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ABSTRACT 
This paper suggests the generalized class of estimators, motivated by Sharma and Singh (2015), of finite population variance 
utilizing the known value of parameters related to an auxiliary variable such as quartile and its properties are studied in simple 
random sampling without replacement. The efficiency of proposed class of estimators is compared with some existing estimators 
discussed in literature and found that proposed generalized class of estimators is better than other existing estimators including 
usual unbiased estimator, estimators due to Isaki (1983), Das and Tripathi (1978) and estimators recently proposed by Singh and 
Pal (2016). An empirical as well as theoretical comparison is carried out to judge the performance of proposed class of 
estimators over other existing estimators of population variance using natural data set.  
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RESUMEN 
En este paper se sugiere una clase generalizada de estimadores motivada por los resultados de Sharma and Singh (2015), la 
varianza de la población finita usa el valor conocido de parámetros relacionado con una variable auxiliar, como los cuartiles, y 
sus propiedades son estudiadas en el caso de muestreo simple aleatorio con reemplazo. La eficiencia de la clase de estimadores 
propuestos es comparada con la de algunos estimadores existentes, discutidos en la literatura y se halla que las clases propuestas 
de estimadores es mejor que otros existentes, como los estimadores insesgados debidos a Isaki (1983), Das y Tripathi (1978) y a 
estimadores propuestos recientemente por Singh y Pal (2016). Comparaciones empíricas así como teóricas llevan  a cabo para 
juzgar el comportamiento de la clase propuesta de estimadores sobre otros estimadores existentes de la varianza de la población 
usando conjuntos de datos reales.  
 
PALABRAS CLAVE: variable auxiliar, cuartil, muestreo simple aleatorio, sesgo, error cuadrático medio.  

 
1. INTRODUCTION 

It has been well recognised that use of suitable auxiliary information results in efficient estimators of 
population parameters of interest. Usually auxiliary information is available form the past experience, census 
or administrative data base. Sampling literature describes the procedure of improvement of estimators using 
auxiliary variable. Several ratio, product and regression  method of estimation are good examples in this 
context (see Cochran (1977), Wolter (1985), Singh (2003)). Estimation of the finite population variance has 
important significance in various fields such as agriculture, industry, medical and biological sciences where 
we come across populations which are likely to be skewed. Variations are present in our daily life. It is a law 
of nature that no two things or individuals are exactly alike. For instance, a physician needs a full 
understanding of variation in the degree of human blood pleasure, body temperature and pulse rate for 
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adequate prescription (see Sharma and Singh (2014)). Several authors including Das and Tripathi (1978), 
Isaki (1983), Kadilar and Cingi (2006), Shabbir and Gupta (2007), Solanki et al. (2015), Sharma and Singh 
(2013, 2015) and recently Adichwal et al. (2015) suggested the procedure of variance estimation using 
auxiliary information. It is well known that the values of quartiles and their functions are not much affected 
by the extreme values or the presence of outliers in the population like other parameters such as variance, 
coefficient of variation and coefficient of kurtosis. Therefore it is advisable to use of quartiles or their 
functions as auxiliary information, keeping this in mind few authors including Subramani and 
Kumarapandiyan (2012, 2013), Singh et al. (2014), Khan and Shabbir (2013) and Singh and Pal (2016) 
considered the problem of variance estimation using information on the variance, quartiles, inter-quartile 
range, semi-quartile range and semi-quartile average of an auxiliary variable. This paper suggests the 
generalized class of estimators for estimation of population variance utilizing the information on variance and 
quartiles of auxiliary variable. The properties of the generalized class of estimators are shown under the large 
sample approximation. It has been seen theoretically as well as empirically that the proposed generalized class 
of estimators is more efficient than some other existing estimators.  
Consider a finite population N21 U.........,U,UU =  of N units and let y and x are study and auxiliary 

variables defined on U taking values ( )ii x,y  respectively on ( )N,.....,2,1is'Ui = . It is desired to estimate 

the population variance 2
yS  of the study variable y using information of auxiliary variable x. Let a simple 

random sample of size n be drawn without  replacement from the finite population U. Here, we take n−1 
instead of (n−1 − N−1), i.e. we are ignoring the finite population correction (fpc) term throughout this paper. 
Here Y and X are population means of study variable y and auxiliary variable x respectively. 2

yS  and 2
xS are 

mean square error of study variable y and auxiliary variable x respectively. iQ  (i=1,2,3) denotes the ith 

quartile of auxiliary variable x. Some other notations are 13r QQQ −=  ; inter quartile range, 

( ) 2/QQQ 13d −=  ; population semi quartile range of auxiliary variable x, ( ) 2/QQQ 13a +=  ; 

average of semi-quartile average of the auxiliary variable x, ( )140
*
40 −λ=λ ,	 ( )104

*
04 −λ=λ ,	

( )122
*
22 −λ=λ ;	where,  
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Further to obtained the expression of biases and mean square errors of estimators, we define 
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The usual unbiased estimator of  2
yS 	is	given	as		

( ) ( )∑
=

− −−==
n

1i

2
i

12
y0 yy1nst                  (1.1)	

where y is the sample mean of study variable y.  

When population variance 2
xS  of auxiliary variable x is known in advance, Isaki (1983) suggested a ratio type 

estimators  
 
                  ( )2x2

x
2
yr s/Sst =                                          (1.2) 

Here, it is important to mention that the estimators rt  due to Isaki (1983) is a member of Das and Tripathi 
(1978) class of estimators given as  
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The usual difference estimator for population variance	 2
yS  is given by  

              ( )2x2
x

2
yd sSdst −+=                                (1.4) 

where d is a constant to be determined such that the mean square error of dt is minimum. 

Recently, Singh and Pal (2016) envisaged the following class of estimators for population variance 2
yS  using 

information of auxiliary variable x 
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Bias and minimum mean square error of estimator skpt 	 is given by  
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Here it is important to mention that Singh and Pal (2016) generated many estimators such as estimators due to 
Isaki (1983), Das and Tripathi (1978), Singh et al (2013) and Singh et al. (2015) from the class of estimators 
given in (1.5). The minimum mean square error of the class of estimators proposed by Singh and Pal (2016) is 
given in (1.7). 
 
2. THE SUGGESTED GENERALISED CLASS OF ESTIMATORS  
 
 We propose a generalized family of estimators for population variance of the study variable y, as 
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where 1w  and 2w  are suitable constants to be determined such that MSE of mt  is minimum, η  and λ  are 
either real numbers or the functions of the known parameters of auxiliary variables such as quartiles, 
coefficient of variation xC ,  skewness   ( )x1β  , kurtosis ( )x2β  and correlation coefficient ρ  (see Sharma and 
Singh (2015)). 
A set of new estimators generated from (2.1) using suitable values of 1w , 2w , α ,η  and λ  are listed in 
Table 2.1. 

 
Table 2.1: Set of estimators generated from the class of estimators mt  
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Subset of proposed estimator                                                 1w  2w  α  η  λ
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Substituting the optimal values of 1w  and 2w in equation (2.6) we obtain the minimum MSE of the 

estimator  mt  as 
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3. EFFICIENCY COMPARISONS 
 
Comparison of usual unbiased estimator and proposed estimator is  
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If conditions (3.1) and (3.2) holds, then proposed class of estimators mt is better than the usual unbiased 

estimator 2
ys  and minimum mean square error of the class of estimators proposed by Singh and Pal (2016). 

 
3.1. Empirical Study 
 
Data Statistics: The performance of the suggested estimators mit (i=1,2,….,15) which have been generated 
from proposed generalized class of estimators mt  are evaluated along with other existing estimators 
discussed in literature for the population data set, given in table (4.1), taken from Murthy (1967). Percent 
relative efficiency (PRE’s) of the suggested estimators mit (i=1, 2,…,15) is calculated and summarized in 

table (4.2) with respect to usual unbiased estimator 2
yS  using the formula : ( ) ( )

( )
100

tMSE
SMSE

S,tPRE
m

2
y2

ym ×=  

 To illustrate the efficiency of proposed generalized class of estimators in the application, we consider the 
following population data set.  
 

Table 4.1: The population parameter of data set 
N  80  yC   0.3542   1Q   5.1500 

n  20  xS   8.4563   2Q   10.300  

Y   51.8264               xC   0.7507   3Q   16.975 

X   11.2646   04λ   2.8664   rQ   11.825 
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ρ   0.9413  40λ   2.2667   dQ   5.9125 

yS   18.3569   22λ   2.2209   aQ   11.0625 

 
Table 4.2: PRE’s of different estimators with respect to 2

ys  

 
      Estimators      PRE           Estimators   PRE 

 
2
ys    100.00    7mt    282.94 

skpt    (183, 353)*   8mt    297.49 

rt    296.40    9mt    284.07 

mdt    155.91    10mt    290.94 

1mt    106.17    11mt    313.72 

2mt    279.75    12mt    435.40  

3mt    410.93    13mt    431.13 

4mt    105.03    14mt    435.70 

5mt    283.06    15mt    420.17 

6mt    279.47 

 
* Percent relative efficiency of members of class of estimators suggested by Singh and Pal (2016) 183 to 353. 
 
Analysing table 4 we observe that almost all the estimators ( )15,.....,8,7,5,3i,t i = which are the members 
of the proposed generalised class of estimators mt  performs better than the usual unbiased estimator, ratio 
type estimator (due to Isaki (1983)), product and difference estimator discussed in this paper. We also observe 
that the efficiency of the members ( )15,14,13,12j,t j =  among the other members of proposed class of 

estimators mt  are high and better than the class of estimators and its members recently proposed by Singh 
and Pal (2016) along with other estimators considered here. It is worth mentioning that the estimators based 
on the auxiliary information related to quartile, function of quartile or other functions of auxiliary information 
are more efficient than the one which does not utilize the suitable auxiliary information.   
 
4. CONCLUSIONS 
 
In this article we have suggested a generalized class of estimators for the population variance  2

yS  of study 
variable y when information is available on an auxiliary variable x such as coefficient of variation, coefficient 
of kurtosis, quartiles and their functions, in simple random sampling without replacement (SRSWOR). In 
addition, some known estimators of population variance such as usual unbiased estimator, ratio estimators and 
difference type estimator are found to be members of the proposed generalized class of estimators. Some new 
members are also generated from the proposed generalized class of estimators utilizing the information on 
different functions of auxiliary information. We have determined the biases and mean square errors of the 
proposed class of estimators up to the first order of approximation. The proposed generalized class of 
estimators are advantageous in the sense that the properties of the estimators, which are members of the 
proposed class of estimators, can be easily obtained from the proposed generalized class. Thus this study 
unifies properties of several estimators of population variance. In theoretical as well as in  empirical 
efficiency comparisons assessed on known natural data set, it has been shown that the proposed generalized 



	

	

535	

class of estimators are more efficient than the usual unbiased estimator, ratio estimator , product estimator, 
difference estimator and estimators proposed by Singh and Pal(2016) for estimating the population variance.  
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