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ABSTRACT
In the optimization of mathematical models for cancer chemotherapies, the controls are given by

the drug-dosages and the objective minimizes some compromise between tumor kill and side effects.

In simple models, the dosage, concentration and effect of the drugs are identified. Here we discuss

the role of pharmacometric models which describe the links between these quantities. The choice of

the mathematical representation of the objective also has an effect on the solutions of the problem.

Both of these aspects will be discussed.
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RESUMEN
Los modelos de optimización son útiles para determinar las dosis en los tratamientos de cáncer

mediante quimioterapias. Considerando como sontroles estas dosis, el objetivo es minimizar un

compromiso entre la eliminación del tumor y los efectos secundarios. En el caso más simple se iden-

tifican la dosis, la concentracón y el efecto. En este trabajo discutimos sobre el papel de los modelos

farmacométricos que describen las relaciones entre estas cantidades y como afecta el resultado la

representación matemática de la función objetivo.

PALABRAS CLAVE: control optimal, quimioterapia para el cáncer, farmacometŕıa, funciones

objetivo lineales (L1) y cuadráticas (L2).

1. INTRODUCTION

Optimal control for mathematical models for chemotherapy has a long history dating back to the 1970s

and 1980s and the fundamental work by Eisen [4], Swierniak and Kimmel [7, 26] and Swan [28, 29],

continuing throughout the 1990s (e.g., see the monograph by Martin and Teo [16] or [27]), revitalizing

in the 2000s when novel approaches to cancer therapy such as angiogenic treatments (e.g., [11]) or

immunotherapies (e.g., [19]) became available, and continuing strongly into the present time (e.g., see
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[23] and the many references therein). During these years, tremendous progress has been made in

medicine in understanding cancer which indeed has led to numerous significant novel approaches in-

cluding anti-angiogenic treatment, cancer viruses, and, currently at the forefront of medical research,

immuno-therapies. While these developments are reflected in the fact that increasingly more sophis-

ticated mathematical models are formulated and analyzed (e.g., [3, 14]), one of the most important

and basic underlying questions—how should drug doses be scheduled in time in order to achieve a

in a certain way ‘best’ outcome—still in many cases remains unanswered. For mathematical models,

optimal control theory addresses this topic.

Already in the formulation of the dynamics, a reasonable compromise will need to be made between

medical accuracy and mathematical tractability of the model. While ever increasing medical knowledge

makes it tempting to try and formulate mathematical models that so-to-speak incorporate all biological

facts, the reality is that such models have an unsurmountable number of parameters that simply cannot

be established. From this point of view, it is therefore preferable to formulate minimally parameterised

models which also have the advantage of allowing some analytical mathematical methods to be used.

These are the type of models we are discussing in our paper, but without considering one particular

model of which many are available in the literature (e.g., see [23]).

In this paper, we want to focus on another crucial aspect in the optimization of mathematical models

for cancer therapies: the formulation of the objective. While it is commonly agreed upon that the

objective needs to strike a balance between tumor kill which one wants to maximize (and this generally

correlates with increased drug dosages) and limiting side effects (and this generally correlates with

limiting these drug dosages), there exist many and often non-equivalent ways to translate this into

a mathematical objective. In our opinion, it is quintessential that any such formulation reasonably

accurately reflects the underlying aim, i.e., measuring tumor size and side-effects. As such, it needs

to be tied in with the total use of drugs and the properties these drugs have. Pharmacometrics is a

rather novel term in the pharmacological industry which tries to quantify both the pharmacokinetics

(PK) and pharmacodynamics (PD) of the drugs (see Fig. 1). Pharmacokinetic models describe the

relations between the drug dosage, u, and the drug’s concentration in the blood stream, c, (“what the

body does to the drug”) while pharmacodynamic models describe the actual effects that the drug has

on the disease (“what the drug does to the body”). One underlying question of interest in our research

is whether, and if so, to what extent, the mathematical models used in the modeling determine the

structure of optimal controls.

Our topic in this paper is a discussion of the effects which the choice of the objective functional and

the pharmacometric models have on the structure of optimal controls. In Section 2 we briefly describe

different formulations for the pharmacometric models in the dynamics depending on the time horizon

to be modelled and then, in Section 3, we discuss the effects which the choice of an appropriate

objective functional to be minimized has on the structure of optimal controls. We also give examples

that illustrate the changes and similarities that arise from different such modeling approaches.
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Figure 1: Pharmacometrics: PK and PD.

2. MATHEMATICAL MODELS FOR PHARMACOMETRICS

As a general rule, the pharmacokinetics of drugs are well-understood. As a matter of fact, no drug

would be allowed on the market without a very good understanding of its pharmacokinetics and its side

effects. Typically, low-dimensional, linear differential equations with a small number of compartments

(typically ranging from 1 to 3) are sufficient to provide an adequate modeling [6]. If u denotes the

drug’s dose rate and c its concentration in the bloodstream, a 1-compartment model for PK is simply

given by exponential increase and decay of the form

ċ = −γc+ u, c(0) = 0, (2.1)

with γ the clearance rate of the drug related to the half-life of the agent. A 2-compartment model

distinguishes between the concentrations c1 of the agent in a central compartment (blood) and c2 in

a peripheral compartment (organ) and is modelled by a linear system ċ(t) = Ac(t) + bu(t) of the form

ċ(t) =

(
−γ − α β

α −β

)
c+

(
b1

b2

)
u(t) (2.2)

where γ again denotes the clearance rate, α and β are positive rates that describe the interactions

between the two compartments, and the coefficients bi (bi ≥ 0, b1 + b2 = 1) describe the relative influx

of the drug into the compartments. Note that both eigenvalues of the matrix A are negative reals and

the general solution thus has the form

c1(t) = ae−λ1t + be−λ2t (2.3)

with 0 < λ1 < λ2 the negatives of the eigenvalues. Higher dimensional models for PK are rare, but are

used, for example, in insulin pumps. In this paper, for simplicity we only consider a 1-compartment

model.
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Figure 2: Mathematical models for pharmacodynamics.

The pharmacodynamics of drugs, on the other hand, is a much more intricate and less understood

subject. Pharmacodynamic models are generally described by functional relations of the form s(c)x

where x represents a compartment of cells on which the drugs are acting (e.g., tumor cells, vascu-

lature, immune system, healthy cells, etc.) and the coefficient s(c) models the effect of the drug at

concentration c (see Fig. 2). Over a limited range of concentrations (not too low and, particularly,

not too high), linear models are adequate. These are based on the log-kill hypothesis [25] and take

the simple form

s1(c) = Gc (2.4)

with G a positive constant. However, drug effects saturate with increasing concentrations and also

require some minimum concentration levels to be effective at all. In the pharmaceutical industry these

aspects are typically modelled by Hill-type functions. Michaelis-Menten type relations of the form

s2(c) = Emax
c

UC50 + c
(2.5)

with Emax denoting the maximum effect the drug can have and UC50 the concentration at which

half of this effect is realized, called the Emax model in pharmacology, are commonly used to model

saturating effects at higher concentrations while sigmoidal functions of the form

s3(c) = Emax
cn

UC50 + cn
(2.6)

with exponents n > 1 also model the ineffectiveness of drugs at low concentrations [15, 21]. Naturally,

these equations can be linearized over certain ranges giving back the model s1, but the resulting slopes

(i.e., the coefficients G to be used) will be very different if one linearizes around a point on the upper

end of the Hill curve or say the point UC50. This may significantly alter the structure of solutions

[10, 23].

The time horizon plays an important role in considering which of these models should be taken. If the

therapy horizon is large, e.g., several months or even years, then there is no need to include a model

for the PK of a drug as these processes act on a much faster time scale, e.g., minutes compared with

days, hours compared with months. In such a case, it suffices to identify the drug’s dose rate with

its concentrations, c = u, and simply consider the dynamics by itself. If we denote the state of the

system by an n-dimensional vector x which represents cell numbers in various compartments (e.g.,
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tumor, vasculature, healthy cells etc.) and consider a chemotherapy model with one drug whose dose

rate/concentration is denoted by u, then the dynamics just takes the form

ẋ = f(x) + s(u)g(x), x(0) = x0, (2.7)

with s(u) denoting one of the PD models above. As it is natural that saturation effects will take

place over extended time periods, here the Emax model s2 is the most likely candidate, but the

sigmoidal model s3 also is reasonable since such prolonged time periods necessarily need to include

drug holidays when the concentrations will be very low. For a short time period (e.g., lab experiments

or when controlling insulin levels in a patient) the PK time scale will be relevant and in such a case

PK models need to be included. If we incorporate the 1-compartment model for PK into equation

(2.7), then the system takes the following form:

ẋ = f(x) + s(c)g(x), x(0) = x0, (2.8)

ċ = −γc+ u, c(0) = 0. (2.9)

We note that the dynamics in the latter case is linear in the control while it is the PD model s which

determines such properties in the first case.

3. LINEAR (L1) VERSUS QUADRATIC (L2) OBJECTIVE FORMULATIONS IN

THE CONTROL

Given a mathematical model for the evolution of cancer cells under drug treatment such as (2.7)

or (2.8)-(2.9), the problem of cancer chemotherapy can then be formulated as the optimal control

problem to minimize some criterion J = J(u) which is imposed on this dynamics. If we allow in

principle arbitrary treatment schedules with a limited dose rate, 0 ≤ u ≤ umax, the problem can

formally be stated as follows:

[OC] Among all Lebesgue measurable functions u : [0, T ] → [0, umax] defined over an interval [0, T ],

find a control u(·) (representing the dosage of the drug) which minimizes the objective J = J(u),

subject to the dynamics (2.7), respectively (2.8)-(2.9), and possible constraints.

While the main aim naturally is to kill cancer cells, side effects cannot be neglected and must be

taken into account in the modeling. This can either be done directly by imposing constraints or

indirectly by including terms in the objective that limit the total amount of drugs given. In the direct

approach, it is assumed that the amount of drugs to be given, A, has been determined a priori (with

the understanding that it was predetermined by medical professionals that this is a safe amount) and

then the question becomes how to schedule these drugs (e.g., [5, 11]). In such a case, side effects are

incorporated as an isoperimetric constraint,∫ T

0

u(t)dt ≤ A, (3.1)

and the terminal time can be fixed (if a specific therapy horizon is considered) or free (if the problem

simply becomes how to best use the specified amount of drugs). By varying the value A, the solutions
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allow to assess the effects of the total dosages. In the indirect approach (e.g., [8, 9, 16, 28]), such

considerations are incorporated by including a measure related to the amount of drugs given into the

objective as one of the aspects to be minimized. Commonly used formulations are of the form

J1 = rx(T ) +

∫ T

0

qx(t) + pu(t)dt→ min (3.2)

or

J2 = rx(T ) +

∫ T

0

qx(t) + pu2(t)dt→ min (3.3)

with the difference in the formulations lying in how the control is measured. The penalty term

rx(T ) =
∑n
i=1 rixi(T ) represents a weighted average of the number of cells in various compartments

(e.g., cells in different phases of the cell cycle, cells with different resistance properties with respect

to the drug, etc.) at the end of treatment and the integral term over qx =
∑n
i=1 qixi represents a

weighted average of the number of cells in these compartments during treatment. We highlight some

of the pitfalls that should be avoided in the formulation of the objective:

• The term
∫ T
0
qx(t)dt is included to prevent that the tumor grows to unacceptably high levels

during treatment. If the emphasis in the objective is solely put on the number of cancer cells

at the end of therapy, generally optimal controls postpone giving drugs and excessively high

intermediate tumor volumes may become an unintended and unacceptable consequence of the

choice of the objective.

• The formulation of the objectives (3.2) and (3.3) attempts to make a reasonable compromise

between minimizing the tumor kill and restricting the side effects of treatment which are mea-

sured indirectly through the integral of the control. Obviously, the weights p, q and r determine

the optimal solutions. If the weight s on the drug is too small, optimal solutions will simply give

drugs all the time at full dose; if the weights are too high, no drugs will be given. It clearly is

necessary to calibrate the weights to obtain meaningful results. For example, if we take q small

relative to r, then the emphasis is all on the terminal condition and this may (and indeed again

will) lead to unacceptable behaviors during the therapy interval. Thus, a biologically meaningful

calibration of these weights always needs to be undertaken.

• The main difference in these two approaches lies in how the side effects are measured by the

integrals on the controls. While the integral
∫ T
0
u(t)dt has clear pharmacological meaning, the

integral
∫ T
0
u2(t)dt does not and distorts such interpretations.

Before describing the mathematical differences between these two approaches, in Fig. 3 we compare

two examples of optimal solutions. These solutions are for a mathematical model for a cell-cycle

specific 3-compartment model of cancer chemotherapy when both a cytotoxic (killing) agent u and a

cytostatic (blocking) agent v are administered [9, 23]. The maximum dose rate for the cytotoxic agent

is normalized to 95% and the maximum blocking capability of the cytostatic agent is set to 30%. The

figure shows that controls for the L2-type objective are continuous, more in line with an interpretation

of the controls as concentrations, while controls for the L2-type objective are discontinuous (bang-

bang) in line with an interpretation of the controls as dose rates. There is a significant difference in
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Figure 3: Locally optimal controls (with the cytotoxic agent u shown in red and the cytostatic agent

v shown in blue) for the objectives J1 (left) and J2 (right) [23]

the administration schedules for the cytotoxic agent: the L2-type objective has a built in bias towards

lower doses and the optimal control is at maximum dose for just over 4 days and then gradually

decays to a small dose at the end of the fixed therapy horizon (3 weeks); the L1-type objective does

not have an a priori built in bias towards specific doses and here the optimal control is of the MTD

(maximum tolerated dose) type with upfront dosing and the maximum dose session lasting for about

11 days. In the control literature, such piecewise constant controls are called bang-bang controls and

for medical problem formulations they play a major role corresponding to the standard MTD protocols

with rest-periods. We only remark that such controls, which actually are the most commonly used

protocols in medical practice, are automatically eliminated if an L2-type modeling is done. On the

other hand, with an L1-type objective, they can be confirmed or rejected as the optimal ones through

an analysis of the problem. While there are significant differences in the administration schedule for

the cytotoxic agent, the schedules for the cytostatic agents are very similar and clearly the optimal L2

control mimics the optimal L1 control modulo the switchings which cannot be optimal for a quadratic

objective. The reason for this behavior lies in the generally much shorter times that cells spend in the

synthesis phase of the cell-cycle where the cytostatic agent is active.

The popularity of using a quadratic objective in the control has its origin in the necessary conditions for

optimality given by the Pontryagin Maximum Principle [20]. One essential aspect of these conditions

is the minimization of the Hamiltonian H of the optimal control problem over the control set [0, umax].

For a general optimal control problem with Lagrangian L and dynamics f , the Hamiltonian takes the

form

H = λ0L(x, u) + λf(x, u) (3.4)

where λ0 is a constant multiplier associated with the objective J and λ is a time-varying multiplier

associated with the dynamics. It is one of the conditions of the maximum principle that if (x∗, u∗)

is an optimal controlled trajectory, then for almost every time t ∈ [0, T ] the optimal control u∗(t)

minimizes the Hamiltonian H pointwise over the control set,

H(λ0, λ(t), x∗(t), u∗(t)) = min
0≤u≤umax

H(λ0, λ(t), x∗(t), u). (3.5)

9



The formulation with J2 is favored in many papers for the simple reason that it offers significant

mathematical advantages. In this case, the Hamiltonian H of the optimal control problem becomes

quadratic in the control which makes this minimization an easy problem to solve. However, solving

(3.5) for the control only defines u∗ as a function of the state x and the multiplier λ, not as a feedback

function of the state. Thus, even if this simpler approach is taken, it is not clear a priori that the

computed control will be optimal, even locally, as this function still needs to be projected into the

state space. Here overlaps (conjugate points) may occur in which case the extremal is not optimal.

This is a highly non-trivial aspect and we refer to our paper [24] where second-order conditions to

prove the optimality of such extremals have been developed. These have been applied to a class of

problems modeling cell-cycle specific cancer chemotherapies like the example given in Fig. 3 to verify

the local optimality of the computed extremals.

On the other hand, for the formulation with J1, and also assuming that the dynamics is linear in u,

the Hamiltonian takes the form

H(λ0, λ(t), x∗(t), u) = Ψ(t) + Φ(t)u (3.6)

and here a degenerate case arises when the function

Φ(t) =
∂H

∂u
(λ0, λ(t), x∗(t), u∗(t)) (3.7)

multiplying the control, called the switching function, vanishes. For such times the minimization

condition (3.5) gives no information about the optimal control. Indeed, it is possible that Φ(t) van-

ishes over a non-empty interval I giving rise to so-called singular controls. These are computed by

successively differentiating Φ(t) along the dynamics until the control u explicitly appears and then

solving the resulting equation for the control. It follows from Lie-algebraic properties that the control

can only appear for the first time in en even derivative, say of order 2k, and then it is a higher-order

necessary condition for optimality, the Legendre-Clebsch condition, that the following condition be

satisfied:

(−1)k
∂

∂u

d2k

dt2k
∂H

∂u
(λ0, λ(t), x∗(t), u∗(t)) ≥ 0. (3.8)

Rather than being an aberration, these often are the determining structures in optimal solutions [11].

Unfortunately, establishing the optimality of singular controls and their corresponding trajectories

requires a delicate mathematical analysis. In addition, no good numerical procedures exist that would

be able to locate these structures which often are only supported on lower-dimensional submanifolds in

the state-space [11]. In a nut-shell, the mathematical problem with a linear L1-type objective leads to

a mathematically much more difficult problem to analyze than the problem when a quadratic L2-type

objective is chosen.

Mathematical simplicity, and the wide availability of standard numerical algorithms, are the sole

reason for selecting a quadratic function of the control in the objective. In our opinion, there does not

exist a single valid reason for justifying such a choice from a modeling perspective. By squaring the

dosage, values which are higher than 1 are penalized excessively while values below 1 are favored. For

example, as seen in Fig. 3, lower doses are favored simply because of the choice of the objective, not

because they may inherently be the better choice. This actually is an important aspect of metronomic
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chemotherapies, but no such claim is justified based on solutions of optimal control problems with

L2-type objectives. More importantly, there is no relation between the integral∫ T

0

u(t)2dt (3.9)

and the total drug dosage (3.1). Thus, no matter how generic an argument about “systemic cost” is

made, integrals of the type (3.9) do not represent pharmacologically relevant or meaningful parameters.

On the other hand, the integrals∫ T

0

u(t)dt, respectively

∫ T

0

c(t)dt, (3.10)

have immediate pharmacological meaning and are the AUC (area under the curve) that are used to

measure the efficacy of drugs.

4. MATHEMATICAL MODELS WITH EMAX PD

An important aspect of the overall modeling is that it is not necessary to revert to an arbitrary

formulation of the objective using quadratic terms to harvest the advantages that convexity/concavity

properties bring to the system. If we consider a mathematical model without PK and employ the

saturating Emax-model for PD, also normalizing the control in terms of UC50, i.e., setting UC50 = 1,

then the Hamiltonian of the problem takes the form

H(λ, x, u) = λ0 (pu+ qx) + 〈λ, f(x)〉+
u

1 + u
〈λ, g(x)〉 (4.1)

which, depending on the sign of λ(t) is either convex or concave in the control leading to similar

simple solutions for minimizing the Hamiltonian over the control set as when quadratic control terms

are used. In fact, for this model we have the following result:

Theorem 4.1. [13] Let u∗ be an optimal control with corresponding trajectory x∗ and let λ be an

adjoint vector such that the conditions of the maximum principle are satisfied. Then u∗ satisfies the

following conditions:

u∗(t) =



umax if 〈λ(t), g(x∗(t))〉 ≤ −p(umax + 1)2,

√
− 〈λ(t),g(x∗(t))〉

p − 1 if − p(umax + 1)2 ≤ 〈λ(t), g(x∗(t))〉 ≤ −p,

0 if − p ≤ 〈λ(t), g(x∗(t))〉.

(4.2)

In particular, optimal controls are continuous.

For this situation, all the benefits that a quadratic term in the control brings to the optimization are

provided by the concavity properties of the Emax model for PD. The controls here are continuous in line

with an interpretation of the controls as concentrations while if a linear log-kill model is used, controls

are discontinuous in line with dose rates. Figure 4 shows two optimal solutions for a mathematical

model for anti-angiogenic therapy that shows these features [11, 12].

11



control corresponding trajectory

0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70

time

o
p
ti

m
a
l 

c
o
n

tr
o

l 
u

full dose

no dose

partial dose - singular

2000 4000 6000 8000 10000 12000 14000 16000
0.7

0.8

0.9

1

1.1

1.2

1.3
x 10

4

carrying capacity, q
tu

m
o

r 
v
o

lu
m

e
, 

p

𝑠1 𝑢 = 𝐺𝑢

Log-kill model

Emax model

𝑠2 𝑢 = 𝐸𝑚𝑎𝑥
𝑢

𝑈𝐶50 + 𝑢
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5. CONCLUSION

Two aspects of optimizing cancer therapies, the choice of the objective and the incorporation of phar-

macometric models, have interesting connections. In the choice of the objective, biological relevance

and interpretation, not mathematical simplicity should be the most important and driving aspect.

This favors the approach of choosing an L1-type objective which leads to a more complicated mathe-

matical structure, but not to unsurmountable difficulties. On the other hand, choosing an L2-type

objective simplifies the mathematical analysis as it induces convexity properties in the control on the

Hamiltonian, but it distorts the biological meaning. In this paper, we point out that similar con-

vexity properties can be achieved by incorporating the Emax model for PD without losing any of the

biological realism. This proposed modeling thus has the double benefits of making the model more

realistic and of allowing to pursue mathematically simpler arguments without using the biologically

unjustified or even erroneous L2 approach.
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[22] H. SCHÄTTLER & U. LEDZEWICZ (2012): Geometric Optimal Control, Interdisciplinary

Applied Mathematics, vol. 38, Springer.

14
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