain cutting level I is at least 0.5. More formally: 
 R�V ⇔ �(B(R, V) ≥ I) ≥ 0.5. (10) 
 
Where �(⋅) can be based in any of the possibility functions mentioned before. Nonetheless, given the 
discussion in Section 2.2, and based in (4) and (5), we propose to obtain the possibility that an interval 
number, ⊗'= F⊗'S,⊗'TG, is greater than or equal to another interval number, ⊗h= F⊗hS,⊗hTG, in the 
following way. 
 �(⊗'≥⊗h) = (*

+ 0 ⊗'T<⊗hS,1 ⊗'S≥⊗hT,(2� + ~)2 otherwise.7 (11) 

Where 
 � = (gSlS + gTlT), gS = ⊗'S−⊗hS~mT − ~nS , 

gT = ⊗'T−⊗hT~mT − ~nS , 
lS �0 ⊗hS−⊗'S,1 otherwise.7 lT o0 ⊗hT−⊗'T,1 otherwise.7 ~ = ~mS − ~nT~mT − ~nS, ~nS = minK⊗'S,⊗hSL, ~nT = maxK⊗'S,⊗hSL, ~mS = minK⊗'T,⊗hTL, ~mT = minK⊗'T,⊗hTL. 

3.6. Axiomatic structure 
 
To show the plausibility of the procedure, it is necessary to establish some minimal requirements. First, it is 
natural to suppose that all the parameters based on the possibility function defined in (11) must result in 
values between zero and one. Second, given that we are looking for a generalization of the outranking 
approach, both the generalization and the classic outranking must provide the same result when the 
parameters are the same. Third, if ��(R) = bR�S, R�Tc increases and/or ��(V) = bV�S, V�Tc decreases, we can 
expect the credibility of the asseveration R�V to increase. Conversely, if ��(R) decreases and/or ��(V) 
increases, we can expect the credibility of the asseveration R�V to decrease. We express all this in the form of 
the following axioms. 
Axiom I. Range  
The bounds of !�(R, V), 9�(R, V), �(R, V), :9(R, V) and B(R, V) are in F0,1G.  
Axiom II. Generalization  
The interval based outranking must be reduced to the classic outranking when the parameters (performance of 
the alternatives, weights, preference, indifference, veto, pre-veto thresholds and lambda cutting level) are real 
numbers. 
Axiom III. Monotonicity  
a) If ��(R) = bR�S, R�Tc (i.e., R�S and/or R�T) increases, or if ��(V) = bV�S, V�Tc  (i.e., V�S and/or V�T) decreases, 
then R�V must be more credible (i.e., B(R, V) must increase).  
b) If ��(R) = bR�S, R�Tc decreases or if ��(V) = bV�S, V�Tc  increases, then R�V must be less credible. 
It can be demonstrated that the proposed procedure meets the axioms. See Appendices A and B for proofs. 
 
4. EXPERIMENTS AND RESULTS 
 
4.1 Representativeness of !�(R, V) and 9�(R, V). 



 

 
The first experiment was carried out with the intention of discover
namely, how well it can characterize the expression 
Montecarlo simulation when comparing ten pairs of alternatives. Thi
parameters of the interval based outr
each parameter by obtaining a real number in the given interval.
the parameters generated. We do the latter procedure for 1000 times a
true. 
The second column of Table 1 contains an interval number representing the performance of 
column contains the performance of 
[200000, 2000000]. The fourth column consists of the preference and indifference thresholds. The fifth 
column has the average of times that 
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4.2 Effectiveness of the novel possibility function
 
The following experiment consists in the comparison of the possibility function introduced in Eq. (11) and the 
grey possibility function proposed by Shi et al. in [14]. The goal of the comparison consists in determining the 
effectiveness of both functions. This effectiveness is given by the accuracy of the functions to determine the 
real possibility of a given interval
order to obtain the real possibility of this event, we perform a Montecarlo Simulation where the bounds of 
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rried out with the intention of discovering the representativeness of 
namely, how well it can characterize the expression R�V. In this context, Table 1 shows the results of a 
Montecarlo simulation when comparing ten pairs of alternatives. This simulation randomly generates the 

interval based outranking setting them as intervals. After that, we generate a realization of 
each parameter by obtaining a real number in the given interval. This allow us to establish if 
the parameters generated. We do the latter procedure for 1000 times and obtain the average of times 

The second column of Table 1 contains an interval number representing the performance of 
performance of V. The bounds of both ���R� and ���V� are generated in the interval 

[200000, 2000000]. The fourth column consists of the preference and indifference thresholds. The fifth 
column has the average of times that R�V was met in the simulation, given as a proportion. Finally, the sixth 
column is the level of marginal concordance, !��R, V�, as defined in (4). 

Table 1. Simulation of ���R� � ���V� � ��. 

We can see from Table 1 that in all the cases the proportion of times that R�V was met in the simulation is 
� �. This means that !��R, V� is representative of R�V in the experiments. Of 

�R, V� as interval number introduces uncertainty in the form of intervals. 
Nevertheless, the average uncertainty of !��R, V� (i.e., the average of !�

T�R, V� � !�
S�R,

0.138. Which implies a relatively small uncertainty produced by the procedure. 
Similar results and conclusions are reached when the experiment is carried out on the marginal discordance, 

, and the veto threshold. 
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and ⊗h are randomly generated. After that, we obtain a realization of each interval number, U' ∈⊗' and Uh ∈⊗h, by randomly generating a real number between the corresponding bounds. This allow us to compare 
both realizations and determine if U' ≥ Uh. We do the latter procedure for 1000 times and obtain the average 
of times the condition is met. In the following Table 3, we show the comparison of 20 pairs of interval 
numbers. The second and third columns of this table show the values of ⊗' and ⊗h, respectively. The fourth 
column represents the percentage of occasions on which U' ≥ Uh was met. The fifth column is the result of the 
grey possibility function proposed by Shi et al., it is expressed as a percentage. Finally, the sixth column is the 
result of the function �(⋅) introduced in Eq. (11), it is also expressed as a percentage. 
 

Table 3. Simulation of ⊗'≥	⊗h and effectiveness comparison of the possibility functions. 

 
 

In the 20 comparisons, it is true that �(⋅) has an accuracy that is not worse than that of the grey possibility 
function proposed in [14]. Furthermore, �(⋅) has a better accuracy in 13 comparisons (i.e., 65%). Finally, 
from this experiment we can conclude that �(⋅) tends to overestimate the possibility of ⊗'≥	⊗h. 
 
5. CONCLUSIONS 
 
We have proposed a novel way to deal with uncertainty and vagueness in the definition of all the outranking’s 
parameters. We do it by setting the values of parameters as interval numbers instead of real numbers. This let 
us consider all the possible values that a parameter might have, and for which we cannot find an exact value. 
The procedure proposed needs a way of ordering interval numbers. In this sense, we have also presented a 
novel way to determine the possibility degree that an interval number is greater than or equal to another 
interval number. Through this possibility function, the model is able to obtain an interval-based credibility 
index of the outranking.  
The experiments carried out show that the concordance and discordance indices are actually representative of 
the outranking relation and the veto situations, respectively. These experiments also show that the possibility 
function presented is effective determining the grade in which an interval number is greater than or equal to 
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another. The effectiveness of the possibility function proposed here is superior to that of the function 
proposed by Shi et al. [14] in the experiments carried out. 
Finally, we have shown that the proposed model based on interval analysis theory is a generalization of the 
classic outranking, that the model meets several intuitive requirements and that it can effectively represent the 
asseveration “alternative �� is at least as good as alternative �”.  
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APPENDIX A 
Proof of Axiom I fulfillment 
We show that each of the parameters obtained in the method proposed are, as intuitively supposed, in F0,1G. 
Lemma 1. The bounds of ck(x, y), ckS and ckT, are in F0,1G. 
Proof. Eq. (4) defines ck(x, y) by means of three conditions. If the first condition is satisfied, then ckS = ckT = 0; if the second condition is 
satisfied, then ckS = ckT = 1. In the third condition, a division is used to obtain the value of ck(x, y). The denominator of this division is 
always (δ�T − δ�S); while the numerator will always be between zero and (δ�T − δ�S). Thus, ckS and ckT, will always be in the F0,1G range. 
Lemma 2- The bounds of dk(x, y), dkS and dkT, are in F0,1G. 
Proof. Eq. (5) defines dk(x, y) by means of three conditions. If the first condition is satisfied, then dkS = dkT = 1; And if the second 
condition is satisfied, then dkS = dkT = 0. In the third condition, a division is used to obtain the value of dk(x, y). The denominator of this 
division is always (γ�T − γ�S);  while the numerator will always be between zero and (γ�T − γ�S). Thus, dkS and dkT, will always be in F0,1G. 
Lemma 3- The bounds of c(x, y), cS and cT, are in F0,1G. 
Proof. Eq. (6) defines c(x, y) as the sum of the product between ck(x, y) and wk. Due to the definition of wk in (7), we are sure that wkS = wkT ∈ F0,1G. We know that ∑ wkS�k&' = ∑ wkT�k&' = 1. In addition, we know the bounds of ck(x, y) are in F0,1G. (See proof of Lemma 
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1.) Given the definition of addition of interval numbers, know that the smallest value that cS and cT can take is zero and will occur when ckS = ckT = 0; j = 1, ⋯ , K. While the largest value that cS and cT can take is one and will take it when ckS = ckT = 1; j = 1, ⋯ , K. 
Lemma 4- The bounds of Nd(x, y), NdS and NdT, are in F0,1G. 
Proof. Nd(x, y) is defined in (8) as a function of the difference F1,1G − dk(x, y). If we assume that dkS and dkT are between F0,1G (see proof 
of Lemma 2), then the upper and lower bounds of Nd(x, y) will always be in F0,1G. 
Lemma 5- The bounds of σ(x, y), σS and σT, are in F0,1G. 
Proof. σ(x, y) was defined in (9) as the product of Nd(x, y) and c(x, y). And, according to Lemmas 3 and 4, the bounds of Nd(x, y) and c(x, y) are in F0,1G. Therefore, the bounds of σ(x, y) will also always be in F0,1G. 
 

APPENDIX B 
 
Proof of Axiom II fulfillment 
 
Theorem 1 The interval based outranking method proposed in this work is a generalization of the classic outranking approach. 
 
Proof. To prove that the interval based outranking proposed generalizes the classic outranking approach, we show that each component of 
the first is a generalization of the corresponding component of the second. For reasons of clarity, in this section we refer to the 
components of the interval based outranking by means of the classic identifier of grey numbers, ⊗. Hereafter, we assume that the bounds 
of the parameters defined as interval numbers in the interval-based outranking coincide with the parameters of the classic outranking. 
 
Lemma 6- The uncertain marginal concordance level, ⊗ ck(x, y), is a generalization of the classic concordance index, ck(x, y).  
Proof. We will rely on the definition of white number of the grey theory to prove this Lemma. Specifically, we want to prove that ⊗ ck(x, y) = bck(x, y), ck(x, y)c. 
In the classic approach, we have gk, pk, qk, vk all in the reals; and the concordance index, ck(x, y), is defined as 

ck =
()*
)+ 0 gk(x) ≤ gk(y) − pk,1 gk(x) ≥ gk(y) − qk,dgk(x) − gk(y) + pkepk − qk otherwise. 7 

While Eq. (4) defines ⊗ ck(x, y) in a very similar way. (Eq (4) is shown here again.) 
 ⊗ ck(x, y) = i F0,0G xkT ≤ ykS − pkT,F1,1G xkS ≥ ykT − pkS,bΔk, Δk + δkc otherwise 7 

(4) 

 
It is possible to show that ⊗ ck(x, y) defined this way is a generalization of ck(x, y), if it is true that ⊗ gk(x) = bgk(x), gk(x)c (i.e., xkS = xkT = gk(x)), ⊗ gk(y) = bgk(y), gk(y)c, ⊗ pk = bpk, pkc, ⊗ qk = bqk, qkc, 
First, since xkT = gk(x), ykS = gk(y) and pkT = pk; then, provided that gk(x) ≤ dgk(y) − pke is true, it will also be true that xkT ≤ dykS −pkTe. So whenever ck(x, y) equals zero, ⊗ ck(x, y) will also be zero3. 

Second, because xkS = gk(x), ykT = gk(y) and qkS = qk; then, provided that gk(x) ≥ dgk(y) − qke is true, it will also be true that xkS ≥dykT − qkSe. So whenever ck(x, y) equals one, ⊗ ck(x, y) will also be one. 

Finally, the third condition of (4) occurs when xkT > dykS − pkTe and xkS < dykT − qkSe. This coincides with Scenario (3) of the Section 
Interval based marginal concordance. Therefore, ⊗ ck(x, y) is defined in this case as ⊗ ck(x, y) = Fτ, τG, 
where  τ = xkS − dykS − pkTedykT − qkSe − dykS − pkTe = xkS − ykS + pkT	

pk
T � qk

S . 

Which coincides with the third condition of ck�x, y), since  the original assumption was xkS = gk(x), ykS = gk(y), pkT = pk, and qkS = qk. 
Thus, we can say that it will always be true that ⊗ ck(x, y) = bck(x, y), ck(x, y)c when the parameters are white numbers; and the proof 
that ⊗ ck(x, y) is a generalization of ck(x, y) has ended. 
 
Lemma 7- The interval based marginal discordance level ⊗ dk(x, y), is a generalization of the classic discordance index, dk(x, y). 
Proof. In the classic approach, the discordance index, dk(x, y), is defined as 

dk(x, y) =
()*
)+ 1 gk(x) ≤ gk(y) − vk,0 gk(x) ≥ gk(y) − pk,gk(y) − gk(x) − pkvk − pk otherwise. 7 

                                                           
3
 When the upper and lower bounds of an interval number are equal, it is called a white number. This is because there is no uncertainty 

about what the actual value of the interval number is and it can be considered as equal to a real number. 
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While Eq. (5) defines   in a very similar way. Eq. (5) is shown here again. 
 ⊗ dk(x, y) = i F1,1G xkT ≤ ykS − vkT,F0,0G xkS ≥ ykT − ukS,bΓk, Γk + γkc otherwise 7 

(5) 

 
It is possible to show that ⊗ dk(x, y) defined this way is a generalization of dk(x, y), if it is true that  ⊗ gk(x) = bgk(x), gk(x)c (i.e., xkS = xkT = gk(x)), ⊗ gk(y) = bgk(y), gk(y)c, ⊗ pk = bpk, pkc, ⊗ vk = bvk, vkc, 
First, since xkT = gk(x), ykS = gk(y) and vkT = vk; then, provided that gk(x) ≤ dgk(y) − vke is true, it will also be true that xkT ≤ dykS − vkTe. 
So whenever dk(x, y) equals zero, ⊗ dk(x, y) will also be one. 
Second, because xkS = gk(x), ykT = gk(y) and pkS = pk; then, provided that gk(x) ≥ dgk(y) − pke is true, it will also be true that xkS ≥dykT − pkSe. So whenever dk(x, y) equals one, ⊗ dk(x, y) will also be zero. 

Finally, the third condition of (5) occurs when xkT > dykS − vkTe and xkS < dykT − pkSe. This coincides with Scenario (3) of the Section 
Interval based marginal discordance. Therefore, ⊗ dk(x, y) is defined in this case as ⊗ dk(x, y) = Fϕ, ϕG 
Where  ϕ = dykT − pkSe − xkSdykT − pkSe − dykS − vkTe = ykT − xkS − pkSvkT − pkS . 
  
 This coincides with the third condition of dk(x, y), since  xkS = gk(x), ykT = gk(y) and pkS = pk, and vkT = vk. 
Therefore, we can say that ⊗ dk(x, y) = bdk(x, y), dk(x, y)c; and the proof that ⊗ dk(x, y) is a generalization of dk(x, y) has ended. 
 
Lemma 8- The interval based concordance index, ⊗ c(x, y), is a generalization of the classic concordance index, c(x, y). 
Proof. The importance of the j�
 criterion is represented in the classic outranking as wk. While in the interval based outranking, this 
importance is given by ⊗ ωk = bωkS, ωkTc. Equation (7) performs the following normalization of ⊗ ωk. 
 wkS = wkT = ωkS + ωkT

∑ωk
S + ∑ωk

T. (7) 

Such that the normalized importance of the criteria in the interval based outranking is satisfied by ∑ ⊗ wk = F1,1G�k&' . 
On the other hand, the concordance level of xSy is calculated in Eq. (6) as 
 ⊗ c(x, y) = $⊗ wk ⊗ ck(x, y).�

k&'  (6) 

Suppose  ⊗ ωk = wk (i.e., ωkS = ωkT = wk); then, ⊗ wk = wk (i.e., wkS = wkT = wk). Thus, if ⊗ ck(x, y) generalizes to ck(x, y), then c(x, y) is a specificity of ⊗ c(x, y). 
 
Lemma 9- The interval based non-discordance index, ⊗ Nd(x, y), is a generalization of the classic non-discordance index, Nd(x, y). 
Proof. The non-discordance index of xSy, ⊗ Nd(x, y), is calculated in (8) as 
 ⊗ Nd(x, y) = mink∈⊗�(���)@F1,1G −⊗ dk(x, y)A. (8) 

Where ⊗ C(yPx) = @j: xkS ≤ ykT − pkSA. 
While Nd(x, y) is defined as Nd(x, y) = mink∈�(���)@1 − dk(x, y)A. 
Where C(yPx) = @j: gk(x) ≤ gk(y) − pkA. 
Now assume that ⊗ gk(x) = bgk(x), gk(x)c (i.e., xkS = xkT = gk(x)), ⊗ gk(y) = bgk(y), gk(y)c, ⊗ pk = bpk, pkc, ⊗ dk(x, y) = bdk(x, y), dk(x, y)c, 
Given that xkS = gk(x), ykT = gk(y) and pkS = pk, then it follows ⊗ C(yPx) = C(yPx). 
Assuming that ⊗ dk(x, y) is a generalization of dk(x, y), then we can ensure that ⊗ Nd(x, y) is indeed a generalization of Nd(x, y). 
 
Lemma 10- The uncertain degree of credibility of the assertion xSy, ⊗ σ(x, y), is a generalization of the classic degree of credibility, σ(x, y). 
Proof. The definition of ⊗ σ(x, y) in (9) is 
 ⊗ σ(x, y) =⊗ C(x, y) ⋅⊗ Nd(x, y). (9) 

Since Lemmas 8 and 9 demonstrate that ⊗ Nd(x, y) and ⊗ C(x, y) are generalizations of Nd(x, y) and C(x, y), respectively, the proof 
that ⊗ σ(x, y) is a generalization of σ(x, y) is trivial. Namely, we need to show that the multiplication of two white numbers (interval 
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numbers with equal upper and lower dimensions) is equivalent to the multiplication of two real numbers. Therefore, we omit this 
demonstration. 
 
Lemma 11- The interval based outranking relation, ⊗ S, is a generalization of the classic outranking relation, S. 
Proof. In (10), ⊗ S is defined as 
 x ⊗ Sy ⇔ p(⊗ σ(x, y) ≥⊗ λ) ≥ 0.5. (10) 
It can be shown that p(⊗ σ(x, y) ≥⊗ λ) = 1 only when σ ≥ λ, and p(⊗ σ(x, y) ≥⊗ λ) = 0 otherwise. Hence, according to (10),  x ⊗ Sy if and only if σ ≥ λ is true. This matches the definition of xSy. Therefore, S is indeed a specialization of ⊗ S. 
At this point, we have shown that each component of the proposed generalization of the outranking approach is a generalization of the 
corresponding component in the classic approach. Therefore, the proof of Theorem 1 is ended. 


