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ABSTRACT 
 General family of Stein rule estimators is considered in linear regression model. The large sample approximation of its sampling 
distribution is derived. Approximations of concentration probability of the estimators around the true value are evaluated. 
Optimal selection of the biasing scalar is discussed. 
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RESUMEN 
La familia general de los estimadores reglados de Stein es considerada en un modelo de regresión lineal. La aproximación para 
muestras grandes de su distribución muestral es derivada. Aproximaciones de la probabilidad de concentración de los 
estimadores alrededor del verdadero valor son evaluados. La selección optimal  del escalar de insesgamiento es discutido. 
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1. INTRODUCTION  
                                                                                                                                             
Stein’s counter to the well established overall dominance of the classical least squares (CLS) estimator for 
estimating the coefficient vector in a linear regression model has been a well debated matter in literature. The 
use of Stein-rule estimators in real data problems has also received considerable attention in the literature, 
e.g., Knight et al.(1992,1993,1993a), Bao and Wan(2007), Adkins(1995) and Wan et al.(2003). 
Based on Stein’s philosophy, several shrinkage estimators for the coefficient vector have been proposed in 
the literature; see, Judge et al.(1985)] for a detailed account. Most of the studies concerning these estimators 
have been done regarding the optimal choice of these characterizing scalars in order to establish their 
superiority over the classical least squares (CLS) estimators, e.g., Shalabh et al.(2009), Srivastava and 
Upadhyaya(1997),Pant and Manoj(2012) and Ullah and Ullah(1978), under the quadratic loss set up. Rao 
(1981) suggested to employ proper measure of proximity that is which is based on concentration of the 
estimate around the true unknown parameter they aim to estimate and to judge the performance of an 
estimator which is more intrinsic in nature. The two well known measures of concentration of estimators are 
Pitman Nearness and the Probability of Concentration. The Pitman Nearness criterion suffers from certain 
basic drawbacks e.g. lack of transitivity. Detail discussions on the merits of the two criterion of concentration 
see Robert et al.(1993).  
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Performance of various shrinkage estimators for the coefficient vector of the linear regression model are 
judged with the Concentration Probability criterion. For this purpose the sampling distribution of these 
estimators is required. The exact expressions for the probability density functions of these non linear 
shrinkage estimators are fairly complicated and as such it becomes difficult to evaluate the expressions for 
the probability of concentration there from. Therefore the large sample approximation for the probability 
density function of these non linear shrinkage estimators is derived and the concentration probability around 
parameter is evaluated there from. Comparisons on concentration probabilities have been done and 
dominance conditions are derived for various prominent shrinkage estimators. The plan of the paper is as 
follows. In section 2 of the paper, we describe the model and estimators, while in section 3 we present the 
large sample approximation of probability density function of the proposed general class and derived the 
large sample approximation of concentration probability of proposed general class as well as of the classical 
least square estimator. Finally, in section 4, we investigate the optimal choices for the characterizing scalars 
for the relative dominance of these estimators over each other. 
 
2.  THE MODEL AND ESTIMATORS 
 
Let us postulate a linear regression model 

uxy += β                                (2.1) 
Where y is a 1×T  vector of observations on the variable to be explained, X is a pT ×  full column rank 
matrix of observation on explanatory variables, β is a 1×p  vector of regression coefficients being 
estimated, and u is a 1×T  vector of disturbances which are assumed to be small and normally distributed 
with mean vector 0 and the variance covariance matrix as TI

2σ . 

The classical least square (CLS) estimator 0β
⌢

 which is the best linear unbiased estimator of β , is given by 

( ) yXXX ʹʹ= −1
0β̂           (2.2)                 

  with variance covariance matrix as ( ) 12 −X́Xσ . 
 Let us consider the following class of Stein-rule estimators for β . 
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which is characterized by three non-stochastic scalars K1, K2 and K3. Here 
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 is the residual sum of squares. 

The class is fairly general as it encompasses many interesting cases. For example, setting K1 = 0, we get the 

CLS estimator 0β
⌢

. On the other hand, if we set K1 >0, and K2 = K3 = 0, we obtain a class of estimators 
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which is a special case of the class of estimators considered by Srivastava and Upadhyaya(1997). 
Similarly, by setting K1>0 and K3=0 in (2.3), we get another interesting class of estimators, viz.,  
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which reduces to the well known Double K- class estimator of Ullah and Ullah(1978) if we take K1= K1
* and 

K2=1- K1
*, the properties of which were studied by Vinod(1980), Carter(1989) and Menjoge(1984). 

Another interesting possibility is when we choose K1>0 and K2=0 in (2.3), this provides the class of 
estimators as  
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An approximation to the sampling distribution of  β̂  is derived and studies its properties under the 
concentration probability criterion. The optimal choices of the characterizing scalars K1, K2 and K3 for the 
relative dominance of the constituent members of this class over each other are derived there from. 
 
3. THE LARGE SAMPLE APPROXIMATION OF PROBABILITY DISTRIBUTION    
 
Before presenting the large sample approximation of the probability distribution function of the class of 

estimator β̂ , let us introduce the following notations. Let us denote by 
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Where r  denotes the estimator in its standardized form on the basis of its leading term analysis, 
)(rξ denotes the probability density function of a standard normal vector r  in terms of  and θ    denotes the 

noncentrality parameter. 
Theorem 3.1   The large sampling approximations for the probability density function of the stochastic 

vector variable r , up to the order )( 2
3−TOp , is given by 
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The large sampling approximations for the sampling distributions of the estimators 320
ˆ,ˆ,ˆ βββ  and 

also of the least square estimator b can be obtained from (3.2) along with (3.3) by substitution of 
00,0,0 12332 ===== KandKKKK  respectively. This does not disturb the 

sampling behavior of these estimators. 
The theorem is derived in section 6. 
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4. CONCENTRATION PROBABILITY OF ESTIMATORS 
 

The concentration of an estimator β
~

 around the true unknown value β  is defined in terms of the 

probability of its concentration around β . Thus the concentration probability of estimator β
~

 in the 
neighborhood of β  is given by  

         { } { }pjmmCP jjj ,.......2,1;~Pr~Pr)~( =≤−=≤−= βββββ                        (4.1) 

Where ),......,( 21 pmmmcolm =   is an arbitrarily chosen constant vector with jth element as jm , 

and jβ
~

 and jβ     being jth elements of the estimator β
~

 and the parameter vector β  respectively. 

This gives the concentration of the estimator β
~

 in the region bounded by planes  

{ }pjmjjj ,.......2,1;~
=≤− ββ  in the p-dimensional Euclidean space. 

Let  
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Where  )(zξ  is the standard multivariate normal density of variable vector z. 
The concentration probability of least square estimator of  b  around β  can be shown as  
                   )()( mbCP φ=                                                                                                            (4.3) 

Theorem 4.1:  The large sample approximation for the concentration probability of estimator β̂  

around β  in the region ),.....2,1;( pjmr jj =≤ of the p dimensional Euclidean space, to the 

order )( 2
3−

TOp , is given by 
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Where E  is a diagonal matrix of constants with elements as ).........,( 21 peeediagE =  where   
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5. THE OPTIMAL CHOICE OF ESTIMATOR 
 
The concentration probability of estimators of least square estimator b and the general class of Stein-

rule estimator β̂  is same up to the order ).( 2
1

−
TOp  However if we go up to the order )( 2

3
−
TOp  

the difference in their concentration is given by 
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The condition will definitely hold true as long as  



 575 

             4
)(

20
max

1 −<<
E

trEK
λ

                                                                                                  (5.2) 

Assuming without loss of generality peee ≤≤≤ .........21  the sufficient condition for dominance 

of the class of shrinkage estimators β̂  over the classical least square estimator is  
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In particular if 021 ........... mmmm p ====   the condition (5.3) reduces to 

          2;)2(20 1 >−<< ppK                                                                                        (5.4) 
This matches exactly with the necessary and sufficient condition of dominance of Stein rule estimator 
over least square estimator under the predictive risk criterion. 

To explore further among the various choices of these estimators within the class of β̂ , we observe 

that the concentration of  β̂  up to order )( 2
3

−
TOp  does not involve the characterizing scalar 3K . 
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The difference will be positive if and only if  
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Sufficient condition to hold (5.6) good is 
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Which in particular case when 021 ........... mmmm p ====  reduces to  

    4;)4(0 1 >−<< ppK                                                                                              (5.8) 

For selecting the best estimator in the pair )ˆ,ˆ(
~~

30 βββ ≡ , the difference in the concentration 

probabilities of estimators 0β̂  and 3β̂  to the order )( 2−TOp  comes out to be  
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This is positive if and only if we have  
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The sufficient condition for (5.10) to hold true comes out to be 
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The necessary and sufficient condition when  021 ........... mmmm p ====  comes out to be  

          4;)4(0 1 >−<< ppK                                                                              (5.12) 

For selecting the best estimator in the pair )ˆ,ˆ(~
2βββ ≡ , the difference in the concentration 

probabilities of estimators is  
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Thus the estimator 2β̂  will have better concentration around β  than that of β  if and only if 
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The sufficient condition to hold (5.14) good is 
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For    021 ........... mmmm p ====  it reduces to 

  4;)4(0 1 >−<< ppK                                                                                     (5.16) 

Thus we summarize that if the characterizing scalar 1K  is chosen as  

)2(20 1 −<< pK with 0,0 32 >> KK  the estimator β̂  will definitely superior to the 

classical least square estimator b . Further, if 1K is chosen   )4(0 1 −<< pK the estimator 0β̂  
will give the best performance. 
 
7. PROOF OF THE RESULTS 
 
 Observing that 
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and negative suffixes in λ  denote the order of terms in probability. Thus, 
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The characteristic function of the random vector r is defined as 
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On expansion and evaluating the respective expectations the approximation for the characteristic 

function of random vector variable r, up to the order )( 2
3 j
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Employing this approximation for the characteristic function in the inversion theorem to get the large 
sample approximations for the probability density function )(rf  
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For evaluating the approximation for the concentration probability of estimator β̂  to be close to β  
we apply 
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Evaluating this multiple integral we get the result derived in the theorem. 
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