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ABSTRACT 
This paper presents an adaptation of the Reinforcement Learning approach known as Q-Learning to solve a scheduling problem 
that comes from industry. The problem studied in this paper is known as the Hybrid-Flexible Flow Shop Scheduling where a 
variety of constraints are taken into account. These include precedence constraints, sequence dependent setup times (which can 
be anticipatory and non-anticipatory) along with machine lags, machine eligibility and release times. This problem mixes the 
features of regular Flow Shop and parallel machine problems by considering stages with several unrelated parallel machines, 
where stage skipping might occur, i.e., not all stages must be visited by all the jobs. This version has been proved strongly NP-
hard and the objective is to determine a schedule that minimizes the maximum completion time (makespan or  𝐶!"#). The 
effectiveness of the proposed algorithm is empirically evaluated through several standard benchmarks problems and the 
solutions are compared against other high performing existing algorithm. The results shown that the proposed algorithm is very 
competitive for the studied problem.   
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RESUMEN 
El artículo presenta la adaptación de un enfoque del Aprendizaje Reforzado nombrado Q-Learning para la solución de un 
problema de la práctica industrial. El problema tratado se conoce como Variante de Flujo Regular Híbrido-Flexible en el cual se 
tiene en consideración un conjunto de restricciones presentes en entornos reales de la producción. Este incluye restricciones de 
precedencia entre trabajos, tiempos de configuración dependientes de la secuencia los cuales pueden ser anticipativos o no, 
máquinas elegibles y tiempos de liberación. Este problema es una generalización de la Variante de Flujo Regular donde se 
consideran varias etapas con máquinas no relacionadas en paralelo en el que pudiera ocurrir que un trabajo salte una o varias de 
ellas. Este problema es NP-Hard y el objetivo es determinar una secuencia de trabajos que minimice el tiempo total de 
procesamiento. En la presente investigación se evalúa la efectividad del algoritmo propuesto a través de un conjunto de 
instancias problemas de este tipo y las soluciones son comparadas con las obtenidas por otro algoritmo de alto rendimiento 
propuesto por la literatura especializada. Los resultados obtenidos muestran que el algoritmo propuesto alcanza soluciones de 
buena calidad mostrando ser altamente competitivo.  
 
PALABRAS CLAVE: Hibrido-flexible , tienda de flujo, makespan; optimización; scheduling, q-learning. 
 

1. INTRODUCTION 
 
Scheduling is an attractive and one of the most important decision making process in the operation of 
manufacturing systems. It is not only a theoretical field of study but also an interesting field of application in 
industry and in many other real-world situations [13]. Basically, manufacturing scheduling decides the 
sequence of jobs and the allocation of resources. As manufacturing systems become more complex, 
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conventional methods for scheduling become ineffective both in terms of computational time and resources. 
Many authors have recognized a gap between the literature and the industrial problems [30, 23, 36, 3]. Most 
of the researches concentrate on optimization problems that are actually a very simplified version of reality. 
This allows the use of sophisticated approaches which guarantee, in many cases, optimal solutions. What the 
industry needs are systems for optimized production scheduling that adjust exactly to the conditions in the 
production plant and that generates good solutions in very little time. 
In this paper, we focus on manufacturing scheduling where all jobs share the same route, specifically the 
Hybrid-Flexible Flow Shop Scheduling (HFFS) which has been extensively studied due to its application in 
industry. A series of restrictions are considered that include the possibility to skip stages, non-eligible 
machines, precedence constraints, positive and negative time lags and sequence dependent setup times. 
Briefly, this paper studies a very realistic production scheduling problem. The objective is to determine a 
production schedule for all products to be completed in a minimum time (i.e., minimize the makespan). 
A Multi-Agent Reinforcement Learning Approach (MARLA) is presented for the described problem with the 
purpose of obtaining good solutions to the problem in more general cases. In order to evaluate the 
performance of the proposed algorithm, test cases of the specialized literature are used and the results 
obtained are compared with the reported optimal results by a Learning Automata Approach. The obtained 
results endorse the use of this proposed method.  
This paper is organized as follows. A literature review about scheduling is given in the next section, and the 
HFFS is introduced in detail in section 3. Section 4 introduces general ideas when solving HFFS problems 
using RL. Then, the adaptation of a MARLA is proposed in section 5, and the results of the computational 
experiments are presented in section 6. Section 7 presents an analysis of the obtained results. The final section 
is devoted to conclusions with the future research directions.  

2. RELATED WORK 

Although scheduling problems have been widely studied in literature, most of the studies are concentrated on 
basic scheduling problems like the single machine, the parallel machines, or the permutation flow shop 
problem. Unfortunately, they only represent a simplified version of most production environments.  
As previously stated, the problem considered is a HFFS with a set of real-world constraints, which has 
attracted considerable attention in recent years. It has been solved using different exact and heuristic 
techniques as a solution methodology [21, 30, 25]. However, because the NP-Completeness of the problem, 
metaheuristics tested through simulations studies have been more popular [2, 1, 5, 39].  
Since Johnson's pioneering work [12] on the two-machine regular permutation flow shop, a large number of 
studies have been published about scheduling. The problem considered in this paper has four main 
characteristics that are jointly considered: flow-line environment, where all the jobs are processed in the same 
order; hybrid setting, where each stage has parallel machines; flexibility, where stages might be skipped; and 
a set of real-world constraints. In literature, it is possible to find reviews of each one of these four 
characteristics [17, 30, 27, 31, 24].  
The first reviews about the HFFS appeared in 1999 by Linn and Zhang [17], this work concludes that there is 
a gap between theory and practice and that there is a need of future research in this direction. After this, more 
recent researches concentrated on the HFFS problem with real-world constraints due to the importance of the 
manufacturing production process. In that direction, many approaches have been used to solve this problem.   
A case study on the manufacture of a printed circuit board for communication equipment was presented by 
Alisantoso et al. [2]. The authors illustrated the feasibility of using a Genetic Algorithm (GA) to deal with the 
break-downs of the machines. The approach incorporates an accelerating mechanism as well as a restraining 
mechanism to assist the search for a near optimal solution.  
Bertel and Billaut [4] proposed a linear programming formulation, heuristic algorithms based on priority 
dispatching rules, with new dispatching rules and a GA for an industrial multiprocessor HFFS problem with 
recirculation. In order to evaluate these heuristics, experiences on instances like industrial ones are computed. 
The proposed approaches are compared and the GA shows the best efficiency.   
Ruiz and Maroto [28] propose the adaptation of a GA, which performed well in regular flowshops in an 
earlier study presented in Ruiz et al. [29], to a much more realistic version of the problem with sequence 
dependent setup times, unrelated parallel machines at each production stage, and machine eligibility. Such a 
problem is common in the production of textiles and ceramic tiles. After this, in 2008, Ruiz et al. [30] 
presented a Mixed Integer Programming Mathematical Model (MIP) and some heuristics for the HFFS. In 
this problem several realistic characteristics are jointly considered. The proposed approaches are tested 
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against a comprehensive benchmark. This paper contributes to recent research efforts to bridge the gap 
between the theory and the practice of scheduling.   
Jungwattanakit et al. [14] have considered a HFFS problem with unrelated machines in each stage and 
sequence dependent setup times for minimizing a convex combination of makespan and the number of tardy 
jobs. The authors proposed a MIP, a GA, a Tabu Search (TS) and a Simulated Annealing (SA) approach. The 
performance of the heuristics is compared using a set of test problems. They found that among the 
constructive algorithms, the insertion-based approach is superior to the others, whereas the proposed SA 
algorithms are better than TS and GA among the iterative metaheuristic algorithms.     
Naderi et al. [22] study a hybrid flexible flow shop with respect to sequence dependent setups. They propose a 
dynamic dispatching rule and an iterated local search algorithm. The new algorithms are evaluated by 
comparison against seven other high performing algorithms from the literature. Statistical experiments show 
that the proposed algorithms are very competitive for the studied problem. 
Vallada et al. [37] developed two versions of GAs which include a limited local search procedure for the 
parallel machine scheduling problem with sequence dependent setup times with the objective to minimize the 
makespan. The authors also formulated a MIP model for the same problem. From the results, the authors 
concluded that both versions of the proposed genetic algorithm obtain the best results.  
In 2012, Gicquel et al [10] proposed an exact solution approach for a real-world scheduling problem arising 
from a bioprocess industry. The authors proposed a mixed-integer linear programming formulation based on a 
discrete time representation. The obtained results shows that the proposed method provides good feasible 
solutions with a reasonable computation effort. 
Kianfar et al. [16] proposed two methods to achieve near optimal solutions to the HFFS in a dynamical 
environment. The first method is a Dispatching Rule combined with neighborhood search techniques. The 
second approach is a Hybrid Genetic Algorithm (HGA). The results of simulating different scenarios indicate 
that scheduling methods proposed in this paper have a significant impact on the shop performance and 
provide better performance under all of shop conditions. 
Wang and Liu in [39] studied the two-stage no-wait HFFS with a single machine on the first stage and 
multiple parallel identical machines on the second stage to minimize makespan. The authors proposed a GA 
that is tested under a four combination of parameters (combinations of different crossover and mutation 
operators). The results with different problem configurations demonstrated the effectiveness and efficiency of 
the proposed genetic algorithm. The results showed that the four genetic algorithms can reach the solutions 
with less than 5% mean percentage deviation for most cases.  
A HFFS with assembly operations is studied by Fattahi et al. in [6]. The authors proposed a hierarchical 
Branch and Bound (B&B) algorithm that were extended in order to schedule the parts and assign them to 
machines in each stage of the HFFS. Some experiments are used to demonstrate the performance of the 
proposed algorithm.  

3. PROBLEM DESCRIPTION 

The HFFS problem consists of performing a set of 𝑛 jobs 𝐽 = (𝐽!, 𝐽!,…, 𝐽!) on a set of stages                  𝑀 =
1, 2,… ,𝑚 , where each stage 𝑖 contains a set of unrelated parallel machines 𝑀! = (1, 2,… ,𝑚!). Flexible 

means that each job 𝑗 ∈ 𝑁 visits a subset 𝐹!  ⊆ 𝑀 of the stages and skips the remaining ones. The processing 
time of job 𝑗 on machine 𝑙 at stage 𝑖 is given by  𝑝!"#. Each machine can only process one job at a time and 
each job 𝑖 can only be processed on one machine at any time. Furthermore, in this paper, a number of 
additional real-world constrains are take into account. These constraints are studied by Ruiz et al. in [30]: 

• Precedence constraints: enforce that a job 𝑗 cannot be processed before all predecessors  𝑃!  have been completely finished. 
• Set of eligible machines (𝐸!"): only some machines of  𝑀!  can process job 𝑗 at stage 𝑖.              1 ≤ 𝐸!" ≥  𝑚!  if job 𝑗 is 
processed at stage 𝑖 and 𝐸!" = 0 if job 𝑗 skip stage 𝑖. 
• Machines are not necessarily available from time zero, but have individual release dates. These release dates prohibit a 
machine 𝑙 within stage 𝑖 to process any job before its release date (𝑟𝑚!"). 
• Between two consecutive jobs 𝑗 and 𝑘 on machine 𝑙 at stage 𝑖, a setup time 𝑠!"#$  needs to be taken into account. The time 
depends on the machine and on both jobs (hence called sequence dependent setup time). This setup can be either anticipatory or not, 
depending on the binary parameter 𝐴!"#$ . In the case of an anticipatory setup, the setup can be performed directly when the previous job is 
completed at the current machine. In the contrary case, when setup is not anticipatory, setup can only be done when the job has arrived at 
the current machine. 
• The time lag for job 𝑗 between stage 𝑖 and the next visited stage, is given by 𝑙𝑎𝑔!"# , where 𝑙 represents the machine job 𝑗 is 
assigned to at stage 𝑖. This lag could be negative (overlap) or positive (waiting time). 
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The objective considered in this paper is to have all jobs completed as early as possible i.e., to minimize the 
maximum completion time or makespan. It is the most generic objective, and it does not depend on the data 
on due dates. Makespan is mainly production oriented, assuring efficiency by giving priority to compact 
schedules. Other objectives, such as tardiness, are not considered here. Therefore, makespan   can formally be 
described as  𝐶!"# = 𝑚𝑎𝑥!∈!,!∈!𝐶!", where 𝐶!" denotes the completion time of job 𝑗 at stage 𝑖 [35]. 

Using the three field notation by Vignier et al. [38] and using some extensions of our own, we can define this 
HFFS problem as: 

𝐻𝐹𝐹𝑆, 𝑅𝑀 !
!!!
!

|𝑀! , 𝑟𝑚, 𝑝𝑟𝑒𝑐, 𝑆!"# ,𝐴!"#$ ,𝑃! ,𝐸!" , 𝑙𝑎𝑔| 𝐶!"#	
The HFFS is more complex than other flowshops. Due the possibility of skipping stages, the machine 
eligibility and precedence constraints among jobs, the number of feasible solutions depends on the instance 
and might be smaller. However, many simplification of the proposed problem are proved as NP-Hard [11, 26, 
32, 7]. The case of Permutational Flow Shop Scheduling, which is the simplest case of scheduling problem is 
NP-Hard [9, 19, 8]. Therefore,	we can conclude that the considered HFFS problem is also NP-Hard. 

3. REINFORCEMENT LEARNING FOR THE HFFS  

Reinforcement learning (RL), as noted in [15], dates back to the early days of cybernetics and work in 
statistics, psychology, neuroscience and computer science. During the last decades it also attracted increasing 
interest from the machine learning and artificial intelligence communities. 
RL is learning what to do (how to map situations to actions) so as to maximize a numerical reward signal. The 
learner is not told which actions to take, as in most forms of machine learning, but instead must discover 
which actions yield the highest reward by trying them. In the most interesting and challenging cases, actions 
may affect not only the immediate reward but also the next situation and, through that, all subsequent 
rewards. These two characteristics, trial-and-error search and delayed reward, are the two most important 
distinguishing features of RL [33].  
In the standard RL model, an agent is connected to its environment via perception and action, as depicted in 
Figure 1. In each interaction step, the agent perceives the current state 𝑠 of its environment, and then selects 
an action 𝑎 to change this state. This transition generates a reinforcement signal 𝑟, which is received by the 
agent. The task of the agent is to learn a policy for choosing actions in each state to receive the maximal long-
run cumulative reward. Reinforcement Learning methods explore the environment over time to come up with 
a desired policy [42]. 

                                   
Figure 1. The standard reinforcement learning model 

Formally, the basic reinforcement learning model consists of:  
• a set of environment states S;  
• a set of actions A;  
• a set of scalar "rewards" in ℝ.  
• a transition function T.  
RL provides a flexible approach to the design of intelligent agents in situations for which, for example, 
planning and supervised learning are impractical. RL can be applied to problems for which significant domain 
knowledge is either unavailable or costly to obtain [20]. 
After presenting the basic idea of RL, we present the main concepts that have to be taken into account when 
solving a scheduling problem using RL. Figure 2 shows an initial idea of the learning environment. Following 
the standard model presented in Figure 1, this is how we map agents and actions in the environment when 
solving a scheduling problem. The scheduling environment defines the number of agents in the system and 
the relations among them. Agents may not know the global state of the system. To achieve better performance 
of agents or the system, agents communicate with each other to determine their actions based on the limited 
information.    
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Figure 2. Agents in a scheduling environment 

HFFS problems are well suited to be modeled using the idea shown in Figure 2 because the following 
information is always available at the beginning of the scheduling process: 
• Number of machines. 
• Number of jobs. 
• Processing order of the operations belonging to the different jobs (ordering constraints). 
• Processing time of each operation. 
The idea presented previously can easily be adapted to the case of HFFS when there are unrelated parallel 
machines per stages that can execute the same type of task. We analyzed two possibilities in order to adapt the 
algorithm: 

• Queues associated to individual machines, which means that there is one agent per resource, as was the case in the basic 
approach, and each of these agents will have a queue associated (see Figure 3). The difference is given by the fact that when one 
operation is fully executed on a machine, the next operation of the corresponding job has to be released for execution, i.e. it should be 
assigned to a specific agent, meaning that there is an extra decision to take, which was not the case in the previous approach.  
• Having 𝑚 stages of 𝑘 machines, the queues can be considered to be associated to stages instead of being associated to a single 
resource. For example, if an operation needs to be processed by a machine of stage 3, then it is placed on the queue of the stage 3 (see 
Figure 4). 
•  

 
Figure 3. Queue per agent, and one agent per resource 
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Figure 4. Queue per stage, agent per stage 

 

After analyzing both points of view, we decided to keep the second one, having a queue per stage, as it fits 
better in the idea depicted in Figure 1.  
The main characteristics that have to be considered when modeling the HFFS are adapted and will be 
summarized in the next section. 

4. THE PROPOSED APPROACH 

Various RL strategies have been proposed that can be used by agents to develop a policy for maximizing the 
rewards accumulated over time. One of the early breakthroughs in RL was the development of an algorithm 
known as Q-Learning (QL), which was proposed by Watkins in [40]. The goal of this algorithm is to learn the 
state-action pair 𝑄 𝑠, 𝑎 , which represents the long-term expected reward for each pair of state and action 
(denoted by 𝑠 and 𝑎, respectively), defined by: 

𝑄(𝑠, 𝑎)  ←  𝑄(𝑠, 𝑎)  +  𝛼 [𝑟 +  𝛾 𝑚𝑎𝑥!´ 𝑄(𝑠’, 𝑎’) –  𝑄(𝑠, 𝑎))] 
In this expression 𝛼 ∈ [0, 1] is the learning rate and 𝑟 the reward or penalty resulting from taking action 𝛼 in 
state 𝑠. The learning rate 𝛼 determines ‘the degree’ by which the old value is updated. For example, if the 
learning rate 𝛼 = 0, then nothing is updated at all. If, on the other hand, 𝛼 = 1, then the old value is replaced 
by the new estimate. The discount factor (parameter 𝛾) has range value of 0 to 1 (0 ≤  𝛾 ≤  1). 
If γ is closer to zero, the agent will tend to consider only immediate reward. If it is closer to one, the agent 
will consider future reward to be more important. 
QL has the advantage that is proven to converge to the optimal policy in Markov Decision Processes (MDP) 
under some restrictions [41, 34]. The optimal state-action values for a system represent the optimal policy that 
the agent intends to learn.  The standard procedure of the QL algorithm is analyzed in the Algorithm 1.  

Algorithm 1. Q-Learning Algorithm 
1       Initialize 𝑄-values arbitrarily 
2       for each episode do 
3             Initialize 𝑠 
4             for each episode step do 
5                    Choose 𝑎 from 𝑠 using policy derived from Q(e.g., 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 
6                    Take action 𝑎, observe state 𝑠′ and 𝑟 
7                    Update Q-value,  𝑄(𝑠, 𝑎)  ←  𝑄(𝑠, 𝑎)  +  𝛼 [𝑟 +  𝛾 𝑚𝑎𝑥!´ 𝑄(𝑠’, 𝑎’) –  𝑄(𝑠, 𝑎))] 
8                       𝑠 ←  𝑠′ 
9            end for 
10       end for 

 
Each iteration of steps 2–10 represents a learning cycle, also called an ‘‘episode’’. Each episode is equivalent 
to one training session. In each training session, the agent explores the environment and gets the rewards until 
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it reaches to goal state. The purpose of the training is to enhance the knowledge of the agent represented by 
the Q-values. More training will give better values that can be used by the agent to move in more optimal 
way. The ε-greedy action selection method instructs the agent to follow the current policy 𝜋 most of the time, 
but sometimes, to choose an action at random (with equal probability for each possible action 𝑎 in the current 
state 𝑠). The probability ε determines when to choose a random action; this allows some balance between 
exploration and exploitation. 

4.1. Applying ql to solve the HFFS 

In the real production environment, scheduling problems can be seen critical activities that have repercussions 
in the efficiency and the effectivity of the manufacturing process. The HFFS consists of set of jobs that flow 
through a number of production stages. At each of the stages, one of the machines belonging to the stage is 
visited. A series of restrictions that include the possibility to skip stages, non-eligible machines, precedence 
constraints, positive and negative time lags and sequence dependent setup times, are considered.  
When QL is applied to solve the HFFS, we use one agent per stage (see Figure 4). These agents select the 
actions they must execute. While an agent is executing an operation, the next agents, which represent the next 
stages, wait for that operation to finish. For example, if we have three jobs and two stages, the agent 
associated to the second stage must wait until the first agent executes all the jobs. 
There are important elements to be decided, which are summarized as follow:  

States and Actions: There is an agent associated with each stage, and this agent will make decisions about 
future actions. For an agent to take an action means that it must decide which is going to be the next job to be 
processed from the set of possible jobs (these are the ones waiting in the queue of the agent of the 
corresponding stage), and decide which of the 𝑘 machines in this stage processes the job (taking into account 
the relationships of precedence, if they exist). When dealing with this problem as an MDP, each agent has 
access to the information associated with its stage (quantity and availability of the machines) and the 
operations that are waiting to be processed as well as those that have already been executed. Each agent 
selects the next operation to be processed using a policy π and decides which machine in the stage will 
process it by choosing a machine in such a way that the value of makespan is minimal. 
Rewards: In the case of the HFFS, the state is represented by the sequence that each agent has been building. 
An action is then to insert a new job in the sequence that has been built by each agent in each of the stages. 
Then, considering that the goal is to minimize the makespan, the reward is defined as:  𝑟 = 1/𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛.  
Q-values: For each of the 𝑚 stages (number of agents) there are at most 𝑛 possible jobs to process, then to 
store the q-values, a matrix with 𝑛 rows and 𝑚 columns is built, where each agent can only modify the row 𝑘, 
which represents the number of machines present in that stage. As jobs can skip stages, and in fact, it may be 
the case that only visit one of them, the makespan will be determined by the greater of the partial values 
obtained in each stage. 
Algorithm 2 shows the general workflow of the QL algorithm for the HFFS with the goal of minimizing the 
makespan. 

Algorithm 2. Applying QL to solve the HFFS 

input: HFFS instance, number of episodes, learning rate 𝛼, discount factor 𝛾, value of 𝜀 
output: jobs sequence of minimal makespan  𝑆 
1       Initialize: Q-values arbitrarily 
2       𝑄 𝑠, 𝑎  ⟵ [][] 
3        𝑆⟵ [][] 
4       foreach episode do 
5             Initialize 𝑠 ⟵ [][] 
6             while  (existJobsNoProcessed())                         
7               foreach agent IN Agents do                       
8                   while (existPendentOperations())     
9                          Choose 𝑎 from 𝑠 using policy derived from Q(e.g., 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦) 
10                          Take action 𝑎, observe state 𝑠′ and 𝑟 
11                          Update Q-value,  𝑄(𝑠, 𝑎)  ←  𝑄(𝑠, 𝑎)  +  𝛼 [𝑟 +  𝛾 𝑚𝑎𝑥!´ 𝑄(𝑠’, 𝑎’) –  𝑄(𝑠, 𝑎))] 
12                          s ← s' 
13                      end while 
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14                end foreach 
15           end while 
16           if  makespan(s)< makespan(S)  then  
17                 𝑆 ← 𝑠  
18   end foreach 

 

5. COMPUTATIONAL EVALUATION 

In this section, a presentation and thorough analysis of the results acquired on the Ruiz et al.2[30] small 
benchmark suite are provided. In this case, the authors subdivide the instances according to the number of 
jobs, specifically 5, 7, 9, 11, 13, 15, 50 and 100. For each subset, there are 96 instances with other specific 
restrictions (e.g. precedence constraints or not, skipping stages or not, etc.). The main restrictions considered 
in these instances can be analyzed in [30]. 
The solution quality is mainly measured in terms of the relative increase in makespan with respect to the best 
known solutions. Also, the performance of the proposed algorithm is compared with the results reported by a 
method based in Learning Automata (AL) proposed by Bert et al. in [3].    

5.1. Calibration 

Typically, optimization algorithms are measured using two criteria: accuracy (i.e., solution quality) and speed. 
In our implementation, a total of five parameters are required to set up the proposed algorithm: number of 
episodes, learning rate 𝛼, discount factor 𝛾, action selection mechanism (𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 in our case) and the 
maximum computational time allowed 𝑡!"#. 
In this section we study the behavior of the proposed approach using different combinations of parameters. 
All the different combinations of the aforementioned parameters can be seen as alternative QL algorithm. In 
order to calibrate the algorithm some initial experiments were performed to analyze the learning process 
under the effect of different parameters values. Typical combinations for the QL algorithm are the following 
[18]: 

• C1: episodes =  𝑛 ∗𝑚, 𝛼 = 0.1, 𝛾 = 0.8, 𝜀 = 0.2 
• C2: episodes =  𝑛 ∗𝑚, 𝛼 = 0.1, 𝛾 = 0.9, 𝜀 = 0.1 
• C3: episodes =  𝑛 ∗𝑚, 𝛼 = 0.1, 𝛾 = 0.8, 𝜀 = 0.1 
• C4: episodes =  𝑛 ∗𝑚, 𝛼 = 0.1, 𝛾 = 0.9, 𝜀 = 0.2 
The algorithm is tested using all these combinations, with the mentioned set of HFFS instances randomly 
selected. This set comprises 60 instances (10 per subset of 5, 7, 9, 11, 13 and 15 jobs). We executed 10 runs 
every instance.  
Also, the stopping criterion used is the CPU time limit (𝑡!"#) fixed to 𝑛 ·  (𝑚/10)  seconds. This stopping 
criterion gives more time when the number of jobs or machines increases. All the experiments were carried 
out on a Pentium IV CPU (running at 2.4 GHz) and 2 GB of RAM.  
The response variable of the experiment is then calculated with the following expression: 
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑅𝑃𝐷 =  
𝑀𝐾! − 𝑈𝐵!

𝑈𝐵!
∗ 100 /10

!"

!!!

 

 
where 𝑀𝐾 is the solution obtained by the proposed algorithm on a given instance out of the 60 and 𝑈𝐵 is the 
lower bound for the HFFS reported in [30] for that specific instance. 
Table 1 shows the QL performance under the mentioned parameters combinations to the selected problem. 
 

Table 1. Q-Learning Performance under four parameters combinations. 
   RPD (%)     

Combination/Instances set 5 7 9 11 13 15 AVERAGE 

C1 0.0332 1.4522 1.9003 1.4718 3.6932 7.7761 2.0409 

																																																													
2	Available at http://soa.iti.es/problem-instances	
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C2 0.0297 1.4211 1.9221 1.4611 3.6813 7.7463 2.0327 
C3 0.0351 1.4902 1.9332 1.4642 3.6799 7.7564 2.0449 
C4 0.0312 1.4413 1.9320 1.4673 3.6825 7.7861 2.0426 

 
After executing the experiments, as shown in Table 1, C2 is identified as best combination among the four, 
reporting the lowest value of RPD (this value is colored in the table with light gray). However, we also 
performed a nonparametric test to determine and verify the best combination using the results from these 
executions. Then, we applied the Friedman test to determine if there are significant differences and a Holm’s 
test to do a multiple comparison. The results obtained show that C2 is the best combination. In this case, we 
decided to keep the second combination for all the experiments:  episodes = 𝑛 ∗𝑚, 𝛼 = 0.1, 𝛾 = 0.9, 𝜀 = 0.1. 

5.2. Computational results 

For the evaluation, we use the benchmark set previously mentioned, proposed in  Ruiz et al. [30]. Taking into 
account that set of instances has 96 problems, we have 576 instances. In order to compare the results obtained, 
the RPD is calculated using C2 for each instance. 
Table 2 summarize the results using the following structure. Each columns represents an instance sets, 
according to the number of jobs. The top row shows the mean relative deviations (in percentages) w.r.t. the 
best known values. Next, the best relative deviations for each set are given (also in percentages). Negative 
values are improvements over the best known results. The three bottom rows denote the number of instances 
where we got improvements, the same, and worse results w.r.t. best known values. 
 

Table 2. Summary of the results 
Instances set 5 7 9 11 13 15 Total 

RPD (%) 0.0304 1.4279 1.9537 1.4688 3.6823 7.7560 2.7199 
Best RPD (%) -35.70 -24.71 -20.29 -20.00 -40.16 -15.05 -40.16 

instances improved 11 13 12 6 6 4 52 
instances  equal 73 46 18 26 15 13 191 
instances worst 12 37 66 64 75 79 333 

In order to compare the performance of the proposed approach, we selected the LA algorithm proposed by 
Bert et al. [3]. It is important to mention that the authors report the results for the instances of 5, 7, 9, 11, 13 
and 15 set of jobs respectively. In these case, the RPD is calculated.  
Tables 3 and 4 show these results. Table 5 shows a summary of the comparison of the proposed method (QL-
HFFS) and the LA algorithm. 
 

Table 3. Comparison of QL-HFFS with LA on 5, 7 and 9 jobs Ruiz et al. [30] instances. 

 
 
 
 
 
 
 
 

Table 4. Comparison of QL-HFFS with LA on 11, 12 and 15 jobs Ruiz et al. [30] instances. 

 

Instances set 
5  7  9 
LA QL-HFFS  LA QL-HFFS  LA QL-HFFS 

RPD (%) 0.0697 0.0304  2.0131 1.4279  1.1568 1.9537 
Best RPD (%) -35.70 -35.70  -24.71 -24.71  -26.92 -20.29 
instances improved 11 11  12 13  18 12 
instances  equal 62 73  40 46  19 18 
instances worst 23 12  44 37  59 66 

Instances set 
11  13  15 
LA QL-HFFS  LA QL-HFFS  LA QL-HFFS 

RPD (%) 1.6565 1.4688  3.7294 3.7181  7.9189 7.7994 
Best RPD (%) -21.10 -20.00  -43.34 -40.16  -10.46 -15.05 
instances improved 12 6  9 6  6 4 
instances  equal 18 26  8 15  7 13 
instances worst 66 64  79 75  82 79 
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Table 5. Summary of the results obtained by the algorithms QL-HFFS and the LA. 

 
Total 

 
LA QL-HFFS 

RPD (%) 2.7484 2.7199 
Best RPD (%) -40.34 -40.16 
instances improved 68 52 
instances  equal 155 191 
instances worst 353 333 

 
6. DISCUSSION 

Based on the results from Table 2 we can see that the proposed algorithm is able to obtain good results. For 
the 576 instances, the proposed algorithm obtained 194 sequences of jobs with the optimal makespan, 
representing the 33.68%; 51 sequences where the optimal was improved (8.85%) and 333 (57.81%) instances 
where the makespan was worst. Figure 5 shows the Gantt diagram of a solution found for an instance of 13 
jobs, 2-stages and 3-machines per stage, where the best known value (976) is improved (580). The average of 
RPD was 2.7199%.  
One may expect that results will be worse as the number of jobs increases, but this is evidently not the case in 
the set of instances with 11 jobs that yield better results than the ones with 9 jobs. The main cause of these 
results are the additional real-world restrictions (e.g. precedence constraints, skipping stages, machine 
eligibility and others).  
Analyzing the results of Table 3 and 4, we can see that the proposed algorithm, except for 9-jobs instances, 
reached better results than LA method. In these case, the RPD of QL-HFFS was slightly less than LA. The 
best values of RPD are colored in the tables with dark gray. 

                 
Figure 5. Sequence obtained for the instance of 13 jobs “Ism_13_2_3_1-200_50_50_75-125_50-

100_-99-99_1-3_3” where 𝐶!"# = 580. 
As seen in Table 5, QL-HFFS and LA perform very well in Ruiz et al. instances without important differences 
between them. Specifically, QL-HFFS has the lowest RPD from the best-known. This methods reached 16 
improved instances less than LA algorithm, however, our approach found 39 optimum values more than LA. 
The difference of instances worst is 23 pro QL-HFFS.   

 
7. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented a Reinforcement Learning Approach known as Q-Learning to solve a scheduling 
problem that comes from industry, with the objective of minimizing the makespan. The algorithm was 
calibrated by means of extensive experiments using a comprehensive set of 576 HFFS benchmark problems. 
The performance of this method was evaluated comparatively with an algorithm based on Learning Automata. 
The obtained computational results for the HFFS problems are very promising and we can conclude that the 
proposed method constitutes an interesting alternative to solve complex scheduling problems. In this sense, 
the experimental results indicated that the proposed QL-HFFS outperformed the LA in almost all the test 
problems. We want to highlight that the proposed algorithm is simple and easy to implement. 



	
	

110	

We are currently working on installing this algorithm in a company responsible for the production 
of spare pieces for industrial machines, specifically in the repair shop ‘Manual Fajardo’, located in 
Granma, a province at the east of Cuba, which is responsible for the manufacturing (and repairing) 
of several pieces of equipment that are used by the different machines involved in the sugar 
production process. On the other hand, we are considering other constraints such as transportation 
times, production priorities and machines breakdown with the objective of apply the proposed 
method to instances of greater complexity. These extensions will contribute to close the existing 
gap between the theory of scheduling and its applications in real industrial settings. 
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