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ABSTRACT 
Nowadays we deal with Big-Data commonly. The users of statistics rely on having a large sample size n for using the statistical 
methods based on normality. Usual inference methods are typically based on considering the Normal as the limit distributions of 
the sample mean for a large n. With large enough sample sizes (> 30 or 40), the violation of the normality assumption should not 
cause major problems. This fact implies that we can use parametric procedures even when the data are not normally distributed. 
Al least a goodness-of-fit test must be performed for accepting whether normality is valid or not. 
Monte Carlo (MC) techniques are used for selecting independent random samples of populations of means of three variables of 
importance in web network management. Different tests are performed to establish the acceptance of the normality.  We did not 
find reliable results even for samples of size 10 000. 
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RESUMEN 
Nowadays we deal with Big-Data commonly. The users of statistics rely on having a large sample size n for using the statistical 
methods based on normality. Usual inference methods are typically based on considering the Normal as the limit distributions of 
the sample mean for a large n. With large enough sample sizes (> 30 or 40), the violation of the normality assumption should not 
cause major problems. This fact implies that we can use parametric procedures even when the data are not normally distributed. 
Al least a goodness-of-fit test must be performed for accepting whether normality is valid or not. 
Monte Carlo (MC) techniques are used for selecting independent random samples of populations of means of three variables of 
importance in web network management. Different tests are performed to establish the acceptance of the normality.  We did not 
find reliable results even for samples of size 10 000. 
 
PALABRAS CLAVE: grandes masas de datos, pruebas de normalidad, normalidad asintótica de medias 

 
1. INTRODUCTION 

Nowadays we deal with Big-Data commonly. The users of statistics rely on having a large sample size n for 
using the statistical methods based on normality. Fixing an   appropriate   sample size generally   depends 
upon   the size of   the  population studied. The usual idea is that collecting more  data  is  better. It is 
supported by the idea that the statistical   power is improved by   increasing the sample size. To think in the 
power of computer for dealing with Big Data is a simplicity as dealing with an indefinitely large data is not 
intelligent as any research must consider the consumption of time and which is the point in which   it   
becomes unproductive. 
To establish the distribution of the variable of interest is one of the main issues in statistics as inferences  are 
concerned with the validity of  distributional assumptions. 
 We try to give evidence on the fact that is not so simple to confide in having a large n.  Some theoretical 
research on the probabilistic model generating the data is needed. Actually is popular considering that having 
Big-Data and a Large-Computing power is enough for disregarding the analysis of the mathematical models. 
That attitude is foolish but is becoming a commonly supported by the increase of the brute force of computers 
capacity and speed. Take this paper as a counter example that having a large sample size normality is to be 
accepted without hesitation. 
There are a lot of methods  to test the goodness-of fit and  some are more well-known and included in 
softwares . See the issues on SAS in Elliott-Woodward (2007) and Field (2009).  
Pearson was the first one considering the problem of goodness of fit, see Pearson (1931). Its test statistic was 
a good approximation to the Maximum Likelihood one developed later. The use of the empirical distribution 
in goodness of fit tests was developed in the by Cramer (1928), von Mises (1931) and Kolmogorov (1933). 
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For testing normality some particular test was developed since the sixties, see Henry (2000) and D’agostino-
Stephens (1986) for a large discussion. A more recent approach are tests that use methods coming from the 
theory of entropy.  
Usual inference methods are typically based on considering the Normal as the limit distributions of the 
sample mean for a large n. With large enough sample sizes (> 30 or 40), the violation of the normality 
assumption should not cause major problems. This fact implies that we can use parametric procedures even 
when the data are not normally distributed. Asymptotic approximations are  thumb rules. That n>30 is enough 
may be unreliable in most cases, and also  even for larger values of n. In this paper we evaluate the behavior 
of goodness of fit tests for deciding if normality is to be accepted, as an adequate model, for the distribution 
of the sample mean.  This fact has been analyzed in many papers . see for example Aishah  (2011), Oztuna D, 
Elhan AH, Tuccar E. (2006), Royston P. (1991), Royston (1991), Steinskog (2007): 
The goodness-of-fit tests are grouped considering their nature.  Large sample sizes are taken for real life data 
coming from the evaluation of variables measuring the use of internet facilities in a network. Monte Carlo 
(MC) techniques are used for selecting independent random samples for the means of three variables of 
importance in web network management. The percent of acceptance of the normality is measured and 
compared qi with the expected 95%. In contrast with conventional wisdom of accepting that the mean 
distribution is described by a Gaussian, it seems to be not acceptable. We did not find reliable results even for 
samples of size 10 000. 
Therefore, drawing inference on the means using normal theory is doubtfully universally correct. That poses a 
questioning of the solution of many statistical problems due to the question of how large n should be 
accepting limit theorems. The unquestioned question How  large  should  t h e  sample  be for accepting that 
the Central Limit Theorem holds?  Gay-Diehl   (1992)  recommended that the statistician should  answer 
Large  enough . More practical is to say take as large as possible 
In section 2 the tests a to be compared are presented. Section 3 is concerned with the presentation of the data 
base used for the study and the estimation of the level of significance. 
 
2. GOODNESS OF FIT TESTS FOR NORMALITY 
 
The normal distribution is among the most useful distributions in statistical applications. Accordingly, testing 
for normality is of fundamental importance in many fields. Commonly the practitioners accept that the 
distribution of the sample mean is approximately normal, due to considering as an axiom the validity of the 
Central Limit Theorem. See for example Thode (2002). Commonly the experimenter considers that in 
experimental   research n>30 is large enough, saying that samples sizes   larger  than   30  ensure  the  
researcher  that the Central   Limit   Theorem  holds. Some conservative researchers insist that  a≤n≤1000, 
a∈[50,  100], see Alreck-Settle (1995) . Among others Micceri (1989), Oztuna et al. (2006)  pointed out how 
unfaithful is this theorem. 
The normal probability density function (pdf) of  a continuous cumulative probability distribution function F0 

is expressed by  f! x = !
! !"  

exp − !
!

!!!
!

!
 .  Statistical tests should be used for establishing if is valid the 

asseveration on the normality of a variable X.  
Consider that we have  a random sample of size n:  X!,… , X!. The order statistics of the sample are denoted 

by X(!),… , X ! , Z ! =
! ! !!

(!!!!)!
!
!!!

!!!
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!
!!!
!
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!!!
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These statistics are used by the tests described in the sequel. We are distinguishing some groups of normality 
tests: 
We consider as classic tests those commonly appearing in text books and implemented in different softwares. 
 
D ´Agostino tests (developed by D ‘Agostino and followers)  
Order statistic based tests (tests using explicit functions of order statistics) 
Tests based on Entropy (using ideas coming from the theory of Entropy for developing test statistics).  
A goodness-of-fit test (based on sample entropy) for normality was given by Vasicek. The test, however, can 
be applied only to the composite hypotheses. In this article an extended test of fit for normality is introduced 
based on. Kullback-Leibler information.  
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Other tests (tests not classifiable in one of the previous classes) 
 
2.1. Classic tests 
 
Karl Pearson was the first statistician who recognized in a paper published in 1900, the need of examining 
whether the observed data support  the validity of considering that a certain pdf generates them. His paper 
introducing chi-squared test is one of the pillars of twentieth century statistics. He called it chi-square 
goodness of-fit test. 
Afterwards of the most popular goodness of fit for normality were developed. Some of them are given in the 
sequel. We consider them as classical. These tests support the rejection of the null hypotheses when the 
corresponding test statistic is too large. The more popularly ones are presented in statistical courses are: 
Chi squared, Pearson (1900) 
Pearson's paper of 1900 introduced what subsequently became known as the chi-squared test. The set of n  

observation is divided into K = min m ∈ Z m ≥ 2n
!
!  disjoint classes and is computed 

U =
O! − E!" !

E!"
,    

!

!!!

 

O! = number of observed variables falling in  the ith class, 
E0i=Expected number of observations falling in the  ith class calculated using F0. 

The classes are constructed in such a  way that ∀i = 1,… ,K, P X ∈ C! = P.  
Large values of U supports that normality is not to be accepted. 
A series tests are based on the empirical distribution. Some of them are: 
 Cramer-von Mises (1928, 1931) 
They proposed using  the test statistic  

CM =
1
12n

+ F! Z ! −
2i − 1
2n

!!

!!!

 

Kolmogorov-Smirnov (1933) 
They used the empirical distributing function evaluated in order statics. The test statistic proposed is 

KS = max max!!!!!
j
n
− F!(Z(!)) ,m ax!!!!! F! Z(!) −

j − 1
n

 

Lilliefors (1967) provided tables for testing whether KS is too large for accepting the normality of the 
variable.  Applying this test copes with the difficulty of unknowing the parameters values and that it power is 
low. 
See detailed discussion on this test in Steinskog D. J. (2007): 
Anderson-Darling (1954) 
They derived the statistics 

AD = n −
1
n

(2i − 1) log (F! Z ! ) + log (1 − F! Z !!!!! )
!

!!!

 

Watson (1961) 
A function of CM was constructed by him. It is 

A = CM ! − n F! Z ! −
1
2

!!

!!!

 

2.2. D ‘Agostino tests 
 
A family of tests is defined by the principles fixed in the theory of goodness of fit based on the proposals of D 
‘Agostino in a series of paper. Examples are the papers of DOORNIK-Hansen (1994). Some of the most 
popular are given below 
 
D ‘Agostino (1970) 
The first proposed was denominated omnibus test which  uses  

D! =
i − n + 12 X(!)!

!!!

n
!
!S

 



	 115	

To reject normality is to be decided if this test statistic is considered whether  extremely large or too small.  
 
D ‘Agostino-Pearson (1973) 
It considered the use of the sample  kurtosis and/or  skewness.  Normality is,as with D1,  also rejected if is 
extremely large or small the test statistic 

b! =
(X! − X)!!

!!!

n
(X! − X)!!

!!!

n

!!!
 

And/or 

 b! =
(X! − X)!!

!!!

n
(X! − X)!!

!!!

n

!!

 

Agostino- et al (1990)  
This D ´Agostino´s family test is based on a transformation of the kurtosis and the skewness.   
Take 

c! =

6
(n! − n + 2) 6(n + 3)(n + 5)
(n + 7)(n + 9) n(n − 2)(n − 3)

 if t = 1

6 +
8

2 + 4 + c!!
  if t = 2

b! − 3
n − 1
n + 1 (n + 1)!(n + 3)(n + 5)

24n n − 2 n − 3
  if t = 3

b! n + 1 n + 3

6 n − 2  
  if t = 4

3 n! + 27n − 70 n + 1 n + 3
n − 2 n + 5 n + 7 n + 9

  if t = 5

2c! − 1 − 1  if t = 6

2
c! − 1

 if t = 7

(n + 5)(n + 7) n − 2 n! + 27n − 70 + b! (n − 7) n! + 2n − 5
6(n − 3)(n + 1)( n! + 15n − 4

  if t = 8

 

 
The normality is rejected for large values of 

D! = Z b!
!
+ Z b!

!
 

 
Where 

Z b! = l
!"# !!

!!
! !!

!!

!
!!

!"# !!
, Z b! = 3 1 − !

!!!
−

!! !
!!

!!!!
!

!!!!

! !!
!

 

 
Doornik-Hansen (1994) 
They developed a transformation of D ‘Agostino’s statistic given by 

D! = Z b!
!
− DH! 

Where  

DH = 3
b! − 1 − b!

2c!
2h

!
− 1 +

1
9

2c! 

h =
(n + 5)(n + 7)(n! + 37n! + 11n − 313)

12N − 3)(n + 1)(n! + 15n − 4)
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The normality is not accepted for large values of  D!. 
 
2.3. Tests using order statistic 
 
Order statistics are among the most important functions of a set of random variables that we study in 
probability and statistics. There is a well-developed theory of the order statistics of a fixed number n of 
observations from a fixed distribution, as also an asymptotic theory where n goes to infinity. Test of normality 
based on them have been developed. We will present some of them in this section 
Denote the inverse of the standard normal distribution M(!) = ϕ!! m(!) .  
We do not accept normality if is obtained a large value of the statistic described below. 
 
De Wet-Venter (1972) 

W =
X(!) − X − 𝜙!!

i
n + 1

!
!
!!!

S!
 

 
Pettit (1977) 

P =
ϕ

X(!) − X
S − i

n + 1

ϕ ϕ!! i
n + 1

!

!

!!!

 

 
 
Del Barrio et al (1999) 

B = 1 −
X(!) F!!! t dt

!
!
!!!
!

!
!!!

!

m!
 

Small values of the test static yields rejecting the normality in the following functions of order statistic. 
 
Shapiro-Wilks (1962) 
Take 

E
X(!)
⋮

X(!)
=

m(!)
⋮

m(!)

= m,V
X(!)
⋮

X(!)
= V!×! and a(!),… , a(!)

!
= !!!!×!!!

!!!!×!! !!×!!! !
 

The statistic for developing the normality test is  

SW =
a(!!!!! X(!!!!!) − X(!)

!
!
!!!

!

X(!) − X
!!

!!!

 

Shapiro-Francia (1972) 

In this case  is to be determined b(!),… , b(!)
!
= !!

!!!
. The test statistic to be use in the inferences is given 

by 

SF =
b(!) X(!)!

!!!

!

X(!) − X
!!

!!!

 

 
Filliben (1975) 
Taking 
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m(!) =

1 − 0,5!  if i = 1
0,5!  if i = n

i − 0,3175
n + 0,365

 otherwise

 

The test statistic is 

F =
X(!)M(!)

!
!!!

S M(!)
! n − 1!

!!!

 

 
Chen-Shapiro (1995) 

SC = !
!!! !

!(!!!)!!(!)
!!! !!!!!,!"#

!!!,!" !!!! !!!,!"#
!!!,!"

!!!
!!! , 

2.4. Tests based on Entropy. 
 
The entropy  of  a  random  variable  was  introduced  in the seminal paper of  Shannon(1948).It   measures  
information  and uncertainty. Entropy is fundamental in  information  theory, communication, pattern 
recognition, statistical physics  etc.  See Choi (2008), Abbasnejad  (2011), Abbasnejad et al.(2012), Alizadeh-
Arghami (2012, 2013)  for recent contributions in the theme. The sample entropy, the estimate of the entropy 
per observation, is commonly attributed to  introduced by Vasicek (1976),  but Dimitriev-Tarasenko (1973) 
were the first ones in introducing the use entropy for goodness of fit. The normality is rejected for small 
values of the following tests statistics 
 
Dimitriev-Tarasenko (1973) 
The test is based on the use of the Gaussian kernel based estimator of the density function  

f X! =
1

1,06n
!
! 2S!π

exp −
1
2

X! − X!

1,065n
!
!S

!

 

For testing is used 
 

V!" =
exp HDT!"

S
,HDT!" = − ln f x

!

!!
f x dx 

 
Vasicek (1976) 
He suggested a statistic which used order statistics, within an entropy functional. It is necessary that thm e  
positive integer satisfies the inequality  m<n/2 

V! =
exp HV!"

S
,HV!" = ln

n
2m

X(!!!) − X(!!!) , i =
1 when i < 1
n when i > n
i in other case

!

!!!

 

Van Es (1992) 
The proposal was using 

V!" =
exp HES!"

S
 

where 

 HES!" = ln m − ln n + 1 +
1

n −m
ln

n + 1
m

X(!!!) − X(!) +
1
k

!

!!!

,
!!!

!!!

 

 
Ebrahimi-Plufhoeft-Soofi (1994)  
There test  is derived from  a transformation of  V! .  Taking 
  c! = 1 − !!!

!
I !,! i + 2I !!!,!!! i + 1 + !!!

!
I !!!!!,! i  

The test is performed using the statistic 

EPS! =
exp HE!"

S
,HE!" =

1
n

ln
n
c!m

X(!!!) − X(!!!) , i =
1 when i < 1
n when i > n
i in other case

!

!!!
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Correa (1995) 
The test is obtained by using  

V! =
exp HC!"

S
,  

Were defined  

HC!" = −
1
n

ln
!!!
!!!!! X ! − X ! (j − i))

n !!!
!!!!! X ! − X !

! ,
!

!!!

 

and 
 

X ! =
1

2m + 1
 
!!!

!!!!!

X !  

Opposite to the decision rule of the previous tests, the non-parametric versions derived from the previous tests 
statistics,  large values of the statistics indicates that normality must be rejected. 
 
 Park (2003) 
Take  ξ! =

!
!"

x(!!!!!)!"!!
!!!  and again  

 HV!" = ln !
!"

X(!!!) − X(!!!) , i =
1 when i < 1
n when i > n
i in other case

!
!!!  

The proposed test statistic is  

V!" = log 2π
g!!

!!! x − 1n g!!
!!! x

n − 1

!
!

+ 0,5 − HV!",  

where 

g! x =

0 if x < ξ!
2m

n X(!!!) − X(!!!)
 if  ξ! <  x < ξ!!! 

0 if x > ξ!!!

 

 It is a non-parametric alternative for V!. 
The non-parametric version of EPS!)  is derived taking 
  c! = 1 − !!!

!
I !,! i + 2I !!!,!!! i + 1 + !!!

!
I !!!!!,! i  

The test is performed using 

EPS!" = log 2π
g!!

!!! x − 1n g!!
!!! x

n − 1

!
!

+ 0,5 − HE!",

HE!" = ln
n
c!m

X(!!!) − X(!!!) , i =
1 when i < 1
n when i > n
i in other case

!

!!!

 

 
where 

g! x =

0 if x < η!
2m

n η !!! − η !!!
 if η! <  x < η!!! ,        

0 if x > η!!!
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η! =

η!!! −
1

m + k − 1
X !!! − X ! ,

!

!!!

1 ≤ i ≤ m

1
2m

x(!!!!!)

!"!!

!!!

 if m + 1 ≤ i ≤ n −m + 1 

η!!!!! +
1

m + k − 1
X ! − X !!!!! ,

!

!!!!!!!

n −m + 2 ≤ i ≤ n + 1

 

 
Alizadeh-Nougal-Argami (2013) developed another non-parametric test derived from V!. Their test  statistic 
is 
 
Alizadeh-Nougal-Argami (2013) 

ANA!" = log 2π
g!!

!!! x − 1n g!!
!!! x

n − 1

!
!

+ 0,5 − HA!",  

HA!" = ln
n
a!m

X(!!!) − X(!!!) , i =
1 when i < 1
n when i > n
i in other case

!

!!!

 

 

g! x =

0 if x < η!
1

n η !!! − η !!!
 if η! <  x < η!!! ,        

0 if x > η!!!

 

η! =

η!!! −
1
m

X !!! − X ! ,
!

!!!

1 ≤ i ≤ m

1
2m

x(!!!!!)

!"!!

!!!

 if m + 1 ≤ i ≤ n −m + 1 

η!!!!! −
1
m +

X ! − X !!!!! ,
!

!!!!!!!

n −m + 2 ≤ i ≤ n + 1

 

 
2.5. Other tests 
 
Some tests suggest that normality is not to be accepted for large values of the statistics.  We present some of 
them in the sequel. 
 
Jacques-Bera (1980, 1987) 
It is based on a function of the sample coefficients of skewness and kurtosis. Their proposal is using 

JB =
nb!
6
+
n(b! − 3)!

24
  

Its robustification was derived by Gel-Gastwirht (2008) yielding 

JBG =
n
6

m!

S!"#!

!

+
n
64

m!

S!"#! − 3
!

 

 
Martínez-Iglewicz (1981) 
It is based in the behavior of the observation with respect to their median. Take 

Z! =
X! − X
9M

 if 
X! − X
9M

< 1,   M = Median Z!,… , Z!  

0 otherwise
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S! = n
!! !!

X! − X
!
(1 − Z!!)!

!! !!
1 − 5Z!!

!
(1 − Z!!)

! 

The proposed test statistic is 

MI =
!
!!! X! −M !

(n − 1)S!
 

Epps-Pulley (1983) 
They used a function of the difference among the observations. Their proposal was using  

EP =
1
3
+
1
n!

!

!!!

exp −
X! − X!

!

2m!

!

!!!

−
2

n
exp −

X! − X
!

4m!

!

!!!

 

 
Gel-Miao-Gastwirht (2007) 
They simply considered a simple relation between dispersion measures. The tests static is given by 

GMG =
S
S!"#

 

 
Bonett-Seier (2002) 
The absolute mean deviation is considered in its relation with the centered moment of order 2. A function of 
them is 

BS = 13,29 ln m! − log
1
n

X! − X
!

!!!

− 3
n + 2
3,54

 

The normality is not accepted if BS is whether to large or too small. 
Commonly tables were developed for testing the significance of the goodness of fit tests. They are given in 
the referred papers. Some of them appear in specialized publications. The most popular appear in statistical 
softwares and the outputs provide also the p-value. 
 
3. MONTE CARLO STUDY 
 
Frequently more investigations are based on electronic inquires and is assumed that the sample size is to be 
large. The usually asked  questioning of  what  size the sample  should be  used? is not made.  It   is a  
question   pertinent   to  all investigations,  but awkwardness  arise in internet   based  electronic  surveys. 
 
We consider the fact that human interactions in the use of a network server.  Due to the large quantity of data, 
web studies belong to the class of Big-Data problems.  Web log data suggest using a series of measures for 
the evaluation of web´s performance. We decided studying   

Y! =
number of new connections
number of disconnections

 in second t 
Z! = percent of active nodes in the network in second t 

W! =
number of user sessions

number of URL appearing in the processed log
 in second t 

In a year the data amounts 31´536.000 inputs of each variable.  A very large sample was selected using simple 
random sampling and X=Y, Z, W were calculated. the respective sample means 
X were computed for each sample. We took n=1.000, 10.000 and 100.000.  
Monte Carlo experiments are commonly used for evaluating the behavior of goodness so fit tests. Ee for 
example Esteban et al. (2001). We performed Monte Carlo experiments for repeating the process of selecting 
independent sample for each n and the normality evaluated with each test described above with α=0,06. The 
experiment was performed B= 10.000 occasions. Take  

P Q: X = proportion of experiments in which the normality was accepted 
This proportion is an estimation of 1-α. Due to the large sample sizes and the properties  of it as estimator of 
1-α is expected that they must be close if the convergence of the distribution sample mean to a Gaussian is 
valid 

Table 1. Proportion of experiments in which the normality was accepted. Classic tests with α=0,05 
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Statistic  Y   Z   W  
Tests 103 104 105 103 104 105 103 104 105 

U 0,34 0,23 0,41 0,85 0,90 0,92 0,80 0,88 0,86 
CM 0,48 0,27 0,58 0,81 0,93 0,93 0,80 0,86 0,86 
KS 0,15 0,21 0,29 0,76 0,93 0,93 0,82 0,88 0,88 
AD 0,18 0,18 0,43 0,82 0,94 0,94 0,64 0,65 0,70 
A 0,48 0,27 0,58 0,79 0,94 0,95 0,86 0,88 0,87 

See from Table 1 that classic tests tend to accept normality for Z with a close value to 0,52 for n≥1000000. 
That is a really large sample size. For the other variables the sample mean could hardly be considered as  
normal 
 

Table 2. Proportion of experiments in which the normality was accepted. D ‘Agostino tests 
with α=0,05 

Statistic  Y   Z   W  
Tests 103 104 105 103 104 105 103 104 105 

D1 0,61 
 

0,75 
 

0,83 0,80 0,85 0,88 0,41 
 

0.52 0,58 

D2 0,55 
 

0,64 
 

0,85 0,83 0,88 0,83 
 

0,45 
 

0,65 0,67 

D3 0,51 
 

0,73 
 

0,85 0,79 0,83 0,87 
 

0,44 
 

0,62 0,70 

√b1 0,61 
 

0,75 
 

0,83 0,89 0,85 0,93 
 

0,41 
 

0,68 0,78 

b2 0,65 
 

0,64 
 

0,95 0,83 0,88 0,90 0,45 
 

0,65 0,67 

Table 2 suggests that Agostino´s tests have a not so stable behavior.  The best was for Y using  b2 and is 
needed n≥100000. For Z was √b1 needing n≥1000000. Both are very large sample sizes 
 

Table 3. Proportion of experiments in which the normality was accepted. Tests using order statistic with 
α=0,05 

Statistic  Y   Z   W  
Tests 103 104 105 103 104 105 103 104 105 

W 0,27 0,47 0,52 0,49 0,69 0,84 0,34 0,39 0,40 

P 0,23 0,28 0,53 0,61 0,66 0,87 0,26 0,51 0,63 
B 0,27 0,31 0,54 0,34 0,41 0,84 0,32 0,44 0,60 
SW 0,27 0,27 0,52 0,59 0,66 0,85 0,33 0,43 0,60 
SF 0,22 0,28 0,53 0,69 0,68 0,84 0,28 0,41 0,53 
SC 0,27 0,30 0,44 0,64 0,69 0,90 0,22 0,44 0,61 

Table 3 gives support to rejecting the normality of the sample mean as the proportion of acceptations are very 
low. Only Z obtained an acceptable level of acceptation if n≥1000000 when using SC. This test statistic 
presented the larger proportions of not rejection for Z. 
 

Table 4. Proportion of experiments in which the normality was accepted. Tests based on Entropy with 
α=0,05 

Statistic  Y   Z   W  
Tests 103 104 105 103 104 105 103 104 105 

VDP 0,27 0,30 0,32 0,87 0,90 0,94 0,67 0,70 0,72 

VES 0,29 0,34 0,45 0,92 0,94 0,98 0,32 0,54 0,75 
EPSP 0,27 0,49 0,52 0,84 0,95 0,96 0,20 0,49 0,62 
VC 0,58 0,83 0,83 0,79 0,95 0,92 0,50 0,83 0,87 
VNP 0,27 0,30 0,62 0,92 0,96 0,94 0,62 0,93 0,92 
EpSNP 0,29 0,44 0,57 0,92 0,98 0,98 0,32 0,74 0,85 
ANPNP 0,20 0,59 0,62 0,84 0,95 0,94 0,27 0,79 0,82 

Table 4 suggest that tests based on entropy performed well for Z but not with the other variables. In any case 
the needed values of n are very large. 
 
Table 5. Proportion of experiments in which the normality was accepted. Other tests 

with α=0,05 
Statistic  Y   Z   W  
Tests 103 104 105 103 104 105 103 104 105 



	 122	

JBG 0,33 0,59 0,63 0,81 0,84 0,93 0,59 0,53 0,51 

MI 0,68 0,77 0,78 0,77 0,85 0,81 0,77 0,78 0,77 
EP 0,73 0,82 0,88 0,82 0,85 0,93 0,82 0,88 0,88 
GMG 0,62 0,72 0,78 0,74 0,81 0,90 0,72 0,78 0,79 
BS 0,53 0,59 0,63 0,81 0,84 0,93 0,59 0,55 0,58 

From Table 5 we have again that that tests based on EP, GMG and BS performed well for Z and n≥1000000 
but not with the other variables. 
 
4. CONCLUSIONS 
 
Accepting that n>30 is enough for accepting normality of the sample mean has not a real basis. The 
experiments gave evidence that for some variables its practically impossible fixing a reasonably large value of 
n for accepting that the hypothesis n is large is to be accepted. 
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