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ABSTRACT

The possible heterogeneity among individual studies constituting a meta-analysis is traditionally evaluated using Cochran Q and
Higgins I’ statistics. However, both indices have deficiencies: The Q statistic detects heterogeneity but does not allow its
quantification, whereas the I index allows for quantification of heterogeneity but does not indicate which studies are responsible
for it. This problem is solved by additionally using the HJ biplot of the matrix containing the information about true positives,
true negatives, false positives, and false negatives for each study. This means that the information contained in such a tetrachoric
table contains the joint frequency distribution of the true classification of the disease and that provided by the diagnostic test.
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RESUMEN

La forma tradicional de evaluar la posible heterogeneidad de los estudios individuales que conforman un meta-analisis, es
utilizando los estadisticos Q de Cochran ¢ I’ de Higgins. Sin embargo, ambos indices presentan deficiencias: el Q detecta
heterogeneidad, pero no permite cuantificarla y el I? permite cuantificarla, pero no conocer cuéles son los estudios responsables
de la heterogeneidad. Este problema se resuelve utilizando, ademas, el HJ-Biplot de la matriz que contiene la informacion sobre
VP, VN, FP y FN, para todos y cada uno de los estudios; es decir la informacion contenida en la tabla tetracérica que contiene la
distribucion de frecuencias conjunta de la verdadera clasificacién de la enfermedad y la proporcionada por el test diagnostico.

PALABRAS CLAVES: Meta-analisis, tamafio del efecto, heterogeneidad, estadistico Q, indice 12, HJ biplot
1. INTRODUCTION

In a meta-analysis, the results of each study are quantified by means of an index called effect size (for
example, standardized mean difference, correlation coefficient, and odds ratio, etc.) that can be applied to all
studies. This allows the use of the same metric for the analysis of the results of the studies.

In general, a meta-analysis has three main objectives: (a) to test whether the results of the studies are
homogeneous; (b) to obtain an overall index of the magnitude of the effect of the relationship studied, with
their respective confidence intervals and their statistical significance; and (c) to analyze whether a significant
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heterogeneity exists among studies and to identify possible variables or moderating characteristics of the
results obtained.

The purpose of this study is to compare the performance of the Q test and the I index, using the HJ biplot for
the analysis of heterogeneity, using data from the Audit questionnaire (Alcohol Use Disorder Identification
Test). Because of the length of this questionnaire, the Audit C data (a short alcohol detection test, see [15])
will be used to answer only the first three questions of the AUDIT, as shown in Table 1. The table contains 14
rows and five columns: the first column identifies the respective studies with their authors and year, and the
remaining columns show the values of true positives (TP), false negatives (FN), false positives (FP), and true
negatives (TN).

Table 1.- Datos Audit C

Estudio - Afio TP FN FP TN
Aalto et al., 2006 47 9 101 738
Aertgeerts et al., 2001 126 51 272 1543
Aertgeerts et al., 2002 19 10 12 192
Bradley et al., 2003 36 3 78 276
Bradley et al., 2007 130 19 211 959
Bush et al., 1998 84 2 68 89
Gomez et al., 2006 68 0 112 423
Gordon et al., 2001 752 0 3226 2977
Gual et al., 2002 59 5 55 136
Rumpf et al., 2002 142 50 571 2788
Seale et al., 2006 137 24 107 358
Selin, 2006 57 3 103 437
Tsai et al., 2005 34 1 21 56
Tuunanen et al., 2007 152 51 88 264

This process was conducted using a program in the R environment, whose code is attached in the Appendix.

2. MATERIALS AND METHODS

2.1. The Q-statistic and I index

The evaluation of heterogeneity in a meta-analysis is a crucial issue because the presence or absence of true
heterogeneity can affect the statistical model that the individuals performing the meta-analysis (the meta-
analyst) decides to apply. Therefore, when the results of the studies only vary according to one sampling error
(homogeneous case), a fixed-effects model can be applied to obtain a mean effect size. Conversely, if the
study results differ by more than one sampling error (heterogeneous case), the meta-analyst can assume a
random-effects model, taking into account intrastudy and interstudy variability. The most common method to
assess whether there is actual heterogeneity in a meta-analysis is using the Q test, a statistical test defined by
[2].

Under the hypothesis of homogeneity among effect sizes, the Q-statistic follows a chi-square distribution with
k — 1 degrees of freedom, where k is the number of studies. Not rejecting the homogeneity hypothesis usually
guides the meta-analyst to adopt a fixed-effects model, because it is assumed that the sizes of the estimated
effect are only differentiated by the sampling error. Conversely, the rejection of the homogeneity hypothesis
may lead to the use of a random-effects model that includes both intrastudy and interstudy variability. The
deficiencies of the Q-statistic are its deficient power to spot true heterogeneity between studies when a meta-
analysis includes a small number of studies and its excessive power to detect insignificant variability with a
large number of studies [10], [18], and [3]; i.e., its power depends on the sample size. Another strategy to
quantify true heterogeneity in a meta-analysis is the estimation of the variance between studies T, which
represents the true value of heterogeneity among study effects produced by innumerable substantive factors
(treatment type, patient characteristics), methodological (design type, sample size, wear, etc.), and study
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characteristics. Because the value of T* depends on the particular effect of the metric used in a meta-analysis,
comparing the estimated t* values from meta-analyses that have used different effect size indices (i.e.,
standardized mean difference, correlation coefficient and odds ratio, etc.) is not possible.

To overcome deficiencies of the Q test and ‘rz, [12]; see also [13] have proposed the I” index to evaluate
heterogeneity in a meta-analysis. This index can be interpreted as a percentage of heterogeneity—i.e., the
fraction of variation that is because of interstudy variance t%; this is obtained by dividing the difference of Q
and (k — 1) for Q. Thus, the I* index is similar to an intraclass correlation in cluster sampling [12]. For
example, a meta-analysis with I* = 0 means that all variability in effect size estimates is a result of a sampling
error within the studies. On the other hand, a meta-analysis with I> = 50 means that half of the total variability
among effect sizes is not caused by a sampling error but is caused by true heterogeneity between the studies.
[12] proposed a tentative classification of I? to help interpret its magnitude; therefore, the percentages 25%
(I* = 25), 50% (I’ = 50), and 75% (I* = 75) would mean a low, average, and high heterogeneity, respectively.
There is a direct correlation between the I index and interstudy variance *—when 12 increases, I? will also
increase, and vice versa. One of the advantages of the I? index with respect to 7% is stated by [12], who state
that I? indices obtained from meta-analysis with varying numbers of studies and varying effect metrics are
directly comparable. Along with this descriptive interpretation of the I’ index, [12] proposed a confidence
interval that could be used in the same way that the Q test is used for assessing heterogeneity in meta-
analyses. Therefore, if the confidence interval regarding I* includes the value of 0%, then the meta-analyst
can support the hypothesis of homogeneity. If, on the other hand, the confidence interval does not include the
value of 0%, there is no evidence of the existence of true heterogeneity. The use of the I’ index and its
confidence interval is similar to the Q test application. Because the I’ index assesses not only the
heterogeneity in the meta-analysis but also the degree of heterogeneity, it should be a more advisable
procedure than the Q test to assess whether true heterogeneity exists between studies in a meta-analysis.

2.2. Biplot Method

The biplot method is a low-dimensional graphical representation of a data matrix X (with / individuals and J
variables), i.e., a multivariate matrix; for more detail see [7]. The biplot is based on the singular value
decomposition in vectors—i.e., it tries to reproduce the data incorporating a simultaneous representation of
individuals and variables. The two most important representations proposed by [7] were the GH and JK
biplots. The former offers a high quality in the representation of the columns (variables), whereas the latter
offers a high representation of the rows (individuals). [8] named this type the HJ biplot and demonstrated that
it is possible to represent rows and columns simultaneously on the same low-dimensional space, with a high-
quality representation for individuals and variables.

The biplot method is useful for the visual inspection of data matrices because it allows the collection of
atypical patterns and values, which can be graphically represented in a manner analogous to principal
component analysis and discriminant analysis. Because of these advantages of the biplot method, the HJ
biplot will be used to analyze the heterogeneity of the Audit C data.

Measures such as factor contributions to the element [8] will be concepts employed when analyzing the
results. The proximity between individuals (rows) is interpreted as similarity; the angles formed by vector
variables (columns) is interpreted as correlation, and the proximity between row and column markers is
interpreted as preponderance.

2.3. Meta-analysis of diagnostic tests

When original studies that evaluate the quality of a test producing binary results are available, performing a
diagnostic meta-analysis has become an important tool for investigating the information available on a test
[6], [11], [19] and [20]. In a primary diagnostic study, the quality of a diagnostic test is often measured in
terms of the sensitivity (TP rate) and the specificity (TN rate = 1 — FP rate) of the test; that is, parallel to a
standard gold procedure, which defines the presence of a certain condition, the diagnostic test is performed,
after which the sensitivity and specificity can be calculated.

From the sensitivity and specificity, summary graphs can be made that show the variability between the
studies. Thus, we have the following tools: (1) forest plot, which describes the sensitivity and specificity of
each study with their respective confidence intervals; (2) crosshair, which demonstrates the bivariate
relationship and degree of heterogeneity between sensitivity and FP rate; and (3) ROCellipse, which shows a
region of confidence describing the uncertainty of the pair of sensitivity and specificity of each study.
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2.4. Heterogeneity in meta-analysis diagnosis

The observed sensitivities and specificities can be expected to vary in the original studies that constitute a
meta-analysis. This is because of two main reasons:

1. Different authors will calibrate a test differently. Given a questionnaire score or a biomarker level, an
investigator will have to decide which minimum value (or maximum value) should give a positive test result.
This value is known as the cutoff point. Sometimes, especially in screening for rare diseases, a cutoff value
will be set to reach a certain level of sensitivity, such as 95%, which often leads to a small specificity;
however, a certain type of relationship exists between sensitivity and specificity. Both approaches result in a
different cutoff points. In general, a specific calibration of the population directed to a certain level of
sensitivity will give rise to different cutoff points for different populations.

2. When a diagnostic test is applied to several populations, different sensitivities and specificities can be
expected even if the same cutoff value is used.

In a diagnostic meta-analysis, the quality of a diagnostic test is evaluated by integrating data from individual
studies, which usually include sensitivities and specificities; some of these original studies may not report the
cutoff point. This challenge—i.e., nonhomogeneity and typically unknown cutoff points—is known as the
cutoff point issue. Therefore, the bivariate nature of the data must be preserved, modeling sensitivity and
specificity together. During the last decade, two models have been established: a hierarchical model [17] and
a bivariate model [16]. However, two groups of researchers independently demonstrated [1] and [9] that
hierarchical and bivariate models are equivalent in special cases (and most common) in the absence of
covariance.

3. RESULTS

In this review, we included the Audit C data, which consists of data from14 studies that evaluated 18,332
individuals, out of which 2071 had alcohol problems. Figure 1 shows the variation of studies in the
sensitivities and specificities, despite the fact that the specificity was perfect (100%) in two studies, as shown
in Figure 1 (a) and Figure 1 (b). This variability can be observed in the graphs in Figure 1 (c¢) and Figure (d)
as crosshair and ROCellipse, respectively.

Forest plot Forestplot
Aalto et al., 2006 —a— 0.83[0.72,0.91] Aalto et al., 2006 [} 0.88 [0.86, 0.90]
Aertgeerts et al., 2001 —_— 0.71[0.64,0.77] Aertgeerts et al., 2001 - 0.85 [0.83,0.87]
Acrtgeerts ctal., 2002 ——a— 0.65 [0.47,0.79] Aertgeerts et al., 2002 B 0.94 [0.90, 0.96]
Bradley et al., 2003 —— 0.91[0.79,0.97) Bradley et al., 2003 - 0.78 [0.73, 0.82]
Bradley et al., 2007 [ 2] 0.87[0.81,0.91] Bradley et al., 2007 ] 0.82 [0.80, 0.84]
Bush et al., 1998 = 0.97[0.91,0.99] al —_— 0.57 (0.49, 0.64]
Gomez et al., 2006 — 0.99 [0.93, 1.00] 0.79 [0.75, 0.82]
Gordon et al., 2001 | 1.00 [0.99, 1.00] n 0.48 [0.47, 0.49]
Gual etal., 2002 - 0.92 [0.82, 0.96] —=— 0.71 [0.64,0.77)
Rumpf et al., 2002 —— 0.74 (0.67. 0.80] Rumpf et al., 2002 L] 0.83 [0.82, 0.84]
Seale et al., 2006 - 0.85 [0.79, 0.90] Seale et al., 2006 - 0.77 (073, 0.81]
Selin, 2006 — 0.94 [0.85, 0.98] Selin, 2006 HH 0.81[0.77, 0.84]
Tsai et al., 2005 — 0.96 [0.84, 0.99] Tsai et al., 2005 [ 0.72[0.62,0.81]
Tuunanen et al., 2007 - 0.75 [0.68, 0.80] Tuunanen et al., 2007 - 0.75 [0.70, 0.79]

T T T T T T
0.47 0.74 1.00 0.47 0.72 0.96
a. Forest plot for sensitivity b. Forest plot for specificity
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Figure 1. Forest plot, crosshair and ROCellipse graphs, Audit C data
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Table 2 shows the measures that corroborate the previous graphical analysis. Thus, there is a correlation
between the sensitivity and the FP rate of 0.677, which denotes a significant relationship between both
measures and a clear problem regarding the cutoff points in the studies. The true heterogeneity between
studies, denoted by 72, has a value of 0.311. I* is 33.955%, which indicates the percentage of heterogeneity
among the studies because of the true variability (72) between studies. In addition, the Q-statistic is available
with a p-value of 0, which means that the null hypothesis of homogeneity between the studies is rejected in
favor of the alternative hypothesis that there is heterogeneity among the studies analyzed.
Table 2. Correlation values, 72, I, and Q of Audit C data

Measure-statistic Value Lower limit (95%) Higher limit (95%) p-value
Correlation between sensitivity and specificity 0.677 0.228 0.888 -
v 0.311 0.00 3.787 -
Q 4177.192 - - 0
12 33.955 - -

By performing the HJ biplot analysis on the data matrix described above, the following absorption of inertia

(or variability explained) was obtained (see Table 3).

Table 3. Inertia absorbed by the two main axes in the HJ biplot representation, Audit C data.
Axis 1 Axis 2 Accumulated

66.46 28.69 95.15

As can be seen in Table 3, the accumulated absorption with the first two main axes is 95.15%, with a clear
differentiation between axes 1 and 2. This leads us to interpret the first main plane (axes 1 and 2) together.
Figure 2 shows the simultaneous representations in the first main plane of the analysis performed. The
number following the name of the author corresponds to the year that each study was conducted. Figure 2
shows the studies that form three clusters. Thus, the studies by Seale et al., 2006, Bradley et al., 2007, Aalto et
al., 2006, Aertageerts et al., 2002, Bradley et al., 2003, Gual et al., 2002, Selin, 2006, Goémez et al., 2006, Tsai
et al., 2005, and Bush et al., 1998 belong to the first cluster, i.e., cluster 1 (green); the studies by Aertgeerts et
al., 2001, Rumpf et al., 2002 and Tuunanen et al., 2007 belong to cluster 2 (red); finally, the study by Gordon
et al., 2001 belongs to cluster 3 (blue). Note that the studies within a cluster have common characteristics
among themselves, but that there is heterogeneity among the clusters.

The following tables of Relative Contribution of the Factor to the element, which show the value first for the
rows (studies; Table 4) and then the columns (variables; Table 5), indicate the elements that are characteristic
of axes 1 and 2. Note that these values of contributions come in a scale of 0-1000. Therefore, when an
element that receives a high contribution of the axis 1 and a low contribution from the rest is an exclusive
characteristic of that axis, and its interpretation will be done with respect to this axis. Values higher than a
scale of 500 will be considered for our analysis. Thus, studies by Gordon et al., 2001, Aertgeerts et al., 2002,
Gual et al., 2002, Tsai et al., 2005, Bradley et al., 2003, Aalto et al., 2006, Aalto et al., 2006, Selin, 2006, and
Bush et al., 1998 are representative of axis 1 as well as the variables FP, TP and TN. On the other hand, the
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studies by Aertgeerts et al., 2001, Tuunanen et al., 2007, Rumpf et al., 2002, Bradley et al., 2007 are
representative of axis 2 as well as the variable FN.

Table 4. Relative contributions of the factor to the element-studies

Contributions rows - studies

Studies Axis 1 Studies Axis 2
Gordon et al., 2001 937 Aertgeerts et al., 2001 946
Aertgeerts et al., 2002 899 Tuunanen et al., 2007 636
Gual et al., 2002 677 Rumpfet al., 2002 621
Tsai et al., 2005 635 Bradley et al., 2007 595
Bradley et al., 2003 629 Gomez et al., 2006 et al., 2007 549
Aalto et al., 2006 589 Bush et al., 1998 470
Selin, 2006 523 Selin, 2006 423
Bush et al., 1998 517 Tsai et al., 2005 362
Gomez et al., 2006 398 Bradley et al., 2003 347
Seale et al., 2006 335 Gual et al., 2002 320
Rumpfet al., 2002 274 Seale et al., 2006 170
Aertgeerts et al., 2001 53 Aalto et al., 2006 109
Tuunanen et al., 2007 31 Aertgeerts et al., 2002 85
Bradley et al., 2007 3 Gordon et al., 2001 61

Table 5. Relative contributions of the factor to the
element-variables

Contributions rows - variables

Variables Axis 1 Variables Axis 2
FP 940 FN 965
TP 922 N 103
™ 787 FP 53
FN 9 TP 27

In Figure 2, it can be seen that there is atypical data corresponding to the study by Gordon et al., 2001, which
is characterized by very high FP and TP values.

The horizontal gradient (axis 1) exclusively marks the difference between the study by Gordon et al., 2001
and all the others, because the study by Gordon et al. shows high PF and TP values. The vertical gradient
(axis 2) differentiates cluster 2 (red) studies (Aertgeerts et al., 2001, Rumpf et al., 2002 and Tuunanen et al.,
2007) from cluster 1 (green) studies (Bush et al., 1998, Aertgeerts et al., 2002, Gual et al., 2002, Bradley et
al., 2003, Tsai et al., 2005, Selin, 2006, Seale et al., 2006, Gomez et al., 2006 and Aalto et al., 2006, Bradley
et al., 2007).

All cluster 2 (red) studies have very high FN values, but among them they differ by the values in the other
three variables. Cluster 1 (green)- studies have very low values in all variables.
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Figure 2. HJ biplot of Audit C data.

3. DISCUSSION AND CONCLUSIONS

* In this research, we analyzed the heterogeneity of the studies in meta-analysis of diagnostic tests using
the Q-statistic, I* index, and HJ biplot. The evaluation of heterogeneity in a meta-analysis is a crucial
question, because the meta-analyst's decision to select the statistical model to be applied (fixed-effects model
versus random-effects model) depends on the homogeneity test employed [13]. Considering the importance of
this question, the purpose of this study is to compare the behavior of the Q-statistic and the I’ index, and to
complement the information they provide with the results obtained using the HJ biplot to evaluate the
heterogeneity between cluster of individual studies in a meta-analysis.

. The I* index behaves similarly to the Q test from an inferential point of view [14], but the I? index
has advantages over the classical Q test—it is easily interpretable because it is a percentage and does not
depend on degrees of freedom [4]. Another advantage is that it provides a way of assessing the magnitude of
heterogeneity, whereas the Q test reports on the statistical significance of the homogeneity hypothesis [4].
However, these two tests do not provide information about the possible causes of heterogeneity; that is, they
do not indicate whether studies are similarly responsible for the heterogeneity or which variables used in the
individual studies are responsible for the heterogeneity.

. The HJ biplot method [8] provides a graphical representation of the studies and the TP, TN, FP, and
FN in the same system of Cartesian axes with minimal information loss. This representation provides
information on the overall structure of the studies that is complementary to that provided by Higgins' Q and I’
statistics. The length of the vectors representing the variables informs the variability of the variables; thus,
analyzing this length can detect which variables are responsible for the heterogeneity of a meta-analysis. The
cosines of the angles between the vectors show the correlation between the variables they represent, thus
providing useful information when choosing the appropriate model for the available data; if there is a strong
correlation between FP and TP, a clear cutoff point issue becomes evident [5]. Thus, it is necessary to model
these measures using a hierarchical approach [17] or a bivariate approach [16]. The points represent the
different studies to be integrated into the meta-analysis of a diagnostic test. The distances between them allow
the visualization of clusters of studies with homogenous characteristics. Those clusters that are further away
are responsible for the heterogeneity. Thus, by projecting such studies orthogonally on the direction of the TP,
TN, FP and FN, the causes of heterogeneity can be obtained.
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. The HJ biplot has proven to be a multivariate tool that is extremely useful in the analysis of meta-
analysis data of diagnostic tests, both in the descriptive phase and in the search for the causes of variability.
The points in Figure 2 display the different studies to be integrated into the meta-analysis of a diagnostic test.
. In conclusion, the use of the HJ biplot in the meta-analysis of diagnostic tests allowed us the
following: (i) characterization of the heterogeneity of the studies regarding measures such as TP, FP, TN, and
FN; (ii) identification of groups of homogeneous studies; and (iii) analysis of the relations of these measures
to choose the most appropriate model that facilitates the subsequent integration of the individual
characteristics of the studies analyzed.
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Appendix

install.packages("mada")
library("mada")
data("AuditC")

AuditC

forest(madad(AuditC), type = "sens")
forest(madad(AuditC), type = "spec")

rs <- rowSums(AuditC)
weights <- 4 * rs / max(rs)
crosshair(AuditC, xlim = ¢(0,0.6), ylim = ¢(0.4,1),col = 1:14, lwd = weights)

ROCellipse(AuditC, pch ="")
points(fpr(AuditC), sens(AuditC))

library(tcltk)
library(tcltk2)
library(rgl)
library(tkrplot)
library(shapes)
library(cluster)
library(dendroextras)
library(MASS)
tclRequire(BWidget)
library(biplotbootGUI)
biplotboot(AuditC)
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