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ABSTRACT

The outranking approach is an important method uttiroriteria decision aid. Nevertheless, it regsirinformation about the
preferences of the decision maker that sometimediffisult to determine. When it is ignored, oftehis difficulty causes
vagueness or imprecision generating a poor perfoceédn the overall model. The vagueness and imgicecigenerated this
way can be considered in the form of interval nurslmntaining all possible values for the actuabpeeters. Evidently, the
consideration of interval numbers instead of reahbers in the outranking approach demands restimgtthe original method.
In this study, we present a generalization of thieamking method that incorporates vagueness apckiision in its parameters
through interval numbers. Additionally, we prop@seovel function to establish the possibility taatinterval number is greater
than or equal to another. The results of the erpnts indicate that the method proposed is abEh#&macterize uncertainty
satisfactorily. Finally, we conclude that the classutranking approach is a specification of thepmsed method and that
several intuitive requirements are accomplished.
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RESUMEN

El enfoque de outranking es un método important@exyuda a la decisién multicriterio. Sin embangmuiere informacion
acerca de las preferencias del tomador de decisimune algunas veces es dificil determinar. Cuandgn®rada, a menudo esta
dificultad causa vaguedad o imprecision que genaraesempefio pobre en el modelo general. La vaduedaprecision
generadas de esta forma pueden ser consideradasrende nimeros intervalos conteniendo todos ddares posibles de los
pardmetros reales. Evidentemente, la considerad@muimeros intervalos en lugar de numeros realesl enétodo de
outranking demanda reestructurar el método origialeste trabajo, presentamos una generalizaeiémé&todo de outranking
que incorpora vaguedad e imprecisién en sus pamsnattravés de nimeros intervalo. Ademas, proposama funcién
novedosa para establecer la posibilidad de queinero intervalo sea mayor o igual a otro. Los tadok de los experimentos
indican que el método propuesto es capaz de ceract incertidumbre de manera satisfactoriaalente, concluimos que
el método clasico de outranking es una especibicadiel método propuesto y que varios requerimieiriagitivos son
conseguidos.

PALABRAS CLAVE: ayuda a la decisién, enfoque de outranking, ntadejla incertidumbre, modelacién preferencialiiteo
de nimeros intervalo.

1. INTRODUCTION

Multi-criteria decision aid (MCDA) is a relevangfd within operational research. It encompassesragv
methods to support decision making. The outrankjsgroach, and in particular the methodologiesén th
ELECTRE family methods [1, 12] are a popular resledield within MCDA. The ELECTRE approach was
first introduced in [3]. Later, this first versi@volved into a series of variants. From which tresin
mentioned version is ELECTRE Il [11]. A comprehimassurvey of the ELECTRE family methods for
multiple criteria decision analysis is providedHRigueira et al. in [4].

The ELECTRE family of methods is based on a comowtept, the outranking relation. Through the so-
called concordance and discordance sets, we capazemairs of alternatives and exploit an outragkin
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relation that leads to a particular choice or ragkif the alternatives. The construction of theanking
relation demands the elicitation of a set of patanse Generally, this elicitation is not trivialkdbably, the
most outstanding limitation of the ELECTRE methadthe need for precise measurements of their
parameters. Elicitation of the performance of ali¢ives, thresholds, and weights and veto powéref
criteria, frequently comprises some part of arbitkess and imprecision. We conclude that the vabddise
parameters are assigned under conditions of uitgrtaat, if ignored, can cause a poor performandbe
overall decision model. The information about thére of the parameters is imprecise or uncertataudse
of limited information-processing capabilities, kaaf data and/or ill-determined information. Thypé of
uncertainty may be satisfactorily represented bgriral analysis theory.

In this context, some authors have developed istieiggextensions of the ELECTRE method for decision
making problems. In [1], Amiri et al. proposed thee of interval data in ELECTRE | and illustrathd t
approach for the assessment of 15 bank brancheminvVahdani et al. [16] go beyond the intervaidand
generalize the ELECTRE methods incorporating alserval weights. Balali et al. [2] look for an igtation
of ELECTRE Il and PROMETHEE Il decision-making rhetls with an interval approach. Vahdani et al.
[17] propose an extension of the ELECTRE metho@tas interval-valued fuzzy sets.

Here, we assume that the uncertainty related Wwetdefinition of all the outranking's parametersrizbraced
by interval numbers. Thus, generalizing the classicanking approach in terms of the interval asialy
theory. We propose a novel possibility functiondzhen interval theory's arithmetic that allows agbtain
the credibility index of the outranking relatioklVe show that this possibility function has someaative
properties, such as a [0, 1] range and monotonicity

The structure of the paper is structured as folldwsection 2 a brief background fundamental lids tvork
is presented. Our proposal for generalizing theamking approach through interval theory is preseim
section 3, as well as an overview of some of thetroatstanding properties of the generalizatiotiSe 4
shows the experimental validation. Finally, secoroncludes this work.

2. BACKGROUND

2.1. Outranking approach

The outranking approach proceeds by a pair-wisepaosison of alternatives in order to rank those
alternatives in terms of their priority. Within tframework of the ELECTRE family of methods, the
outranking approach supposes that the followirgjvien (see [12]).

. A setA of potential actions (or alternatives).

. A consistent familyF of n criteriag; that allow the actors involved in the decisionge®s (decision
maker, DM) to reflect their points of view on therformance of the alternatives. Furthermgréa) € R is
called the performance af€ A in thejt" criterion. Andva' € A andva € A, gj(@') = g;(a) >a'is at
least as good asin thej™ criterion.

The outranking approach assumes that by considgreng/hole family of criteria it is possible to def a
binary relation betweea’ anda called outranking relatiors, a’Sa is true if the values of the performances
of @’ anda give a sufficiently strong argument for considgrthe following statement as true (see [124).,“
with respect to the criteria, is at least as good &’ The sentence “at least as good as” is synonymaiins
“not worse than”.

In order to evaluate the outranking relatiyrit is necessary to consider that no all critéri& are equally
important from the DM's perspective. When buildigdhis situation is considered by means of two
parameters assigned to each criterion: the weightfze veto of the criterion. The weight (or importe
coefficient) of theith criterion,w;, sets the importance of this criterion in relatvaith the rest of the criteria
and is only considered in the definition of thencordance degree (defined below). The veto threlshiothe
jt criterion,v;, reflects the capacity given to tjf8 criterion for rejecting the assertiaSa without any
help of other criteria.

It is also possible to build a binamarginal relation betweea’ anda calleds;. a’'S;a holds if the values
g;j(a") andg;(a) give a sufficiently strong argument for considgrthe following statement as truer’;
with respect to thg™ criterion only, is at least as gooddads

2.1.1. Concordance and Discor dance Concepts
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In order to define if thgt" criterion is in concordance with the asseridSa it must be true that's;a.
a'S;ais true iffg;(a’) = g;(a) — q;. Whereg; is a real positive indifference threshold, assedavithg;.
q; represents the hesitation in the internal prefezenodel of the DM about when to declare ihda') and
g;(a) are equivalent. The subset of all criteri@ithat are in concordance with the assertitSu is called
the concordant coalition. It is denoted®¢a’Sa).

Thej™ criterion is in discordance with the assertidSa if the differenceg;(a) — g;(a’) is sufficiently
large. This situation is denoted@Ba’'. aPa' iff g;(a) = g;(a’) + p;, wherep; is the threshold that
indicates when the difference is sufficiently largjee subset of all criteria ifi that are in discordance with
the assertiom’Sa is called the discordant coalition. It is denobgtC (aPa’) since it can also be viewed as
the concordant coalition with the assertiaRa’.

Evidently, there might be some criteria that ar¢hee concordant nor discordant with the assertitfua.
These are the criterjafor which it is trueg;(a) — p; < g;(a’) < g;(a) — q; withp; > q;. The subset of
defined by the criteria satisfying this conditiendenoted by (aQa').

Concordance index

The concordance index(a’, a), reflects the strength of the assertidSa. c(a’, a) is defined in ELECTRE

Il as
n

c(a,a) = chj(a’,a) 1)
j=1
Where

( 0 gj(a’) < gj(a) —p;j
, 1 gj(a) = g;(a) —q;
Cj(a’a)=4g~(a')—g'(a)+p' / / /

[ ] ] otherwise.

pj —4q;

Discor dance index

We can be sure that whgn(a) — g;(a’) is too large (i.e., at leasf) then thei™ criterion is incompatible
with the assertiom’Sa whatever the other performances are. Neverthelesseto effect can occur in
different degree for a differengg (a) — g;(a’) smaller thary; as long ag;(a) — g;(a’) > p;. Based on
this, the outranking method builds the followingabrdance index.

[ 1 g;(a) < gj(a) —v;,
0 (a)=gi(a) —p;
di(a’,a) = 9.(@) — g;(a) —p; 9;(@) = 9;(@) =,
/ / / otherwise.
Yj = Pj
Which leads to a non-discordance predicate baséttjo(R) (see [5]).
Nd(a',a) = jegr(l‘br)la,){l —-d;(a’,a)}. @)

Credibility of § and some preferential relations

Fromc(a',a) andNd(a', a) we can build a fuzzy relatian A X A — R, wheres € [0,1], such that

o(a’, a) represents the degree of credibility of the statetrtia’ is at least as good a& as given in Eqg. (3).
o(a,a) =c(a,a) -Nd(a',a). 3)

Finally, assume there istae (0.5,1] threshold such that'Sa iff o(a’,a) = 1. Then for all(a’, a) €

{A x A}, o(a’, @) lets us set the following relations of preferebetveem’ anda.
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Strict preference, P. P is an asymmetric binary relation that indicatest there is clear evidence justifying a
significant preference in favor of one of two altatives.P is denoted ag’Pa: “a’ is strictly preferred ta”.
a'’Pa < o(a',a) =2AN0(aa’) <0.5.

Indifference, 1. I is a symmetric relation that indicates that thiergear evidence justifying an equivalence
between two alternativebis denoted aa'la: “a’ is indifferent witha”. a'la © o(a’,a) > 1 Ao(a,a’) =

A

Weak preference, Q. Q is an asymmetric binary relation that indicates there is clear evidence justifying a
preference in favor of one of two alternatives. &lgheless, this preference is not significant,tgots
preference and indifference are indistinguishaples denoted ag’'Qa: “a’ is weakly preferred ta”.
aQaeo(a,a)=2ANno(ad,a) >c(a,a’)A-a'Pan-dla.

Incomparability, R. R is a symmetric binary relation indicating thatréhare no clear evidence that justify any
of the above relation® is denoted aa'Ra: “a’ anda are incomparable’a’' Ra < d(a',a) < 0.5 A

o(a,a’) <0.5.

WhereA indicates conjunction and indicates negation.

2.2. Interval analysistheory
2.2.1. Interval arithmetic

An interval number is an imprecise quantity whase tvalue is contained in a range of numbers. Ikier t
reason, interval numbers are naturally expressednage of numbers:
[x",xt]={x eRix~ <x <x*}.

The idea is simple. Each interval number represep@rameter. The true value of this parametemksawn
-due to problems of inaccuracy in the estimatiothmds, for instance- but we are certain that doistained
within a lower and an upper bound. It is possiblesfer to any € [x~, x*] as a realization of the interval
numberx.
If x andy are two interval numbers such that [x~,x*] andy = [y~,y*], then the theory of interval
numbers sets the following arithmetic operatiortsvieen them (see [10]).

x+y=[x"+y,xt+y*]

x—y=[x"—-y"xt-y7]

x -y =[min{x"y",x7y",x"y",xTy"}, max{x"y ", x"y ", xTy", x ¥y},
1 1

v~ 'y+]'
x=y©ex =y andxt =y*,

X
=[x, xt]
y

m(x) =3 G +x%),

1
w(x) = E(x* —x7).

2.2.2. Ordering of interval numbers

Several authors have worked on the ranking of walerumbers. For example, Ishibuchi and Tanak&]in [
establishedthat <x © y~ <x~ Ay* <x*;andthaly < x & y < x Ay # x. They also proposed a
method to rank interval numbers througkix) andw(x) in the following wayy < x © m(y) < m(x) A
w(y) =2 w(x); andy < x & y < x Ay # x. Sengupta and Pal [13] also useflx) andw(x) to rank interval
numbers. They suggested a condition-based methestablish thgrade of acceptability of the expression
“the interval numbey is inferior to the interval numbef’, y < x:
=0 m(y) = m(x),
y<x{€(0,1) m@y)<mx)Ay" >x",
>1 m@)<m@x)Ayt <x”
and define it as
) < x = @) = mB)
w(x) +w(y)’

wherew(x) + w(y) # 0.
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Later, Shi et al. in [14] defined a different wayraink interval numbers through a so called gressitality
function -given that it was proposed in the contexgrey theory (see [8]), an extension of intemaory.
This grey possibility function is defined as
max{0,d — max{0,y* —x~}}

d

p(y<x) =
whered = (y* —y )+ (' —x") > 0.
The latter is the most broadly mentioned in therditure.
All these ways to compare and rank interval numbeeshighly interesting and intuitively appealing;
nevertheless, all of them suffer of at least ontheffollowing problems.

. There are some cases when it is not possible toinéerval numbers.

. They concentrate in the midpoint of the intervghadring most of the uncertainty within the
intervals.

. They do not consider areas of certainty; thatrisaswhere it is sure that an interval number is

strictly lesser or greater than another. We spéakitathis in the next section.

In order to take into account these situations wdwnparing alternatives, we propose a differensibigy
function that allows us to establish the parameatéthe outranking approach as interval numbers. We
suppose that due to imprecision/vagueness the paeesrof the outranking method (i.e., performarfab®
alternatives, weights, preference, indifferencéoand pre-veto thresholds) are defined as intenwaibers.
Therefore, we use the basic terminology of thesitasutranking theory combined with the intervainners
theory. Let us start by defining the marginal infation of the outranking method.

3. INTERVAL-BASED OUTRANKING APPROACH
In this section, the generalization of the classitranking approach is presented. This sectionges by
generalizing each component of the classic outrepnta an interval based approach.

3.1. Interval based marginal concordance

If g;(x) =[x}, x| andg;(y) = [y}, ¥; | are the performances of alternatiweandy in thej™ criterion,
andp; = [p/,p;j | andg; = [q;,q;] are the preference and indifference thresholdisérsame criterion, then
we can identify three conditions that can occur wbemparingg;(x) andg;(y) incorporating these
thresholds:

) x5t < (v —pf).
i) 20 —q):
iii) None of the above conditions are fulfilled.

Only when the first condition is met we can be ghiad there willnever be a realization of that is at least as
good agy in thej™ criterion. Thus, the level of concordance of thiserion with the expressiarSy must be
zero if and only if the upper bound gf(x) is lesser than or equal to the lower boung ) when the
highest possible realization pf is considered. More formally:

¢(x,y) =0 xf < (y7 —pf).
Similarly, only when the second condition is metees be sure thatwill be always at least as good gsin
thejth criterion. So the level of concordance of thisesion must be one if and only if the lower bourid o
g;(x) is greater than or equal to the upper boundl;6f) when the lowest possible realizationggfis
considered. More formally:

gy =1ex 2 —aq)
In the other hand, when none of the above conditave met then it is true thigt” — p;) < (y; —¢;) and
there will besome realizations for which the expressionis at least as good asn thej™ criterion” is met.
In order to estimate the proportion of realizatiémrswhich this expression might be true we propibse
following procedure.
Letr; = (yj —p}) andr" = (¥ — ;). Then, when comparing;;(x) = [x{", x| andr; = [r;", 7],
exactly one of the following scenarios will be true
(1) (x7 <77) and(x <77").
) (xy <77) and(xj" = 77").
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3) (x7 = 77) and(xj" <77").
(4) (x7 =77) and(x* = +)
Scenario (1). When(x <77 ) and(xj <7*), the only zone where can be at least as goocham thej™
criterion is when there are realizationggpx) andr; betweenr;” andx . The proportion of realizations in
this zone is given by
wilntil
Nt
This means that the proportion of realizationshigjt® criterion that are in favor afSy will be no more than
dj(1)- Doubtless, it is also possible that none of thieaéizations is in favor of the expression. Sortteginal
concordance in the Scenario (1) must be betweenazets; ;). More formally:

G (6, y) = [0, 8-
Scenario (2). When(x;” < r;7) and(x;" > ), we can be sure thatis at least as good gsin the;™
criterion in the following proportlon

Sy =

+

Xi T

K@ = v =

) ]
While the following proportion express the quantifyrealizations where can be at least as goodyas the
th ~r H .
j criterion:

il
xt—x
So the proportion of realizations that are in favbeS;y is betweenu;;y and(u;;) + 8j(2)) and the
marginal concordance in this scenario is
@6 ) = (i@, Wi + 8i2)]-

The marginal concordance for the scenarios thrddair are defined in a very similar way. In getettze
marginal credibility of thg®™ criterion being in concordance wittSy is calculated by

[0,0] xt <y —pf,
c(x,y) = [1,1] X7 =2y —p;, 4)
[A]-, A+ 51] otherwise

iy =

whered; = (i B + 1" B"),

__5 T
‘u] 5+ 5—'
it
| E b
g = {O 2 X,
J 1 otherwise.
Bt = {0 2 xf,
! 1 otherwise.
85 — 6
6 = 85+ — 5—'
6 = mm{xj',rj'},
8 = max{x;, 77},
85 = min{x/", 7"},
8¢ = max{x/, "},
3.2. I nterval-based marginal discordance

Lets; = (yj —vj) andsi" = (i —vj). If v; = [vj", v ] andy; = [u;,uj"] are the veto and pre-veto
thresholds in thg™ criterion, then similarly as above and followimg tsimplification of Mousseau and Dias
[9], the marginal discordance of tj#& criterion withxSy is defined as
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[1,1] Xt <y —vf,

di(x,y) =4 [00] x>y —u, (5)
I, T + 7] otherwise

— (= + o+

wherel; = (nja; + ' o), o
|
Y=y
+ +

pr=3 "5

Rt

_ {1 Sj > x]' B
otherwise.
s> «xf,

5]
I
—~—t—
=o

N J 0 otherwise.
Ys — Vi

- Ys — Vi

)

3.3. I nterval-based concor dance index

Considering a problem with criteria, the concordance index associated wfth is obtained by
n
cCoy) = ) Wiy ®)
j=1

With c(x,y) € [0,1]. The importance that the DM assigns to iftecriterion is represented by, =
[wj‘, w,-*]. With the purpose of ensuring consistency in fifienaation c¢(x, y) € [0,1], we need to be sure that

j=1w; = 1. Nevertheless, the uncertainty containeajrfand represented as an interval number) makes

this a complicated work. Hence, we establish agutace ofwhitening? in the following way.

w7 + o}
— + J J
S=wrt=—>1 1 7
W =W = 7
34. I nterval-based non-discor dance index
The non-discordance level associated wily is calculated as
Nd(x,y) = min {[1,1] — dj(x,y)}. (8)

JEC(yPx)
WhereC(yPx) = {j:xj’ <y —pj}.
Finally, we define the concept of a minimum amorsgtof interval numbers as follows. [Bte a set of
interval numbersh* € B is the minimum ofB, denoted bynin{B}, if and only ifp(b* = b) < 0.5 for all
b € B. p(-) is calculated as in Eq. (11).

3.5. Interval-based outranking

Consequently, we obtain the credibilityxffy in the classic way:
a(x,y) = C(x,y) - Nd(x,y). 9)

2|t is not uncommon to find whitening procedurestia interval theory. These procedures define ¢atization that represents an
interval number as a real number. See for examigle [
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Moreover, we say thatc“is at least as good a8if and only if the possibility that is greatdran or equal to
an uncertain cutting levelis at least 0.5. More formally:
xSy © p(o(x,y) = 1) =0.5. (10)

Wherep(-) can be based in any of the possibility functiomntioned before. Nonetheless, given the
discussion in Section 2.2, and based in (4) and(&)propose to obtain the possibility that anrivdé
number,®;= [®71,®7], is greater than or equal to another interval rem®,= [®;,&7], in the
following way.

0 RI<®3,
r(®:2Q,) (2P + p) . (11)
— otherwise.
Where
P=W B~ +u"ph),
_®i-®;
pd—p;’
., ®-®3
pf —p’
B {0 ®7—-®71,
1 otherwise.
B+ {0 ®-2+_®II
. 1 otherwise.
_Ps Th
ps —pi’
p; = min{®7,&3},
pi = max{®;,83},
ps = min{®7,83},
pd = min{®},Q7}.
3.6. Axiomatic structure

To show the plausibility of the procedure, it icessary to establish some minimal requirementst, Firis
natural to suppose that all the parameters bas#uegoossibility function defined in (11) must riso
values between zero and one. Second, given thateveoking for a generalization of the outranking
approach, both the generalization and the clasgiewaking must provide the same result when the
parameters are the same. Thirggjifx) = [x;, x;'] increases and/qr;(y) = [y;,y;’] decreases, we can
expect the credibility of the asseveratifiy to increase. Conversely,df(x) decreases and/gr(y)
increases, we can expect the credibility of thewsstionxSy to decrease. We express all this in the form of
the following axioms.

Axiom |. Range

The bounds of;(x,y), d;(x,y), C(x,y), Nd(x,y) ands(x, y) are in[0,1].

Axiom |l. Generalization

The interval based outranking must be reduceddelssic outranking when the parameters (perfocenah
the alternatives, weights, preference, indifferenwet¢o, pre-veto thresholds and lambda cuttingljeve real
numbers.

Axiom lll. Monotonicity

a) If g;(x) = [/, x}"] (i.e.,x; and/orx}") increases, or if;(y) = [y;,y/'] (i.e..y; and/ory;") decreases,
thenxSy must be more credible (i.ex(x, y) must increase).

b) If g;(x) = [, x]"] decreases or ij;(¥) = [yj, ¥/ ] increases, therSy must be less credible.

It can be demonstrated that the proposed procedeets the axioms. See Appendices A and B for proofs

4. EXPERIMENTSAND RESULTS

4.1 Representativeness of ¢;(x,y) and d;(x,y).
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The first experiment was géed out with the intention of disconing the representativenessc;(x, y);
namely, how well it can characterize the expresxSy. In this context, Table 1 shows the results
Montecarlo simulation when comparing ten pairsit#fraatives. Tts simulation randomly generates
parameters of thiaterval based oLanking setting them as intervals. After that, weegate a realization «
each parameter by obtaining a real number in thenginterval This allow us to establish xSy is true for
the parameters generated. We do the latter proed¢dut000 timesnd obtain the average of timxSy is
true.

The second column of Table 1 contains an interuatlver representing the performancex while the third
column contains thperformance oy. The bounds of both;(x) andg;(y) are generated in the inter
[200000, 2000000]. The fourth column consists efheference and indifference thresholds. The
column has the average of times xSy was met in the siolation, given as a proportion. Finally, the si
column is the level of marginal concordanc;(x,y), as defined in (4).

Table 1. Simulation of;(x) = g;(y) — q;.

# g;(z) 95 () P=gq Sy(%) ¢j

1 [618338,693580] [682800,1957644] [74204,99868] 0.04 [0.03,0.09]
2  [236824,309613] [331958,1743575]  [66143,85200] 0.01  [0.0,0.04]
3 [972268,1435535]  [206448,822273] [82607,99958]  0.01  [1.0,1.0]
4  [256424,407511] [1760913,1816184] [23591,31959] 0.0  [0.0,0.0]
5 [552062,1094819] [1187692,1554793] [73324,75213] 0.0 [0.0,0.0]
6
7
8
9
1

[1217054,1645877] [1298739,1520698] [31388,69912] 0.66  [0.37,0.97]
[401371,896272]  [256296,1236920]  [61801,73764] 0.47  [0.22,0.72]
[1137064,1177550] [228306,1637655] [28573,41934] 0.68  [0.67,0.7]
[302704,1888840]  [1309211,1364147] [49413,54092] 0.38  [0.36,0.4]

0 [750555,890113]  [588318,1899060] [50358,83857] 0.22  [0.18,0.29]

We can see from Table 1 that in all the cases tthgption of times thexSy was met in the simulation
contained in the intervaj (x, y). This means that(x, y) is representative ofSy in the experiments. C
course, the representationapx, y) as interval number introduces uncertainty in threnfof intervals
Nevertheless, the average uncertaintc;(x,y) (i.e., the average @f*(x, y) — ¢ (x,y) in the 10 results) is
0.138. Which implies a relatively small uncertaiptpducecby the procedure.

Similar results and conclusions are reached whemxperiment is carried out on the marginal disaoce,
d;j(x,y)., and the veto thresho

Table 2. Simulation of;(x) < g;(¥) — p;

# g;(x) 9;(y) v Vetoes (%) d;

1 [618338,693580]  [682800,1957644]  [264883,714793] 62 [0.58,0.62]
2 [236824,309613]  [331958,1743575]  [234180,236000] 87 [0.85,0.9]
3 [972268,1435535] [206448,822273]  [383639,630008] 0 [0.0,0.0]

4  [256424,407511]  [1760913,1816184] [161413,473087] 100 [1.0,1.0]

5 [552062,1094819] [1187692,1554793] [161747,299559] 94 [0.75,1.0]
6 [1217054,1645877] [1298739,1520698] [587911,683753] 0 [0.0,0.0]

7 [401371,896272)  [256296,1236920]  [280628,740543] 12 [0.04,0.39]
8 [1137064,1177550] [228306,1637655] [294673,960914] 9 [0.08,0.1]
9  [302704,1888840] [1309211,1364147] [120731,495715] 45 [0.32,0.59]
10 [750555,890113]  [588318,1899060] [660875,875828] 23 [0.23,0.32]

The uncertainty producday the procedure in this case is 0.107 that is sisall
4.2 Effectiveness of the novel possibility function

The following experiment consists in the comparisbthe possibility function introduced in Eq. (1dnd the
grey possibility function proped by Shi et al. in [14]. The goal of the comparisonsists in determining tl
effectiveness of both functions. This effectivenissgiven by the accuracy of the functions to detee the
real possibility ofa given interve number,®),, to be greater than or equal to anoth&rval numbe, Q. In
order to obtain the real possibility of this evemg perform a Montecarlo Simulation where the bauok®
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and®, are randomly generated. After that, we obtainatization of each interval numbet, e®, and

r, €Q,, by randomly generating a real number betweerdhesponding bounds. This allow us to compare
both realizations and determinerjf> r,. We do the latter procedure for 1000 times andinlihe average

of times the condition is met. In the following Tal3, we show the comparison of 20 pairs of interva
numbers. The second and third columns of this tsiidev the values @®, and®,, respectively. The fourth
column represents the percentage of occasions mwh> r, was met. The fifth column is the result of the
grey possibility function proposed by Shi et dlisiexpressed as a percentage. Finally, the sbltimn is the
result of the functiop(-) introduced in Eq. (11), it is also expressed peraentage.

Table 3. Simulation o®;> &®, and effectiveness comparison of the possibilitictions.

# ®, ®, ®=® Sk p()
1 [1798500.1939100] [1071144,1943146] 91 8 91
2 [470863.1846082] [275526.1722951] 60 56 60
3 [708197.771719] [1859749.1903846] 0 0 0
4 [1389670.1654481] [861928919101] 100 100 100
S [358787.1872206]  [252562.689336] 91 83 90
6 [573798.1090306] [1451372.1558608] O 0 0
7 [1428154.1701322] [466982.1774124] 83 8 84
8 [579318.1095713] [327245.1998346] 30 35 31
9 [1427873,1913307] [4861381963600] 80 7380
10 [649815.959503] [963838.1516812] 0 0 0
11 [964247.1126687] [883856.1637738] 21 27 21
12 [1200674.1251574] [726528,1394759] 74 BB
13 [1567043.1872689] [245668,1122706] 100 100 100
14 [409322.842992]  [776113,1263268] 1 7 4
15 [776113,1263268]  [534932.839%668] 74 6 75
16 [282385.1887176] [912509.1463213] 43 5 4
17 [621620,1583679] [703136,1518226] 48 50 49
18 [337598.961952]  [404442.804258] 57 54 57
19 [251129,1584712] [1165244.1833464] 10 21 13
20 [1266448.1817200] [1198515.1870849] 50 51 51

In the 20 comparisons, it is true thet) has an accuracy that is not worse than that ot possibility
function proposed in [14]. Furthermogs(:) has a better accuracy in 13 comparisons (i.e.,)66Rally,
from this experiment we can conclude théf) tends to overestimate the possibility®{> ®,.

5. CONCLUSIONS

We have proposed a novel way to deal with uncdstaind vagueness in the definition of all the onkkiag's
parameters. We do it by setting the values of patara as interval numbers instead of real numbéis.let
us consider all the possible values that a paramatt have, and for which we cannot find an exadtie.
The procedure proposed needs a way of orderingzalteumbers. In this sense, we have also presented
novel way to determine the possibility degree #rainterval number is greater than or equal tolarot
interval number. Through this possibility functidghe model is able to obtain an interval-basedibiiég
index of the outranking.

The experiments carried out show that the concaeland discordance indices are actually repre$entait
the outranking relation and the veto situationspeetively. These experiments also show that tiseipiity
function presented is effective determining thedgran which an interval number is greater thanqua to
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another. The effectiveness of the possibility fiorcproposed here is superior to that of the fuamcti
proposed by Shi et al. [14] in the experimentsiedrout.
Finally, we have shown that the proposed modeldasenterval analysis theory is a generalizatibthe
classic outranking, that the model meets sevetaitivie requirements and that it can effectivelgnesent the
asseveration “alternatiw€ is at least as good as alternaie
RECEIVED: JUNE, 2018.
REVISED: AUGUST, 2018
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APPENDIX A
Proof of Axiom | fulfillment
We show that each of the parameters obtained im#thod proposed are, as intuitively supposefl),iti.
Lemma 1. The bounds of;(x,y), ¢;° andci*, are in[0,1].
Proof. Eq. (4) defines;(x,y) by means of three conditions. If the first coruditis satisfied, theq = Ci+ = 0; if the second condition is
satisfied, ther;” = cj* = 1. In the third condition, a division is used toaibtthe value o€;(x,y). The denominator of this division is
always(8¢ — 6;7); while the numerator will always be between zerd @; — &;). Thus,c; andc;", will always be in th¢0,1] range.
Lemma 2- The bounds ofl;(x, y), d;” andd;’, are in[0,1].
Proof. Eg. (5) defined;(x, y) by means of three conditions. If the first coruitis satisfied, thed; = d]-+ = 1; And if the second
condition is satisfied, thedj = di’r = 0. In the third condition, a division is used toaibtthe value ofl;(x,y). The denominator of this
division is alway<yZ — vi); while the numerator will always be between zamd(y{ — y;). Thus,d; andd]-*, will always be in0,1].
Lemma 3- The bounds of(x,y), ¢~ andc*, are in[0,1].
Proof. Eq. (6) defines(x,y) as the sum of the product betwesg(x, y) andw;. Due to the definition ofv; in (7), we are sure that
wj = w]-“r € [0,1]. We know than'ile‘ = Z{ile* = 1. In addition, we know the boundsg{x, y) are in[0,1]. (See proof of Lemma
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1.) Given the definition of addition of interval mbers, know that the smallest value ttvaandc* can take is zero and will occur when
¢ =¢" =0;j=1,-,K While the largest value that andc* can take is one and will take it wheh= ¢ = 1;j=1,--,K.

Lemma 4- The bounds oRd(x, y), Nd~ andNd*, are in[0,1].

Proof.Nd(x,y) is defined in (8) as a function of the differeri¢d] — d;(x,y). If we assume that andd]-+ are betweelf0,1] (see proof
of Lemma 2), then the upper and lower boundsdf(, y) will always be in[0,1].

Lemma 5- The bounds 06(x,y), o~ ands*, are in[0,1].

Proof.a(x,y) was defined in (9) as the productNaf(x, y) andc(x,y). And, according to Lemmas 3 and 4, the boundédgk, y) and
c(x,y) are in[0,1]. Therefore, the bounds ofx, y) will also always be if0,1].

APPENDIX B
Proof of Axiom Il fulfillment
Theorem 1 The interval based outranking method proposetigwtork is a generalization of the classic outiaglapproach.

Proof. To prove that the interval based outrankirgposed generalizes the classic outranking appreee show that each component of
the first is a generalization of the correspondiomponent of the second. For reasons of claritthisisection we refer to the
components of the interval based outranking by me#the classic identifier of grey numbegs, Hereafter, we assume that the bounds
of the parameters defined as interval numbersdrirterval-based outranking coincide with the patars of the classic outranking.

Lemma 6- The uncertain marginal concordance le®lg;(x,y), is a generalization of the classic concordandest;(x, y).
Proof. We will rely on the definition of white numbof the grey theory to prove this Lemma. Spealifjc we want to prove that
® Ci (X, Y) = [C] (Xv Y)' Ci (X, Y)]

In the classic approach, we haygep;, q;, v; all in the reals; and the concordance indgl, y), is defined as

[ 0 8i() < gi(y) —pj,
o 1 gi(x) = g(y) — g
T E®-gm )
Pj — qj

While Eq. (4) define® c;(x,y) in a very similar way. (Eq (4) is shown here adain
[0,0] xt <y - pf,
® ¢xy) = [1,1] X 2y —pf,

. 4)
[Ai' A]- + Si] otherwise

Itis possible to show th@® c;(x,y) defined this way is a generalizationepfx, y), if it is true that
® g = [g0),g®] (ie.x] =x' =g X)),
Qg =[5, g®)].
®p; = [p.p)].
® q; = [q;.qj].
First, sincex’ = gj(x), y;” = g;(y) andpj = p;; then, provided thag;(x) < (g;(y) — p;) is true, it will also be true thaf < (y; —
p]*) So whenevet;(x,y) equals zeraQ c;(x,y) will also be zerd
Second, becausg = g;(x),y;" = g;(y) andqj = q;; then, provided that;(x) = (g;(y) — q;) is true, it will also be true thaf >
(v — a7)- So wheneve; (x, y) equals one® c;(x,y) will also be one.
Finally, the third condition of (4) occurs whep > (y;7 — p) andx;” < (yi" — gj). This coincides with Scenario (3) of the Section
Interval based marginal concordance. Theref@e;(x,y) is defined in this case as
® ¢xy) =[v1l,
where
o X =0r-p) x5 -y+p
O -a) =0 -pf) -9
Which coincides with the third condition gf(x, y), since the original assumption wgs= g;(x), y; = g;(y), p]-+ = p;, andqj = g;.
Thus, we can say that it will always be true ®at;(x,y) = [ci(x,y), (%, y)] when the parameters are white numbers; and ttod pro
that® c;(x,y) is a generalization af(x,y) has ended.

Lemma 7- The interval based marginal discordance l&el;(x,y), is a generalization of the classic discordandexyd; (x, y).
Proof. In the classic approach, the discordancexiygj(x,y), is defined as

I 1 g® <g -v;,
_ 0 g(x) =g () —p;
G =V 650 - g0 —py

Vi — P

otherwise.

* When the upper and lower bounds of an interval rerraloe equal, it is called a white number. Thisdsause there is no uncertainty
about what the actual value of the interval nunibeand it can be considered as equal to a real eumb

512



While Eq. (5) defines in a very similar way. E§) is shown here again.
[1,1] x]-+ <y - V]-+,
®dixy) =4 [00] x =y —u,

. (5)
[l"]-, I+ y,—] otherwise

It is possible to show th&@® d;(x, y) defined this way is a generalizationdyfx, y), if it is true that
® g = [g(0),g®)] (ie.x] =x' =g X)),
R g =[5, g®)].
®p; = [p.p)].
®v; = [v; v,
First, sincex’ = g;(x), y;” = g;(y) andv;" = v;; then, provided that;(x) < (g;(y) — v;) is true, it will also be true thaf < (y; — v;').
So wheneved;(x, y) equals zero® d;(x,y) will also be one.
Second, becausg = g;(x), y;" = g;(y) andp; = p;; then, provided thag;(x) > (gj - pj) is true, it will also be true thaf >
(v — p)- So wheneved; (x,y) equals one® d;(x,y) will also be zero.
Finally, the third condition of (5) occurs wheh > (y;” — vi*) andx;” < (y;" — pj’). This coincides with Scenario (3) of the Section
Interval based marginal discordance. Theref®el;(x, y) is defined in this case as
® d,-(Xry) = [¢, ¢]
Where

b= O —p)=x v % —p
(Yj+ - p]‘) - (Yj_ - Vj+) Vi =Py
This coincides with the third condition df(x, y), sincex;” = g;(x), y;* = g;(y) andp; = p;, andv;" = v;.
Therefore, we can say th@ d(x,y) = [d,-(x, ¥),d;(x, y)]; and the proof tha® d;(x,y) is a generalization af;(x, y) has ended.

Lemma 8- The interval based concordance indBx¢(x, y), is a generalization of the classic concordandexrc(x,y).
Proof. The importance of tH& criterion is represented in the classic outrankisg;. While in the interval based outranking, this
importance is given b® w; = [w,—’, w]*] Equation (7) performs the following normalizatioh® w;.
) b Yoy + Yo
Such that the normalized importance of the critigridne interval based outranking is satisfiecﬂﬁﬁ@ w; = [1,1].
On the other hand, the concordance leveiSgfis calculated in Eq. (6) as
n

®clxy) = Z@ w; ® ¢(x,y). 6)
=1

Suppose® w; = w; (i.e., 0] = o} = w;); then,@ w; = w; (i.e,w; = w;" = w;). Thus, if® ¢;(x, y) generalizes to;(x,y), then

c(x,y) is a specificity of® c(x,y).

Lemma 9- The interval based non-discordance ind@X\d(x,y), is a generalization of the classic non-discordandex,Nd(x, y).
Proof. The non-discordance indexxsf, @ Nd(x,y), is calculated in (8) as

®Ndxy) = _min {[1,1]-® d;x.y)}. ()

JEQC(yPx)
Where® C(yPx) = {j:x] <y —pj}.
While Nd(x, y) is defined as

Nd(x,y) = ,-Jcr&‘r}x){l -4}

WhereC(yPx) = {j: g;(x) < g;(y) — p;}-

Now assume that

® g = [g;(0,g()] (e.x] =x =gx),

® g = [g . gM»],

®p; = [p; by,

® d] (Xv Y) = [dl (X, Y)' d‘(Xv y)]!

Given thaty = g;(x), yi+ = gj(y) andp; = p;, then it follows® C(yPx) = C(yPx).

Assuming tha® d;(x,y) is a generalization af;(x, y), then we can ensure th@Nd(x,y) is indeed a generalization B (x,y).

Lemma 10- The uncertain degree of credibility of the assertSy, ® o(x,y), is a generalization of the classic degree ofibriésl,
o(x,y).
Proof. The definition of o(x,y) in (9) is

®o(xy) =@ C(x,y) -® Nd(x,y). C)
Since Lemmas 8 and 9 demonstrate @atd(x,y) and® C(x,y) are generalizations &fd(x,y) andC(x,y), respectively, the proof
that® o(x,y) is a generalization af(x, y) is trivial. Namely, we need to show that the nplitation of two white numbers (interval
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numbers with equal upper and lower dimensionsjjisvalent to the multiplication of two real numbeFtierefore, we omit this
demonstration.

Lemma 11- The interval based outranking relati@®,S, is a generalization of the classic outrankingtieh, S.
Proof. In (10),® S is defined as
xQ® Sy © p(® o(xy) =2®2) = 05. (10)
It can be shown that(® o(x,y) =® A) = 1 only wheno > A, andp(® o(x,y) =® A) = 0 otherwise. Hence, according to (10),
x @ Sy if and only ife = A is true. This matches the definitionxSly. Therefore§ is indeed a specialization & S.
At this point, we have shown that each componetti®proposed generalization of the outranking @gn is a generalization of the
corresponding component in the classic approacérefore, the proof of Theorem 1 is ended.

514



