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ABSTRACT 
The possible heterogeneity among individual studies constituting a meta-analysis is traditionally evaluated using Cochran Q and 
Higgins I2 statistics. However, both indices have deficiencies: The Q statistic detects heterogeneity but does not allow its 
quantification, whereas the I2 index allows for quantification of heterogeneity but does not indicate which studies are responsible 
for it. This problem is solved by additionally using the HJ biplot of the matrix containing the information about true positives, 
true negatives, false positives, and false negatives for each study. This means that the information contained in such a tetrachoric 
table contains the joint frequency distribution of the true classification of the disease and that provided by the diagnostic test. 
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RESUMEN 
La forma tradicional de evaluar la posible heterogeneidad de los estudios individuales que conforman un meta-análisis, es 
utilizando los estadísticos Q de Cochran e I2 de Higgins. Sin embargo, ambos índices presentan deficiencias: el Q detecta 
heterogeneidad, pero no permite cuantificarla y el I2 permite cuantificarla, pero no conocer cuáles son los estudios responsables 
de la heterogeneidad. Este problema se resuelve utilizando, además, el HJ-Biplot de la matriz que contiene la información sobre 
VP, VN, FP y FN, para todos y cada uno de los estudios; es decir la información contenida en la tabla tetracórica que contiene la 
distribución de frecuencias conjunta de la verdadera clasificación de la enfermedad y la proporcionada por el test diagnóstico. 
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1. INTRODUCTION 
 
In a meta-analysis, the results of each study are quantified by means of an index called effect size (for 
example, standardized mean difference, correlation coefficient, and odds ratio, etc.) that can be applied to all 
studies. This allows the use of the same metric for the analysis of the results of the studies. 
In general, a meta-analysis has three main objectives: (a) to test whether the results of the studies are 
homogeneous; (b) to obtain an overall index of the magnitude of the effect of the relationship studied, with 
their respective confidence intervals and their statistical significance; and (c) to analyze whether a significant 
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heterogeneity exists among studies and to identify possible variables or moderating characteristics of the 
results obtained. 
The purpose of this study is to compare the performance of the Q test and the I2 index, using the HJ biplot for 
the analysis of heterogeneity, using data from the Audit questionnaire (Alcohol Use Disorder Identification 
Test). Because of the length of this questionnaire, the Audit C data (a short alcohol detection test, see [15]) 
will be used to answer only the first three questions of the AUDIT, as shown in Table 1. The table contains 14 
rows and five columns: the first column identifies the respective studies with their authors and year, and the 
remaining columns show the values of true positives (TP), false negatives (FN), false positives (FP), and true 
negatives (TN). 
 

Table 1.- Datos Audit C 

Estudio - Año TP FN FP TN 
Aalto et al., 2006 47 9 101 738 

Aertgeerts et al., 2001 126 51 272 1543 

Aertgeerts et al., 2002 19 10 12 192 

Bradley et al., 2003 36 3 78 276 

Bradley et al., 2007 130 19 211 959 

Bush et al., 1998 84 2 68 89 

Gómez et al., 2006 68 0 112 423 

Gordon et al., 2001 752 0 3226 2977 

Gual et al., 2002 59 5 55 136 

Rumpf et al., 2002 142 50 571 2788 

Seale et al., 2006 137 24 107 358 

Selin, 2006 57 3 103 437 

Tsai et al., 2005 34 1 21 56 

Tuunanen et al., 2007 152 51 88 264 

 
This process was conducted using a program in the R environment, whose code is attached in the Appendix. 
 

2. MATERIALS AND METHODS 
 
2.1. The Q-statistic and I2 index 

The evaluation of heterogeneity in a meta-analysis is a crucial issue because the presence or absence of true 
heterogeneity can affect the statistical model that the individuals performing the meta-analysis (the meta-
analyst) decides to apply. Therefore, when the results of the studies only vary according to one sampling error 
(homogeneous case), a fixed-effects model can be applied to obtain a mean effect size. Conversely, if the 
study results differ by more than one sampling error (heterogeneous case), the meta-analyst can assume a 
random-effects model, taking into account intrastudy and interstudy variability. The most common method to 
assess whether there is actual heterogeneity in a meta-analysis is using the Q test, a statistical test defined by 
[2]. 
Under the hypothesis of homogeneity among effect sizes, the Q-statistic follows a chi-square distribution with 
k − 1 degrees of freedom, where k is the number of studies. Not rejecting the homogeneity hypothesis usually 
guides the meta-analyst to adopt a fixed-effects model, because it is assumed that the sizes of the estimated 
effect are only differentiated by the sampling error. Conversely, the rejection of the homogeneity hypothesis 
may lead to the use of a random-effects model that includes both intrastudy and interstudy variability. The 
deficiencies of the Q-statistic are its deficient power to spot true heterogeneity between studies when a meta-
analysis includes a small number of studies and its excessive power to detect insignificant variability with a 
large number of studies [10], [18], and [3]; i.e., its power depends on the sample size. Another strategy to 
quantify true heterogeneity in a meta-analysis is the estimation of the variance between studies τ2, which 
represents the true value of heterogeneity among study effects produced by innumerable substantive factors 
(treatment type, patient characteristics), methodological (design type, sample size, wear, etc.), and study 
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characteristics. Because the value of τ2 depends on the particular effect of the metric used in a meta-analysis, 
comparing the estimated τ2 values from meta-analyses that have used different effect size indices (i.e., 
standardized mean difference, correlation coefficient and odds ratio, etc.) is not possible. 
To overcome deficiencies of the Q test and τ2, [12]; see also [13] have proposed the I2 index to evaluate 
heterogeneity in a meta-analysis. This index can be interpreted as a percentage of heterogeneity—i.e., the 
fraction of variation that is because of interstudy variance τ2; this is obtained by dividing the difference of Q 
and (k − 1) for Q. Thus, the I2 index is similar to an intraclass correlation in cluster sampling [12]. For 
example, a meta-analysis with I2 = 0 means that all variability in effect size estimates is a result of a sampling 
error within the studies. On the other hand, a meta-analysis with I2 = 50 means that half of the total variability 
among effect sizes is not caused by a sampling error but is caused by true heterogeneity between the studies. 
[12] proposed a tentative classification of I2 to help interpret its magnitude; therefore, the percentages 25% 
(I2 = 25), 50% (I2 = 50), and 75% (I2 = 75) would mean a low, average, and high heterogeneity, respectively. 
There is a direct correlation between the I2 index and interstudy variance τ2—when τ2 increases, I2 will also 
increase, and vice versa. One of the advantages of the I2 index with respect to τ2 is stated by [12], who state 
that I2 indices obtained from meta-analysis with varying numbers of studies and varying effect metrics are 
directly comparable. Along with this descriptive interpretation of the I2 index, [12] proposed a confidence 
interval that could be used in the same way that the Q test is used for assessing heterogeneity in meta-
analyses. Therefore, if the confidence interval regarding I2 includes the value of 0%, then the meta-analyst 
can support the hypothesis of homogeneity. If, on the other hand, the confidence interval does not include the 
value of 0%, there is no evidence of the existence of true heterogeneity. The use of the I2 index and its 
confidence interval is similar to the Q test application. Because the I2 index assesses not only the 
heterogeneity in the meta-analysis but also the degree of heterogeneity, it should be a more advisable 
procedure than the Q test to assess whether true heterogeneity exists between studies in a meta-analysis. 
 
2.2. Biplot Method 
 
The biplot method is a low-dimensional graphical representation of a data matrix X (with I individuals and J 
variables), i.e., a multivariate matrix; for more detail see [7]. The biplot is based on the singular value 
decomposition in vectors—i.e., it tries to reproduce the data incorporating a simultaneous representation of 
individuals and variables. The two most important representations proposed by [7] were the GH and JK 
biplots. The former offers a high quality in the representation of the columns (variables), whereas the latter 
offers a high representation of the rows (individuals). [8] named this type the HJ biplot and demonstrated that 
it is possible to represent rows and columns simultaneously on the same low-dimensional space, with a high-
quality representation for individuals and variables. 
The biplot method is useful for the visual inspection of data matrices because it allows the collection of 
atypical patterns and values, which can be graphically represented in a manner analogous to principal 
component analysis and discriminant analysis. Because of these advantages of the biplot method, the HJ 
biplot will be used to analyze the heterogeneity of the Audit C data. 
Measures such as factor contributions to the element [8] will be concepts employed when analyzing the 
results. The proximity between individuals (rows) is interpreted as similarity; the angles formed by vector 
variables (columns) is interpreted as correlation, and the proximity between row and column markers is 
interpreted as preponderance. 
 
2.3. Meta-analysis of diagnostic tests  
 
When original studies that evaluate the quality of a test producing binary results are available, performing a 
diagnostic meta-analysis has become an important tool for investigating the information available on a test 
[6], [11], [19] and [20]. In a primary diagnostic study, the quality of a diagnostic test is often measured in 
terms of the sensitivity (TP rate) and the specificity (TN rate = 1 − FP rate) of the test; that is, parallel to a 
standard gold procedure, which defines the presence of a certain condition, the diagnostic test is performed, 
after which the sensitivity and specificity can be calculated. 
From the sensitivity and specificity, summary graphs can be made that show the variability between the 
studies. Thus, we have the following tools: (1) forest plot, which describes the sensitivity and specificity of 
each study with their respective confidence intervals; (2) crosshair, which demonstrates the bivariate 
relationship and degree of heterogeneity between sensitivity and FP rate; and (3) ROCellipse, which shows a 
region of confidence describing the uncertainty of the pair of sensitivity and specificity of each study. 



	
	

539	

 
2.4. Heterogeneity in meta-analysis diagnosis  
 
The observed sensitivities and specificities can be expected to vary in the original studies that constitute a 
meta-analysis. This is because of two main reasons: 
1. Different authors will calibrate a test differently. Given a questionnaire score or a biomarker level, an 
investigator will have to decide which minimum value (or maximum value) should give a positive test result. 
This value is known as the cutoff point. Sometimes, especially in screening for rare diseases, a cutoff value 
will be set to reach a certain level of sensitivity, such as 95%, which often leads to a small specificity; 
however, a certain type of relationship exists between sensitivity and specificity. Both approaches result in a 
different cutoff points. In general, a specific calibration of the population directed to a certain level of 
sensitivity will give rise to different cutoff points for different populations. 
2. When a diagnostic test is applied to several populations, different sensitivities and specificities can be 
expected even if the same cutoff value is used. 
In a diagnostic meta-analysis, the quality of a diagnostic test is evaluated by integrating data from individual 
studies, which usually include sensitivities and specificities; some of these original studies may not report the 
cutoff point. This challenge—i.e., nonhomogeneity and typically unknown cutoff points—is known as the 
cutoff point issue. Therefore, the bivariate nature of the data must be preserved, modeling sensitivity and 
specificity together. During the last decade, two models have been established: a hierarchical model [17] and 
a bivariate model [16]. However, two groups of researchers independently demonstrated [1] and [9] that 
hierarchical and bivariate models are equivalent in special cases (and most common) in the absence of 
covariance. 
 
3. RESULTS 
 

 
In this review, we included the Audit C data, which consists of data from14 studies that evaluated 18,332 
individuals, out of which 2071 had alcohol problems. Figure 1 shows the variation of studies in the 
sensitivities and specificities, despite the fact that the specificity was perfect (100%) in two studies, as shown 
in Figure 1 (a) and Figure 1 (b). This variability can be observed in the graphs in Figure 1 (c) and Figure (d) 
as crosshair and ROCellipse, respectively. 

  

a. Forest plot for sensitivity b. Forest plot for specificity 
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c. Weighted crosshair graph d. Graph, regions of confidence in the form of 

ellipse 
Figure 1. Forest plot, crosshair and ROCellipse graphs, Audit C data 

 
Table 2 shows the measures that corroborate the previous graphical analysis. Thus, there is a correlation 
between the sensitivity and the FP rate of 0.677, which denotes a significant relationship between both 
measures and a clear problem regarding the cutoff points in the studies. The true heterogeneity between 
studies, denoted by 𝜏!, has a value of 0.311. I2 is 33.955%, which indicates the percentage of heterogeneity 
among the studies because of the true variability (𝜏!) between studies. In addition, the Q-statistic is available 
with a p-value of 0, which means that the null hypothesis of homogeneity between the studies is rejected in 
favor of the alternative hypothesis that there is heterogeneity among the studies analyzed. 

Table 2. Correlation values, 𝜏!, I2, and Q of Audit C data  
Measure-statistic Value Lower limit (95%) Higher limit (95%) p-value 

Correlation between sensitivity and specificity 0.677 0.228 0.888 - 
τ2 0.311 0.00 3.787 - 
Q 4177.192 - - 0 
I2 33.955 - - - 

 
By performing the HJ biplot analysis on the data matrix described above, the following absorption of inertia 
(or variability explained) was obtained (see Table 3). 

Table 3. Inertia absorbed by the two main axes in the HJ biplot representation, Audit C data. 
Axis 1 Axis 2 Accumulated 

66.46 28.69 95.15 
 
As can be seen in Table 3, the accumulated absorption with the first two main axes is 95.15%, with a clear 
differentiation between axes 1 and 2. This leads us to interpret the first main plane (axes 1 and 2) together. 
Figure 2 shows the simultaneous representations in the first main plane of the analysis performed. The 
number following the name of the author corresponds to the year that each study was conducted. Figure 2 
shows the studies that form three clusters. Thus, the studies by Seale et al., 2006, Bradley et al., 2007, Aalto et 
al., 2006, Aertageerts et al., 2002, Bradley et al., 2003, Gual et al., 2002, Selin, 2006, Gómez et al., 2006, Tsai 
et al., 2005, and Bush et al., 1998 belong to the first cluster, i.e., cluster 1 (green); the studies by Aertgeerts et 
al., 2001, Rumpf et al., 2002 and Tuunanen et al., 2007 belong to cluster 2 (red); finally, the study by Gordon 
et al., 2001 belongs to cluster 3 (blue). Note that the studies within a cluster have common characteristics 
among themselves, but that there is heterogeneity among the clusters. 
The following tables of Relative Contribution of the Factor to the element, which show the value first for the 
rows (studies; Table 4) and then the columns (variables; Table 5), indicate the elements that are characteristic 
of axes 1 and 2. Note that these values of contributions come in a scale of 0–1000. Therefore, when an 
element that receives a high contribution of the axis 1 and a low contribution from the rest is an exclusive 
characteristic of that axis, and its interpretation will be done with respect to this axis. Values higher than a 
scale of 500 will be considered for our analysis. Thus, studies by Gordon et al., 2001, Aertgeerts et al., 2002, 
Gual et al., 2002, Tsai et al., 2005, Bradley et al., 2003, Aalto et al., 2006, Aalto et al., 2006, Selin, 2006, and 
Bush et al., 1998 are representative of axis 1 as well as the variables FP, TP and TN. On the other hand, the 
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studies by Aertgeerts et al., 2001, Tuunanen et al., 2007, Rumpf et al., 2002, Bradley et al., 2007 are 
representative of axis 2 as well as the variable FN. 

Table 4. Relative contributions of the factor to the element-studies 

Contributions rows - studies 

Studies Axis 1 Studies Axis 2 

  Gordon et al., 2001 937   Aertgeerts et al., 2001 946 

  Aertgeerts et al., 2002 899   Tuunanen et al., 2007 636 

  Gual et al., 2002 677   Rumpf et al., 2002 621 

  Tsai et al., 2005 635   Bradley et al., 2007 595 

  Bradley et al., 2003 629   Gómez et al., 2006 et al., 2007 549 

  Aalto et al., 2006 589   Bush et al., 1998 470 

  Selin, 2006 523   Selin, 2006 423 

  Bush et al., 1998 517   Tsai et al., 2005 362 

  Gómez et al., 2006 398   Bradley et al., 2003 347 

  Seale et al., 2006 335   Gual et al., 2002 320 

  Rumpf et al., 2002 274   Seale et al., 2006 170 

  Aertgeerts et al., 2001 53   Aalto et al., 2006 109 

  Tuunanen et al., 2007 31   Aertgeerts et al., 2002 85 

  Bradley et al., 2007 3   Gordon et al., 2001 61 
 

Table 5. Relative contributions of the factor to the 
element-variables 

Contributions rows - variables 

Variables Axis 1 Variables Axis 2 

  FP 940   FN 965 

  TP 922   TN 103 

  TN 787   FP 53 

  FN 9   TP 27 
 
In Figure 2, it can be seen that there is atypical data corresponding to the study by Gordon et al., 2001, which 
is characterized by very high FP and TP values. 
The horizontal gradient (axis 1) exclusively marks the difference between the study by Gordon et al., 2001 
and all the others, because the study by Gordon et al. shows high PF and TP values. The vertical gradient 
(axis 2) differentiates cluster 2 (red) studies (Aertgeerts et al., 2001, Rumpf et al., 2002 and Tuunanen et al., 
2007) from cluster 1 (green) studies (Bush et al., 1998, Aertgeerts et al., 2002, Gual et al., 2002, Bradley et 
al., 2003, Tsai et al., 2005, Selin, 2006, Seale et al., 2006, Gómez et al., 2006 and Aalto et al., 2006, Bradley 
et al., 2007). 
All cluster 2 (red) studies have very high FN values, but among them they differ by the values in the other 
three variables. Cluster 1 (green)- studies have very low values in all variables. 
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Figure 2. HJ biplot of Audit C data. 
 

3. DISCUSSION AND CONCLUSIONS 
 
• In this research, we analyzed the heterogeneity of the studies in meta-analysis of diagnostic tests using 
the Q-statistic, I2 index, and HJ biplot. The evaluation of heterogeneity in a meta-analysis is a crucial 
question, because the meta-analyst's decision to select the statistical model to be applied (fixed-effects model 
versus random-effects model) depends on the homogeneity test employed [13]. Considering the importance of 
this question, the purpose of this study is to compare the behavior of the Q-statistic and the I2 index, and to 
complement the information they provide with the results obtained using the HJ biplot to evaluate the 
heterogeneity between cluster of individual studies in a meta-analysis. 
 
• The I2 index behaves similarly to the Q test from an inferential point of view [14], but the I2 index 
has advantages over the classical Q test—it is easily interpretable because it is a percentage and does not 
depend on degrees of freedom [4]. Another advantage is that it provides a way of assessing the magnitude of 
heterogeneity, whereas the Q test reports on the statistical significance of the homogeneity hypothesis [4]. 
However, these two tests do not provide information about the possible causes of heterogeneity; that is, they 
do not indicate whether studies are similarly responsible for the heterogeneity or which variables used in the 
individual studies are responsible for the heterogeneity. 
• The HJ biplot method [8] provides a graphical representation of the studies and the TP, TN, FP, and 
FN in the same system of Cartesian axes with minimal information loss. This representation provides 
information on the overall structure of the studies that is complementary to that provided by Higgins' Q and I2 
statistics. The length of the vectors representing the variables informs the variability of the variables; thus, 
analyzing this length can detect which variables are responsible for the heterogeneity of a meta-analysis. The 
cosines of the angles between the vectors show the correlation between the variables they represent, thus 
providing useful information when choosing the appropriate model for the available data; if there is a strong 
correlation between FP and TP, a clear cutoff point issue becomes evident [5]. Thus, it is necessary to model 
these measures using a hierarchical approach [17] or a bivariate approach [16]. The points represent the 
different studies to be integrated into the meta-analysis of a diagnostic test. The distances between them allow 
the visualization of clusters of studies with homogenous characteristics. Those clusters that are further away 
are responsible for the heterogeneity. Thus, by projecting such studies orthogonally on the direction of the TP, 
TN, FP and FN, the causes of heterogeneity can be obtained. 
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• The HJ biplot has proven to be a multivariate tool that is extremely useful in the analysis of meta-
analysis data of diagnostic tests, both in the descriptive phase and in the search for the causes of variability. 
The points in Figure 2 display the different studies to be integrated into the meta-analysis of a diagnostic test.  
• In conclusion, the use of the HJ biplot in the meta-analysis of diagnostic tests allowed us the 
following: (i) characterization of the heterogeneity of the studies regarding measures such as TP, FP, TN, and 
FN; (ii) identification of groups of homogeneous studies; and (iii) analysis of the relations of these measures 
to choose the most appropriate model that facilitates the subsequent integration of the individual 
characteristics of the studies analyzed. 
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Appendix 

 

install.packages("mada") 
library("mada") 
data("AuditC") 
AuditC 
 
forest(madad(AuditC), type = "sens") 
forest(madad(AuditC), type = "spec") 
 
rs <- rowSums(AuditC) 
weights <- 4 * rs / max(rs) 
crosshair(AuditC, xlim = c(0,0.6), ylim = c(0.4,1),col = 1:14, lwd = weights) 
 
ROCellipse(AuditC, pch = "") 
points(fpr(AuditC), sens(AuditC)) 
 
library(tcltk) 
library(tcltk2) 
library(rgl) 
library(tkrplot) 
library(shapes) 
library(cluster) 
library(dendroextras) 
library(MASS) 
tclRequire(BWidget) 
library(biplotbootGUI) 
biplotboot(AuditC) 


