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ABSTRACT 
In this article, a new sampling scheme based on ranked data is proposed. The main idea of the new sampling procedure is to 
produce a more flexible, reliable, cost-efficient design than the classical ranked set sampling and simple random sampling 
techniques. Accordingly, the new sampling scheme minimizes the number of wasted measurement units with high efficiency 
performances in estimating the population mean. Moreover, as different set sizes are used then the sample mean expected to be 
biased, to solve this problem an information theoretic weighted mean estimator is proposed. It is found that the weighted mean is 
more accurate and more efficient than the standard one. and the sample mean based a simple random sampling technique. Both 
estimators, weighted and un-weighted outperform the simple random sampling scheme in estimating the population mean. A real 
data set for estimating the average cohort percentage for survivals to age 65 in Jordan from 1960 to 2015 is used to illustrate the 
proposed sampling scheme.  
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RESUMEN 
En este trabajo se propone un nuevo esquema de muestreo basado en datos ordenados.  La idea principal del nuevo 
procedimiento de muestreo es producir una técnica que sea más flexible, fiable y barata que el clásico “ranked set sampling” y 
que el muestreo simple aleatorio. Así que el nuevo esquema de muestreo minimiza el número de medidas desechadas con una 
alta eficiencia en su desempeño al estimar la media de la población. Más aun, como se utilizan tamaños diferentes de los 
conjuntos se espera que el estimador de la media tenga sesgo, para resolver este problema se propone un estimador ponderado 
basado en teoría de la información. Se halla que la media ponderada es más acurada y más eficiente que el típico y que la media 
muestral basado en el muestreo simple aleatorio. Ambos estimadores, el ponderado y el no ponderado funcionan mejor que el 
del esquema simple aleatorio en la estimación de la media poblacional. Se utiliza, para ilustrar el comportamiento del propuesto 
esquema de muestreo, un conjunto de dato reales para estimar el promedio del porcentaje de las cohortes de la sobrevivencia a la 
edad de 65 en Jordania entre 1960 y 2015  
 
PALABRAS CLAVE: Entropía de Shannon, Ranked Set Sampling, Estimación de la media, eficiencia relativa, Sobrevivencia a 
la edad de 65. 

1. INTRODUCTION 
 
McIntyre (1952) is the first advocating the use of ranked sets for unbiased selective sampling called ranked 
set sampling (RSS). The main idea of the RSS is to increase the efficiency of the population estimators 
comparing to the classical simple random sampling (SRS) technique. In RSS, m SRS sets are selected each of 
size m. The units within each SRS are ranked based on a free-cost method. Then the ith measurement unit is 
selected from the ith SRS, where i= 1, 2, …, m. This procedure may repeated r times to obtain a RSS of size n 
= rm. If the set size (i.e., m) equal to the number of selected sets (i.e., m) then the sampling scheme is known 
as balanced RSS. However, if the set size is fixed (i.e., n) but not equal to number of random sets (i.e., 
m);then the sample scheme is called unbalanced RSS. There are several statistical inference procedures use 
balanced or unbalanced RSS, in all of these procedures an important property is the sample mean based on 
ranked data should be unbiased with minimum variance comparing to SRS (Zhang et al., 2014; Jemain et al., 
2008, Al-Talib and Al-Nasser, 2008; Al-Omari, 2012; Zamanzade and Vock, 2015; Zamanzade and 
Mahdizadeh, 2017; Zamanzade and Al-Omari, 2016,  Al-Omari and Haq, 2016; Chen et al., 2004 and the 
references therein). 
In the literature, there are many authors proposed improvements to the RSS scheme. Muttlak (1997) 
suggested using the median ranked set sampling (MRSS). Muttlak (2003), introduced percentiles ranked set 
sampling (PRSS). For symmetric distributions, and in order to estimate an unbiased population mean with 
high efficiency, Samawi et al. (1996) investigated the extreme ranked set samples (ERSS); While, Jemain and 
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Al-Omari (2006) suggested double quartile ranked set sampling. Moreover, a generalization sampling 
schemes are proposed by Al-Nasser (2007) called L ranked set sampling (LRSS) to outperform the RSS, 
MRSS and PRSS; and Al-Nasser and Bani-Mustafa (2009) suggested RERSS as an alternative sampling 
scheme.  
In terms of using unequal set sizes, Al Odat and Al-Saleh (2001) introduced the moving extreme ranked set 
sampling. In this sampling scheme, m random samples of size i =1,2, …, m are drawn; and then, the 
maximum order statistics is selected from each set. To complete the scheme, another cycle of m random 
samples are drawn; then the minimum value is selected from each set. Then the MRSS size is 2m, the process 
could be repeated r times to obtain a MERSS of size n = 2rm. Even when r =1, the cost of using MERSS is 
very high. In this article, a two cycles of MERSS are merged into one cycle to minimize the sampling cost 
and to be more flexible and reliable in using the measurement units in our applied researches.   
This paper considers nonparametric estimation for population mean based on a ranked data scheme of unequal 
set size under prefect ranking. This paper proposed un-weighted estimator as well as a weighted estimator 
which is motivated by the fact that the observations from unequal set sizes are not identically distributed. In 
other words, observations selected by different ranks should contribute differently because they follow 
different distributions. 
The article organized as follows: Section (2) describes the new sampling scheme, and give an illustrative 
investigations for estimating the population mean in case of the standard uniform distribution. Also, a 
comparative study based on the relative efficiency criterion is given. Section (3) introduce a weighted mean 
estimation based on Shannon entropy to increase the accuracy and the efficiency of the proposed estimator. 
Section (4) we discuss the merits of the proposed sampling schemes. In Section (5) an illustration of the 
proposed sampling scheme is discussed by analyzing a real data set to estimate the average percentage cohort 
for the survival to age 65 in Jordan between 1960 and 2015. The article ends with some concluding remarks. 

2. THE MINIMAX RSS SCHEME 
 
In RSS scheme and its extensions, to draw a random sample of size m, we use m2 sampling units, one of the 
previous schemes is folded ranked set sampling (FRSS) (Bani Mustafa et al., 2011) is used to reduce number 
of wasted sampling units and to improve the estimator efficiency in case of asymmetric distributions. The new 
sampling scheme has the same aims of FRSS by reducing number of wastes and increase the estimator 
efficiency but in symmetric distributions. The main idea is to use different set sizes and apply the same 
procedure of the ERSS. This can be clarify by applying the following steps: 
 
 
Step (1): Draw m SRS of size i = 1,2,3, … , m 

SRS.1 à x1    
SRS.2 à x1 x2   
SRS.3 à x1 x2 x3  
⋮  ⋮ ⋮ ⋮ ⋮ 

SRS.m à x1 x2 ⋯ xm 

 
Step (2): Arrange the sampling units within each SRS from smallest to largest 

SRS.1 à x(1:1)    
SRS.2 à x(1:2) x(2:2)   
SRS.3 à x(1:3) x(2:3) x(3:3)  
⋮  ⋮ ⋮ ⋮ ⋮ 

SRS.m à x(1:m) x(2:m) ⋯ x(m:m) 

 
Step (3): From the first SRS of size i=1, measure x(1:1); the minimum 
Step (4): From the second SRS of size i=2; measure x(2:2); the maximum 
Step (5): From the third SRS of size i=3; measure x(1:3); the minimum 
Step (6): Continue in the same selection procedure till in the last sample you select the minimum if m is odd, 
or select the maximum if m is even. 

  Ordered samples  MiniMaxRSS 
SRS.1 à x(1:1)    à 𝑥[!:!] 
SRS.2 à x(1:2) x(2:2)   à 𝑥[!:!] 
SRS.3 à x(1:3) x(2:3) x(3:3)  à 𝑥[!:!] 
⋮  ⋮ ⋮ ⋮ ⋮   
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SRS.m à x(1:m) x(2:m) ⋯ x(m:m) à 𝑥 !:! ;!" ! !" !""
𝑥 !:! ;!" ! !" !"!#

 

 
Step (7): Repeat the process r times to chose a MiniMax RSS of size n = r.m 
 
Then the MiniMax RSS sample will be of the form: 

𝑥 !:!!!! !;  𝑥 !!:!! !; 𝑖 = 1,2,… ,
𝑚 + 1
2

; 𝑗 = 1,2,… ,
𝑚 − 1
2

; 𝑘 = 1, 2,… , 𝑟 ;   𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑥[!:!!!!]!;  𝑥[!!:!!]!; 𝑖 = 1,2,… ,
𝑚
2
; 𝑘 = 1, 2,… , 𝑟                                           ; 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

 
Note that the observed data are judgmental order statistics, where these values are independent but are not 
identically distributed. We will refer to this random sample as partial judgment order statistics. Consequently, 
the MiniMax RSS mean can be identify as follows: 
 

𝑋!"#"!$%&'' =

1
𝑚𝑟 𝑋[!:!!!!]!

(!!!)
!

!!!

+ 𝑋[!!:!!]!

(!!!)
!

!!!

!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑

1
𝑚𝑟

𝑋[!:!!!!]!

!
!

!!!

+ 𝑋[!!:!!]!

!
!

!!!

!

!!!

;                 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

Without lose of generality, let r =1; then expected value of the proposed estimator is given by: 

𝐸 𝑋!"#"!$%&'' =

1
𝑚

𝑥[!:!!!!]𝑑𝐹(𝑥[!:!!!!])

(!!!)
!

!!!

+ 𝑥[!!:!!]𝑑𝐹(𝑥[!!:!!])

(!!!)
!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑,

1
𝑚

𝑥[!:!!]𝑑𝐹(𝑥[!:!!]

!
!

!!!

+ 𝑥[!!:!!]𝑑𝐹(𝑥[!!:!!])

!
!

!!!

;                       𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛,

 

where the probability density functions of 𝑥[!:!] is given by: 

𝑑𝐹 𝑥 !:! = 𝑓 𝑥 !:! =  
𝑚!

𝑖 − 1 ! 𝑚 − 𝑖 !
 𝑥!!! 1 − 𝑥 !!! .   

The associated variance of this estimator is: 

𝜎!"#"!$%&''! =

1
𝑚! 𝜎![!:!!!!]

(!!!)
!

!!!

+ 𝜎![!!:!!]

(!!!)
!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑,

1
𝑚! 𝜎![!:!!!!]

!
!

!!!

+ 𝜎![!!:!!]

!
!

!!!

;           𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

 
2.1 An Example of MiniMax RSS: Standard Uniform Distribution 
 
In general, the samples based on ranked data have shown several evidences to conclude the superiority of 
such methods over the SRS while estimating the population mean. The relative efficiency (RE) is considered 
as the statistical criterion for investigating the new estimator performances. The RE can be computed as: 
RE =  !"#(!!"!)

!"#(!!"#"!$%&'')
, 

where MSE is the mean squared error. 
To illustrate the RE of the proposed sampling scheme in estimating the population mean from the standard 
Uniform distribution i.e., U(0,1). The expected value and the variance of the ith order statistics from U(0,1) is: 
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𝜇 !:! =  !
!!!

, 𝜎(!:!)! =  !(!!!!!)
!!! !(!!!)

. 
Consequently, using the MMRSS, the expected value and the variance of the sample mean from a MMRSS is 
equal to: 

𝜇!"#"!$%&'' =  

1
𝑚

1
2𝑖

!!!
!

!!!

+
2𝑖

2𝑖 + 1

!!!
!

!!!

;𝑚 𝑖𝑠 𝑜𝑑𝑑

1
𝑚

1
2𝑖
+

2𝑖
2𝑖 + 1

!
!

!!!

;𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

Noting that, 𝐻! = !
!

!
!!!  is denoted by the mth harmonic number and it is equal to  

𝛾 +  𝜓!(𝑚 + 1), 
where 𝛾 is the Euler-Mascheroni constant and 𝜓! is the digamma function. Therefore, the mean from the 
standard Uniform distribution based on MiniMaxRSS can be simplify to: 

𝜇!"#"!$%&'' =  

1 +𝑚 − log 4 + 𝐻!!!
!
− 𝐻!

!

2𝑛 ;𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑚 + H!
!
+ ψ[32] − ψ[

3 +𝑚
2 ]

2𝑚
;𝑚 is even.

 

Now the variance can be written as: 

𝜎!"#"!$%&''! =

1
𝑚!

2𝑖 − 1
(2𝑖)!(2𝑖 + 1)

!!!
!

!!!

+
2𝑖

2𝑖 + 1 !(2𝑖 + 2)

!!!
!

!!!

;𝑚 𝑖𝑠 𝑜𝑑𝑑

1
𝑚!

2𝑖 − 1
(2𝑖)!(2𝑖 + 1)

+
2𝑖

2𝑖 + 1 !(2𝑖 + 2)

!
!

!!!

;𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛,

  

which can be simplify to: 

𝜎!"#"!$%&''! =

24(1 +𝑚)
2 +𝑚 − 2𝜋! + 12ψ(!)[2 +𝑚]

12𝑚! ;𝑚 is odd

24(1 +𝑚)
2 +𝑚 − 2𝜋! + 12ψ(!)[2 +𝑚]

12𝑚! ;𝑚 is even,

 

where ψ(!) is the first derivative of the digamma (psi) function. Therefore, the relative efficiency with respect 
to SRS is given by: 

𝑅𝐸 =  
𝜎!"!!

𝑀𝑆𝐸!"#"!$%&''
, 

where 
𝜎!"!! = !

!" !
, 

And 𝑀𝑆𝐸!"#"!$%&'' =  𝜎!"#"!$%&''! +  𝑏𝑖𝑎𝑠!. Given that 𝑏𝑖𝑎𝑠 = 𝜇!"#"!$%&'' −  !
!
 . 

Then, the exact RE were computed for different set sizes i.e., m = 3, 4, 5 and 6, using Mathematica.6 software 
is illustrated in Figure (1).  
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Figure (1): RE of the Standard Uniform Distribution 

 

2.3 Efficiency Results: Comparing with SRS 
 
To illustrate the RE of the proposed sampling scheme in estimating the population mean from a symmetric 
distribution, we considered a set of size m= 3, 4, 5 and 6. Then the exact RE were computed using 
Mathematica 6 software for several symmetric distributions. The results are presented in Table (1). 
The computational results in Table (1) suggest that under the RE measure, the MiniMax RSS mean estimators 
are superior to the traditional SRS estimators when the underlying distribution is symmetric. It could be noted 
the following results: 
 

• The MiniMax RSS estimators is more efficient than the SRS estimator with efficiency value more 
than 1 in all symmetric distributions and some of asymmetric distributions, (Beta, Rayleigh and Half 
Normal). 

• The SRS estimator is an unbiased and more efficient in case of some asymmetric distributions, 
(Exponential, Gamma and Chi Square), when the set size is even. 

• By increasing the set size (in both cases: odd set size and even set size separately), the relative 
efficiency value also improved in case of symmetric distributions. 

• The bias is negative in case of odd set size, because number of minimum observations are more than 
the maximum observations within odd set sizes. Also, it is positive in case of even set size, because 
the expected value of the maximums is dominated the expected values of the minimums as we are 
using unequal set sizes. 

• The MSE decreases as the set size increases in symmetric distributions. 
 

Table .1:  The RE of MiniMax RSS with respect to SRS for different distributions 
                  m 

Distribution 
3 4 5 6 
Bias MSE RE Bias MSE RE Bias MSE RE Bias MSE RE 

Symmetric 
Distribution 

U(0,1) -
0.027 0.020 1.360 0.054 0.016 1.330 -

0.023 0.009 1.760 0.040 0.008 1.680 

N(0,1) -
0.094 0.258 1.290 0.186 0.207 1.210 -

0.083 0.134 1.490 0.142 0.119 1.390 

Beta(3,3) -
0.018 0.009 1.330 0.035 0.007 1.260 -

0.015 0.004 1.610 0.026 0.003 1.510 

Logistic(5,2) -
0.330 3.509 1.250 0.670 2.836 1.160 -

0.300 1.921 1.370 0.510 1.741 1.260 

Student t(4) -
0.123 0.562 1.190 0.247 0.464 1.080 -

0.113 0.335 1.190 0.191 0.307 1.090 

ArcSin (0,1) -
0.034 0.030 1.380 0.065 0.023 1.390 -

0.027 0.013 1.880 0.047 0.011 1.840 

Asymmetric 
Distribution 

Beta(5,2) -
0.013 0.006 1.334 0.034 0.006 1.114 -

0.007 0.003 1.615 0.031 0.004 1.199 

Rayleigh(1) -
0.054 0.108 1.323 0.137 0.097 1.102 -

0.029 0.055 1.573 0.125 0.061 1.178 

HalfNormal(2) -
0.028 0.036 1.321 0.084 0.035 1.025 -

0.006 0.018 1.552 0.084 0.023 1.029 

Exponential(1) -
0.056 0.265 1.256 0.229 0.289 0.865 -

0.023 0.154 1.303 0.261 0.216 0.772 

Gamma(2,3) -
0.287 4.651 1.290 0.945 4.729 0.952 -

0.023 2.523 1.427 0.992 3.299 0.909 

ChiSquare(3) -
0.155 1.564 1.279 0.553 1.636 0.917 -

0.014 0.868 1.383 0.600 1.173 0.853 

 

1.36	 1.33	
1.76	 1.68	

0	

1	

2	

3	 4	 5	 6	

Uniform	(0,1)	
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3. WEIGHTED ESTIMATION OF THE MEAN USING MINIMAX RSS 

For a finite population X, let 𝐹 𝑥  and 𝑓(𝑥) denote, respectively, the cumulative distribution function (cdf ) 
and the probability density function ( pdf ) with mean 𝜇 and variance 𝜎!. We wish to estimate the population 
mean using a random sample from MiniMax RSS scheme. Then, the judgmental order statistics can be written 
as: 
 

𝑥 !:!!!! ;  𝑥 !!:!! ; 𝑖 = 1,2,… ,
𝑚 + 1
2

; 𝑗 = 1,2,… ,
𝑚 − 1
2

; ;   𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑥[!:!!!!];  𝑥[!!:!!]; 𝑖 = 1,2,… ,
𝑚
2

                                              ; 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

 

Note that judgmental order statistics are independent but not identically distributed. Accordingly,  
a weighted population mean estimator can be formulated as: 
 

𝑋! =

𝑤!𝑋[!:!!!!]

(!!!)
!

!!!

+ 𝑤
!!!!!!

𝑋[!!:!!]

(!!!)
!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑤!𝑋[!:!!!!]

!
!

!!!

+ 𝑤!!!!
𝑋[!!:!!]

!
!

!!!

;               𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

 

where 1w , 2w …, mw  are nonnegative weights. Following Al-Nasser (2007), the optimal weights, which 
provide a measure of uncertainty, can be found by using an entropy measure from information theory under 
two constraints: (1) The moment condition: the weighted mean of MiniMax RSS is unbiased estimator of the 
population mean; and (2) Unity constraints: the sum of all weights is equal to one. Entropy generally is taken 
as a measure of expected information. A simple choice of this measure is Shannon (1948) entropy: 

∑
=

−=
m

i
ii wwwH

1

)ln()( , 

where, 0)ln( =ii ww  for wi = 0, and H(w) reaches a maximum when w1 = w2 = … = wm = 
m
1

. Then, by 

maximizing  shannon entropy subject to the moment condition and the add up constraint 1
1

=∑
=

m

j
jw , leads to 

the optimal solution. This problem can be expressed by a nonlinear programming system (if m is odd): 

∑
=

−
m

j
jj wLnwMaximize

1
)( , 

Subject to  

                                              (1) 𝑤!𝑋[!:!!!!]
(!!!)

!
!!! + 𝑤!!!!!

!
𝑋[!!:!!]

(!!!)
!

!!! =  𝜇. 

                                              (2) 1
1

=∑
=

m

j
jw . 

In case if m is even, then the first constrain is replaced by 

𝑤!𝑋[!:!!!!]

!
!

!!!

+ 𝑤!!!!
𝑋[!!:!!]

!
!

!!!

=  𝜇 

To recover the weights, one can form the Lagrangian function as 

𝐿 = − 𝑤! ln 𝑤! + 𝜆!!
!!! 𝜇 − 𝑤!𝑋[!:!!!!]

(!!!)
!

!!! + 𝑤!!!!!
!
𝑋[!!:!!]

(!!!)
!

!!! + 𝜆! 1 − 𝑤!!
!!! , 
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where 1λ  and 2λ  are a Lagrangian multiplier. Then, the unbiased estimator can be recovered through the 
weighted estimates, after finding the first order conditions and solve the nonlinear programming system. 
Accordingly, the optimal weighted mean can be expressed as: 

𝑋! =

𝑤!𝑋[!:!!!!]

(!!!)
!

!!!

+ 𝑤
!!!!!!

𝑋[!!:!!]

(!!!)
!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑

𝑤!𝑋[!:!!!!]

!
!

!!!

+ 𝑤!!!!
𝑋[!!:!!]

!
!

!!!

;               𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

 

and its associated weighted variance will be defined as: 

𝜎!"#"!$%&''! =

1
𝑚

𝑤!  𝜎![!:!!!!]

(!!!)
!

!!!

+ 𝑤
!!!!!!

 𝜎!
[!!:!!]

(!!!)
!

!!!

;    𝑚 𝑖𝑠 𝑜𝑑𝑑

1
𝑚

𝑤!  𝜎![!:!!!!]

!
!

!!!

+ 𝑤!!!!
 𝜎!

[!!:!!]

!
!

!!!

;           𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛.

 

The results of the nonlinear programming system are given in Table (2) for symmetric distributions and Table 
(3) for asymmetric distributions. 
 

Table 2: Optimal weights for given m under MiniMax RSS: Symmetric distributions 
Distribution     m 

w 3 4 5 6 

U(0,1) 

1 0.337 0.263 0.202 0.169 
2 0.398 0.212 0.215 0.156 
3 0.265 0.351 0.182 0.194 
4  0.175 0.226 0.142 
5  0.175 0.205 
6  0.135 

      

N(0,1) 

1 0.337 0.263 0.200 0.169 
2 0.398 0.211 0.215 0.156 
3 0.265 0.352 0.181 0.193 
4  0.174 0.229 0.142 
5  0.175 0.206 
6  0.134 

      

Beta(3,3) 

1 0.338 0.263 0.202 0.169 
2 0.397 0.211 0.216 0.156 
3 0.265 0.352 0.181 0.193 
4  0.174 0.227 0.142 
5  0.174 0.206 
6  0.134 

      

Logistic(5,2) 

1 0.337 0.263 0.199 0.169 
2 0.398 0.211 0.215 0.156 
3 0.265 0.353 0.181 0.193 
4  0.173 0.230 0.142 
5  0.175 0.207 
6  0.133 

      

T(4) 

1 0.337 0.263 0.202 0.169 
2 0.398 0.211 0.216 0.156 
3 0.265 0.353 0.181 0.193 
4  0.173 0.228 0.142 
5  0.173 0.207 
6  0.133 

      

ArcSin(0,1) 

1 0.337 0.262 0.202 0.169 
2 0.398 0.211 0.215 0.155 
3 0.265 0.350 0.182 0.194 
4  0.176 0.225 0.142 
5  0.176 0.204 
6  0.136 

 
 
Then the relative efficiency (RE) of estimating the population mean using the weighted MiniMax RSS method 
with respect to the usual estimator using SRS is defined as: 

)(
)(

w

SRS
w XVar

XVarRE = . 

The REw in Table (4) summarizes results for weighted MiniMax RSS. For each distribution, calculations were 
done when the set sizes m equal to 3, 4, 5, and 6.  
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Table 3: Optimal weights for given m under MiniMax RSS: Asymmetric distributions 

Distribution     m 
w 3 4 5 6 

Beta(5,2) 

1 0.337 0.258 0.201 0.168 
2 0.391 0.211 0.206 0.148 
3 0.272 0.367 0.192 0.209 
4  0.164 0.216 0.135 
5  0.186 0.218 
6  0.122 

      

Rayleigh(2) 

1 0.337 0.261 0.199 0.169 
2 0.391 0.208 0.207 0.149 
3 0.271 0.366 0.188 0.207 
4  0.166 0.217 0.135 
5  0.188 0.218 
6  0.123 

      

HalfNormal 

1 0.337 0.261 0.200 0.171 
2 0.387 0.205 0.204 0.147 
3 0.276 0.375 0.195 0.214 
4  0.159 0.207 0.126 
5  0.194 0.227 
6  0.115 

      

Exp(1) 

1 0.336 0.267 0.200 0.175 
2 0.380 0.201 0.195 0.143 
3 0.285 0.387 0.207 0.226 
4  0.145 0.189 0.117 
5  0.209 0.239 
6  0.099 

      

Gamma(2,3) 

1 0.336 0.264 0.201 0.171 
2 0.385 0.203 0.200 0.148 
3 0.279 0.378 0.197 0.217 
4  0.155 0.203 0.124 
5  0.198 0.230 
6  0.109 

      

ChiSquare(3) 

1 0.336 0.263 0.200 0.171 
2 0.383 0.206 0.199 0.146 
3 0.281 0.381 0.202 0.223 
4  0.150 0.197 0.123 
5  0.202 0.232 
6  0.105 

 
 

Table 4: Relative efficiency (RE) by using weighted MiniMax RSS vs SRS. 
 m 

Distribution 3 4 5 6 

Symmetric 
Distributions 

U(0,1) 1.386 1.619 1.847 2.088 
N(0,1) 1.322 1.451 1.566 1.663 
Beta(3,3) 1.352 1.525 1.684 1.840 
Logistic(5,2) 1.285 1.370 1.439 1.489 
T(4) 1.217 1.238 1.242 1.234 
ArcSin(0,1) 1.401 1.682 1.965 2.275 

Asymmetric 
Distributions 

Beta(5,2) 1.309 1.490 1.607 1.767 
Rayleigh(1) 1.300 1.462 1.569 1.700 
HalfNormal(2) 1.274 1.447 1.535 1.681 
Exponential(1) 1.188 1.302 1.344 1.422 
Gamma(2,3) 1.234 1.366 1.419 1.518 
ChiSquare(3) 1.216 1.342 1.392 1.483 

 
The results indicate that there is an improvement by using the weighted MiniMax RSS. In fact, the weighted 
MiniMax RSS estimators are unbiased and outperform the SRS estimators. 
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4. MERITS OF THE MINIMAX RSS SCHEME 
 
The theoretical part of this article showed that the proposed sampling scheme is efficient and could be more 
accurate when we give the right weights for each measurement. Therefore, MiniMax RSS could be consider a 
robust extended form of the RSS scheme with some additional benefits. In general, there are several 
considerations, which make the MiniMax RSS better than many of the ranked sampling scheme. Starting with 
unequal set sizes, in many applications; specially, the medical and reliability applications, it is very hard to 
obtain all the time equal set samples. Then, cost considerations, it is known that in most of ranked data 
schemes such as RSS for a set of size m we usually discard m2 - m sampling units. While by using the 
MiniMaxRSS we discard !(!!!)

!
−𝑚 = !(!!!)

!
 . Table (5) shows the number of  used and wasted sampling 

units in ranked data schemes and MiniMaxRSS and their sampling unit’s saving ratio. 
 

Table 5. Saving Percentages by using MiniMaxRSS scheme 

m 

MiniMax RSS RSS 
Saving percentage 

𝑀𝑖𝑛𝑖𝑀𝑎𝑥𝑅𝑆𝑆(𝑊𝑎𝑠𝑡𝑒𝑑)
𝑅𝑆𝑆 (𝑊𝑎𝑠𝑡𝑒𝑑)  

Measured Wasted Measured Wasted 

3 6 3 9 6 50% 
4 10 6 16 12 50% 
5 15 10 25 20 50% 
6 21 15 36 30 50% 

 
The results indicated that we need double number of sampling units by using RSS to observe the same set size 
by using MiniMax RSS. Moreover, by using a weighted MiniMax RSS the mean estimators became unbiased 
and more efficient than their counterpart estimators based on SRS. 
 
 
5. ESTIMATING THE AVERAGE OF SURVIVAL TO AGES 65 IN JORDAN 
 
We illustrate the MiniMax RSS scheme in data collection and estimating the population mean using a real 
data set obtained from the United Nation Division (2017) about the Jordan - Health Status - Survival to age 
65. Survival to age 65 is an important indicator used by the united nation as well as each country to measure 
the percentage of a cohort of newborn infants that would survive to age 65. The important of this indicator is 
in its impact on the describing life quality and in describing the health status of the citizens, which effect on 
the happiness rate in that country. Noting that, age 65 reflects the number of years a person could be expected 
to receive unreduced Social Security retirement benefits (United Nation, 2015).  The data file consists of 
information on female and male (% of cohort) from 1960 to 2015. The summary statistics on these data is 
given in Table (6) The results indicate that, the percent of female that survival to age 65 in Jordan increased 
from 44.87.13% in 1960 to 84.36% in 2015 at an average annual rate of 72.46%, while, the percent of male 
increased from 44.87% in 1960 to 78.36% in 2015 at an average annual rate of 66.47%.  
 

Table 6: Summary Statistics to Survive to age 65 in Jordan 
 N Min Q1 Q2 Q3 Max 𝜇 𝜎 
Male 56 44.87 58.601 69.904 75.079 78.36 66.465 10.155 
Female 56 49.19 64.929 76.158 81.028 84.36 72.459 10.421 

 
In this article, a random sample of size 15 is selected by two sampling techniques; SRS and MiniMax RSS. In 
using the proposed MiniMax RSS scheme, three SRS were selected without replacement from the population 
each of size 1, 2 and 3; respectively. Then, the process is repeated five times (see Table 6). It is worth to say 
that, the random selection was on the auxiliary variable "year", and both associated values of the indicator for 
the male and female were included if the measurement "year" is selected for inclusion in the MiniMax RSS. 
Then the weighted and un weighted averages are computed for both genders.  Noting that, in order to compute 
the weighted average, first we implemented the Kolmogrov Smirnov test on the actual data, the results 
indicated that, the population is Normal for both genders (Z=1.06, p=0.211) and (Z=1.113, p= 0.168) for male 
and female, respectively. Therefore, the weights in Table.2 are used when the population is Normal and the 
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set size is 3 in computing the weighted average (see Table 7). To measure the accuracy of the estimator, the % 
Error is used: 
 

%𝐸𝑟𝑟𝑜𝑟 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 − 𝜇

𝜇
×100 

 
Table 6: MiniMax RSS for the survival to age 65 data using m =3. 

  MiniMax RSS SRS 
Set # Sample # Male Female Male Female 

1 
1 {60.38} {66.84} 44.87 49.19 
2 {57.33, 73.93} {63.57, 79.84} 48.74 53.81 
3 {50.81, 54.04, 55.13} {56.24, 59.90, 61.12} 52.94 58.67 

2 
1 {61.39} {69.02} 54.04 59.9 
2 {45.78, 76.55} {50.29, 82.51} 55.13 61.12 
3 {69.67, 73.30, 77.0} {75.94, 79.24, 83} 56.23 62.34 

3 
1 {77.45} {83.48} 58.35 64.66 
2 {74.85, 78.13} {80.47, 84.15} 63.93 70.56 
3 {56.23, 64.69, 77.22} {62.34, 71.33, 83.24} 64.69 71.33 

4 
1 {48.74} {53.81} 70.14 76.37 
2 {46.67, 70.60} {51.39, 76.81} 71.07 77.24 
3 {72.01, 75.99, 76.77} {78.10, 81.95, 82.76} 71.54 77.67 

5 
1 {71.54} {77.67} 72.33 78.39 
2 {44.87,72.97} {49.19, 78.95} 75.16 81.11 
3 {66.21, 72.65, 78.36} {72.88, 78.67, 84.36} 77 83 

 
Table 7: Population Mean Estimation Based on Different Sampling Scheme 

 

 
The results of the MiniMax RSS scheme is more accurate in estimating the population mean than using the 
SRS of the same size. These results can be considered as an advantage of the proposed method to be a robust 
alternative to the SRS in estimating the population mean. 
 
5. CONCLUDING REMARKS 
 
A new ranked sampling scheme called MiniMax RSS is proposed in this article. There are two benefits by 
using the proposed MiniMax RSS, gain in efficiency when estimating the population mean from a given 
distribution, and reduce 50% of the number of wasted measurement units. Moreover, to improve the accuracy 
and the efficiency of the MiniMax RSS estimator a weighted mean is used. The relative efficiency results and 
the real data analysis in this article recommended of using the MiniMax RSS for estimating the population 
mean as an alternative sampling scheme. 
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