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ABSTRACT

In this paper, we introduce a new continuous distribution called as the exponentiated new Weibull-Pareto (ENWP) distribution.
Several properties of the ENWP distribution are derived such as Rényi entropy, reliability and hazard rate functions, and the
moments. The maximum likelihood estimators of the unknown parameters are derived. The shape of the distribution is
illustrated and some simulations are computed for different values of the distribution parameters
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RESUMEN

En este paper, introducimos una nueva distribucién continua llamada “exponentiated new Weibull-Pareto” (ENWP). Varias
propiedades de la distribucion ENWP son derivadas como las funciones entropia de Rényi, fiabilidad y la tasa de “hazard”, y los
momentos. Estimadores maximo verosimiles de los parametros desconocidos se derivan. La forma de la distribucion es ilustrada
y algunas simulaciones son computadas para diferentes valores de los parametros de la distribucion.

PALABRAS CLAVE: Nueva distribucion Weibull-Pareto; estimador Maximo Verosimil; entropia de Renyi, Momentos;
“Exponentiated” distribucién

1. INTRODUCTION

Statistical distributions are actual valuable in describing and expecting real world occurrences. Although
many distributions have been established, there are always areas for developing distributions which are either
more elastic or appropriate for specific real world situations. This has encouraged scientists looking for and
developing new and more elastic distributions. Consequently, many new distributions have been developed
and considered. Gupta et al. (1998) defined the exponentiated exponential distribution as a generalization of
the exponential distribution.

For a given cumulative distribution function (CDF) G(x), the exponentiated class of distribution is given by

F(x)=[G(x)]W, w>0, (1)

where W is a shape parameter, and the corresponding probability density function (PDF) is

f(x)=wg®[Gx)].

where G(x) and g(x) are the CDF and PDF of the base distribution.

The exponentiated Weibull distribution in Mudholkar and Srivastava (1993) is one of the class of
exponentiated distributions by taking F(x) to be the CDF of a Weibull distribution, they studied the
exponentiated Weibull distribution to evaluate bathtub failure data. Many scientists used the class of
exponentiated distributions to generate new distributions. For instance, Nadarajah (2005) suggested the
exponentiated Gumbel distribution. Tahmasebi and Jafari (2015) introduced a new class of distributions by
compounding the exponentiated extended Weibull family and power series family. Nekoukhoul and Bidram
(2015) introduced the exponentiated discrete Weibull distribution, they defined a new generalization of the
discrete Rayleigh distribution for the first time in the literature. Alzaghal et al. (2013) proposed new family of
distributions called exponentiated 7-X distribution, they discussed some of its properties and studied the three-
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parameter exponentiated Weibull exponential distribution. Salem and Selim (2014) studied the properties of
the generalized Weibull-Exponential distribution and its applications. Gupta and Kundu (1999) studied
generalized exponential distributions. Alzaatreh et al. (2013) suggested Weibull-Pareto distribution and
investigated some of its applications. Some exponentiated distributions are proposed by Ali et al. (2007).

Let X be a random variable with new Weibull-Pareto distribution. Nasiru and Luguterah (2015) defined the
CDF of the NWP distribution as

L
Floy,n.g)=1-e ) , %n.y,9>0,
with corresponding PDF

Sy =22 (E)W e_w(;x)"’ .
n \n

The expected value and the variance of the NWP distribution are given by

2
E(X)=ir(¢—+l) and Var(X)=2 /) F(T/I_ﬂ)_ lr(w_ﬂ) , Tespectively.
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The survival function hazard functions of the NWP distribution are defined as S(x;3,17,¢)=e ‘7’ and

R(x;y,m,@) =%xw_l. This paper develops an exponentiated new Weibull-Pareto distribution by
n

replacing the CDF (G(x) in Equation (1) by the CDF of the NWP distribution, F'(x;3/,7,@).

The results of this article are as follows. Section 2 deals with the CDF and probability density function of the
ENWP distribution. The moments of the ENWP distribution including the »th moment, mean, and variance, as
well as the coefficients of skewness, kurtosis and the coefficient of variation are derived in Section 3. In
Section 4, the Rényi entropy of the ENWP discussed in Section 5. The distribution of order statistics, quantile
function and the reliability analysis of the ENWP distribution are presented in Section 6. Finally, the paper is
concluded in Section 7.

2. THE SUGGESTED EXPONENTIATED NEW WEIBULL-PARETO DISTRIBUTION

A random variable X is said to have an exponentiated new Weibull-Pareto distribution, denoted by
X : ENWP(x;0,0, ,w) if its PDF is given by

w-1

A [t
f(x;é,ﬁ,/)’,w)=vg—5ﬁ/5xﬂ'le (9 [l—e o ,x>0,8,0,0,w>0, 2)
Fix — w=l, 8=2 §=I fg=2
L0 — w=3, 83, §=3, f=3
08 — w4, 8=4, =4, =4
08 — w=3, 8=5, §=5, =5
04 — w=h, 8=6, §=6, f=6
02

- w=7, 8=7, §=1, B=7

12 3 4 5 6 7
FIGURE 1: Plots of the PDF of ENWP distribution for some parameters values
where @ is a scale parameter, W and [ are shape parameters. The corresponding CDF of the ENWP
distribution is defined as

P

B

F(x;é,ﬁ,[a’,w)=[l—e (‘9) ] , x>0,6,0,0,w>0. 3)

The shapes of PDF and CDF of the ENWP distribution for different values of the distribution parameters are
illustrated in Figures (1) and (2), respectively.
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FIGURE 2: Plots of the CDF of ENWP distribution for some parameters values

Based on Figure (1), it can be noted that the ENWP distribution is skewed for § = f=w=6 =2, while it
will be semi symmetric as the distribution parameters values are increasing.

3. MOMENTS

This section presents the rth moment, mean, variance, coefficient of skewness, coefficient of kurtosis,
coefficient of variation, and the moment generating function (mgf) of the ENWP distribution.

Theorem (1): Let X : ENWP(x;0,60, 5,w), then the rth moment of X is given by

i

E(x")=w8 o ﬂr(ﬁn)g( )( l)(m)ﬁ . @

Proof: From the PDF of the ENWP distribution in (3), the rth moment of X can be obtain as

=fxrf(x)dx
0
® Y |
=fx' W_(S/J) ﬂ“e_é(g) ( 757/1 )W dx
0 o* l-e
5 - 6x/f s s w-1
_Wgﬁﬁf r+pB-1 - (0) l_e_ g dx
0
A\ ) o° L -Llig
Let _5(g =—ﬁx/’, u——ﬁxﬁ, u—=x", x—(?)ﬁ u?, dx=0 u’ —a
0 o 0 p

F oo r

v Efuge'“ (1—e™)"
0

w-1

_oyw-l w-1 C
Now, (1-¢™)"" = 2( ) )(—l)’ (e™)". Therefore,
£ i

E(x")=wd's /;} uhe 2(W_ )( e |
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Remark:

_r r
Note that, when W =1, the 7th moment will be reduced to E(X’ ) =00 ﬁr(— + 1) .

The coefficients of skewness (Sk), kurtosis (Ku) and coefficient of variation (CV) of a random variable,
respectively, are defined as

E(X?)-3uc® -’ E(X*)-4uE(X’)+6u’0” +3u”
Sk = ( ) ;Ll “ , Ku = ( ) “ ( 4) “ “ , and CV=g,
o o u
where
-1 1 i+I
t=E(X)=w83 e Lo 2 ey () 5)
p < i 1+
and

2

(L) Sy o ©)
-|lwao r(ﬂ+1);( i)( l)(m) ]

2+1

0 = w6 ﬂr(-n)w I(W 1)( I
E(x?)=w6d ﬂr(2+ ) (W 1)(—1)“(L)ﬁ, (7)

o1
)—
+

S 1+i

E(x®) —wl S ﬂI‘ 3+/3) (w 1)(_1)[(#)/31 @®
I+

S K

The standard deviation of the ENWP distribution is
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TABLE 1: The mean, variance, CV, Sk, and Ku of the ENWP distribution with @ = 6 = =2 for
different values of w

w Mean Variance Cv Sk Ku

1 1.25331 0.429204 0.522723 0.631111 17.6157
2 1.62040 0.374299 0.377561 0.507910 23.1828
3 1.82486 0.336542 0.317899 0.491493 29.1834
4 1.96364 0.310773 0.283896 0.495244 34,7221
5 2.06753 0.291996 0.261359 0.504028 39.7908
6 2.14998 0.277580 0.245053 0.513891 44 .4548
7 2.21803 0.266073 0.232560 0.523602 48.7765
8 2.27576 0.256613 0.222593 0.532771 52.8075
9 2.32579 0.248655 0.214402 0.541298 56.5889
10 2.36983 0.241835 0.207512 0.549187 60.1535
15 2.53345 0.218087 0.184333 0.580811 75.5138
20 2.64425 0.203430 0.170571 0.603520 88.0312
25 2.72741 0.193169 0.161146 0.620862 98.6846
30 2.79366 0.185434 0.154142 0.634717 108.008
40 2.89531 0.174280 0.144188 0.656853 123.619

From Tables (1) and (2) it can be seen that the ENWP distribution is moderately skewed for large values of
the distribution parameters. For fixed values of 0 = 3, o=4, /3’ = 5 as the value of w is increasing, the

mean, skewness and kurtosis values are increasing while the variance and coefficient of variation values are
decreasing.

TABLE 2: The mean, variance, CV, Sk, and Ku of the ENWP distribution with & = 3, & = 4,6=5
for different values of w

w Mean Variance Cv SK Ku

1 2.08753 0.22863 0.22905 -0.25411 55.102

2 2.35775 0.13795 0.15753 -0.16773 157.699
3 2.48643 0.10478 0.13019 -0.08302 274.110
4 2.56725 0.08738 0.11514 -0.01966 394.650
5 2.62485 0.07651 0.10538 0.02889 515.844
6 2.66900 0.06899 0.09841 0.06749 636.146
7 2.70449 0.06344 0.09313 0.09914 754.815
8 2.73396 0.05913 0.08895 0.12573 871.492
9 2.75906 0.05569 0.08553 0.14852 986.017
10 2.78083 0.05285 0.08267 0.16836 1098.340
15 2.85924 0.04373 0.07314 0.23983 1628.120
20 2.91032 0.03863 0.06754 0.28592 2111.190
25 2.94769 0.03528 0.06372 0.31916 2556.230
30 2.97690 0.03287 0.06091 0.34475 2970.090
40 3.02085 0.02924 0.05661 0.85408 15108.800

Theorem (2): The moment generating function of ENWP distribution is given by

169



E(etX)=2g(w;1)(_l)i(lii )ﬂ+ kWH;!é ﬂl‘(%ﬂ). (11)

Proof: The moment generating function of a random variable X is defined as

°° had koo ke k
E(etx)={etxf(x)dx and since e” = ;% =;lk_x'

Then,

(tX) fe”‘f(x)dx f;
_f; N

; %}xk f(x)dx
_ gﬁlxkf(x)dx - 2%E(X" )

k

) 2 weka'ﬁZ( )( 1)(1+Z)ﬁ+lr(%+1)

22( )( 1)( )ﬂ+ w6 ﬂr(£+1). W
< 1+i k! p

Remark: The characteristic function, @(it) = E (eitX ) , of the ENWP distribution is
:

From (2), we get

2wl Y @)wo'o 7 _(k
> Sl e

4. RENYI ENTROPY

The entropy of a random variable X is a measure of variation of the uncertainty. A large entropy value
indicates greater uncertainty in the data. The Rényi entropy (1961) is defined as

Y,(p)= Llog f(x)"dx |, where p>0and p=0. (12)
l-p )

The Rényi entropy of the ENWP random variable X is given in the following theorem.

Theorem (3): The Rényi entropy of the ENWP random variable X is defined as
. _ | \
[ plog(wd)]+ (1= p) | log[ 2 )| -[ 2L D) 10g(6) 4
. B B

Ye(p)=1 o1 D ey N I (13)
— p(w-1 pW p _p+
1 1 r( =P+

& IS R R ey
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Proof:

YR(p)=ilog(Zf(x)”dx)
= %log {} -W_‘S/J) X ‘5(;)/; ( ] (1)” )1 r dx}
“P 0| ¢’ l-e \?
=L rog) [ 2B ey o) et
wal ) e [ [t T
Now, let _5(gﬁ=;—2xﬁ =%xﬁ u%_xﬁ,x=(ff);u/}3 dx=§_;u;_l%du

Thus,

ooy POYD -1 A A
But (1= )" = (p w ))(—1)'(e_")’.Then,
l

i=

P i ) _ o (B-1),1_
YR (p) = L]Og(w_éﬁ) (ﬁ)l’ ps b gl’ (p(W 1))(—l)ifup( 7 ) 5 16‘“(1’”)6[%
0

_l_p 9/)’ 0 /J) £ l
lety =u(p +1), y,=dlzl, Y - = 1. Therefore,
i p+i
! wp) o\ 507 por=1)) [ 1 ”(%]*é | p(%)%l
Y, (p)=tog “P | () 7 N A Dy | ] T g
1_‘0 0 /)] /=0 / pPti pti f
o el YR L e
=L10g W_(iﬁ (?)'pﬁ 5 ﬁg E ﬁ(W 1) (_1)/ L Lrﬁ _1 +l_1+1 Now,
I-p l &\ pi P+i g B
| W(Sﬂ ? pﬁ ieli(w—l) IU(W 1) 1 p(%}% 141 ﬁ | |
p - ; _
e e e
R4 0 B3\ i p+i B B
- 1 p(B-1) 1
wop p(gff)p(/; ! 1\s 6 ver B (s WA N 5 1\F O
Y —=w"0 (6? ) B U
ﬁﬂ 0 /5 gpﬂ P S ,3
pB-p+l P11 P
Cwer O (1) ;B
0" 0 S
=WP5P61-P(%) A /))p—l.

Therefore,
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p(B-1)+1 pB-p+1

_ 1 p epal-p pp-1 l B p(w-1) A pp-p+l
Velp)= g2 toefwroro g (] 2( )( 1>(p+l) ( . )

]- (p(/o’ﬁl)ﬂ)

p[log(w) +log(8)]+(1- p)[log(®) - log(p) log(9)

1
— pB-p+1

-p PN p(w-1) s pB-p+1
w3 e )

plog(w5)+(1—p)log(2) —(M)log(é)
| B p
a— pB-p+1

1I-p P p(w=1) 5 pB-p+l
e 2 )

—
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5. MAXIMUM LIKELIHOOD ESTIMATION

In this section we discuss the maximum likelihood estimation (MLE's) of the ENWP distribution parameters.
Let X, 15 X Jseees X , be arandom sample of size n from the ENWP distribution with unknown parameters W,
&, [ and O . The likelihood function of the ENWP distribution is

w-1
X; 4

16,50, w) - ]:[f(x) - H(%)H(ﬁ )lje_é(z)ﬁ ]‘1 1= (14

The log likelihood function of a sample of size n, R =log] (x) can be written as

R = nlog( ) (8- lzlogx -—Ex +Zlog(1 e-% )

Now, to find the MLE's of the distribution parameters, we may maximize (14) directly with respectto W, &,

w-1

/3 and O or by solving the non-linear normal equations.

—é}(]ﬂ
%?” 5pO + /MEX +(w- 1)5/39“2%, (15)
/=11 —5(?)
-e
B ,r.ﬁ
MR 7 13 NN 1 'ﬁ _6%)
s _5 o7 Zx[ +(W 1)/=1 _5(i)ﬂ 0) e , (16)
l—e o
3?; 1 /)) H_ +'Ellog(x inﬁln(xl) Oln (0)2 13
oz
+(w-1)Z _6(ﬁ),,
l-e \?
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R L ( o3 )
n _s %
— =—+YIn\l-e 7 | (18)
ow w £
The estimates of the unknown parameters can be found by setting the Equations (15)-(18) to zero and solving

them simultaneously gives the MLE of W, é , /;’ and O , respectively.
6. ORDER STATISTICS, QUANTILE FUNCTION, AND RELIABILITY ANALYSIS

Let X, X X

be the order statistics of the random sample X 1>X 2,...,X . Selected from a

(Lm)> <> (2mm) 2> <> (m:m)
pdf f(x) and cdf F'(x). The PDF of the jth order statistics X ) is defined as
n! . .
Sy (0) = ———————[F()} " [1-F(x)]"” f(x) for j=12,...,n. (19)
U (=Dl - )

From (1) and (2) we have the PDF of the ith ENWPD random variable X (jm) 33 und by setting Equations
(15)-(18) to zero and solving them simultaneously gives the MLE

n-i

Sewwp(jom (X) = ! nop x’e \Hﬂ (l—e_(s(;)ﬂ )1 [1—(1—56(;)[1 )] NG

(-Dln-j)! ¢’
Therefore, from f(j)(x) the PDF of the smallest order statistics X(1) = Min {XI,XZ,...,XH} is
s B\ s\Y "
ot AT [ )
=8 s G 6Tl
and the PDF of the largest order statistics X, = Max {X . G, § n} has the form
i 5 \wn 1
nwé o5 ( -9 )
fENWP(n)(x) /3 x"e ( ) l-e (0 . (22)

Theorem (4): The quantile function of the ENWP distribution is defined as

1
B
, O=su=l. (23)

F‘1<u)=[_91n(1_ufv)
fo)

Proof: The proof comes directly by inverting the CDF given in Equation (3).
Simulating the ENWP distribution is directly. If U is uniformly distributed random variable on the interval

(0,1), then the random variable X = F~' (u) follows the ENWP distribution given in Equation (3).
The three quartiles of the ENWP distribution are given by

1 1 1
2ulicoas T 0m[Lubos o 0 [-Zalcars ]
0 = -5n\1-025"/ Q, = - ni1-05 and Q; = —gln 1-0.75"]| -
The reliability function R(t) is the probability of an item not failing prior to a time . It is defined as
Rppyp (1) =1=Fpyyp(2)

=1- (1 - e_é(g)ﬂ )W .
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FIGURE 3: The reliability function of the ENWP distribution when W= o= /)’ =6

Remarks:
D. RENWP(O) =1
2). Ryvwp (x) is a decreasing function inx, w, 5 and 6.

3). RENWP (x) is an increasing function in 0.

The hazard rate function of the ENWP distribution is defined as

S e (1)

hENWP (l) =
1- FENWP (f)
; Y w-1
] B
wope L)
- i3 s \W :
RS )
l-e
Kif) — w=21 8=2, &=2 g=2
1t — w=3, §=3, §=3, g=3
10F — w=4, 8=4 =4 f=4
gl — w=s, 8=5, 5=5, f=5
st
af — w=6, §=6, §=6, 3=
r - w=7, 8=7, §=7, g=7
t

1 2 3 4 5 1]

FIGURE 4: The hazard function of the ENWP distribution when W= 5 = /)’ =0

7. CONCLUSIONS

In this paper, the exponentiated new Weibull-Pareto distribution is suggested. This distribution is suggested to
provide more flexibility in modeling real data. Some statistical properties of the exponentiated new Weibull-
Pareto distribution are proved such as the moments, the PDF of the order statistics of the distribution, the
hazard rate and reliability functions. The maximum likelihood estimators of the unknown parameters of the
ENWP distribution are provided and the Renyi entropy is presented and proved.

RECEIVED: MAY, 2017

174



REVISED: SEPTEMBER, 2017
REFERENCES

[1]. ALI, M.M., PAL, M. and WOO, J. (2007): Some exponentiated distributions. The Korean
Communications in Statistics, 14: 93-109.

[2]. ALZAGHAL, A. FAMOYE, F. and LEE, C. (2013): Exponentiated 7-X Family of distributions with
some applications. International Journal of Statistics and Probability, 2, 31-49.

[3]. ALZAATREH, A., FAMOYE, F. and LEE, C. (2013): Weibull-Pareto distribution and its
applications. Communications in Statistics-Theory and Methods, 42, 1673—-1691.

[4]. GUPTA, R.D. and KUNDU, D. (1999): Generalized exponential distributions. Australian & New
Zealand Journal of Statistics. 41, 173—-188.

[5]. GUPTA, R.C., GUPTA, P. and GUPTA, R.D. (1998): Modeling failure time data by Lehmann
alternatives. Communications in Statistics-Theory and Methods, 27, 887-904.

[6]. MUDHOLKAR, G. and SRIVASTAVA, D. (1993): Exponentiated Weibull family for analyzing
bathtub failure data. IEEE Transactions on Reliability, 42, 299-302.

[7]. NADARAJAH, S. (2005): The exponentiated Gumbel distribution with climate application.
Environmetrics, 17, 13-23.

[8]. NASIRU, S. and LUGUTERAH, A. (2015): The new Weibull-Pareto distribution. Pakistan Journal
of Statistics and Operation Research, 11, 103-114.

[9]. NEKOUKHOU, V. and BIDRAM, H. (2015): The exponentiated discrete Weibull distribution.
SORT, 39, 127-146.

[10]. SALEM, H.M. and SELIM, H.A. The generalized Weibull-Exponential distribution: properties and
applications. International Journal of Statistics and Applications, 4, 102-112.

[11].  RENYI, A. (1961): On measures of information and entropy. In Proc. Symp. on Math., Stat. and
Probability, 547-561, Berkeley. University of California Press.

[12]. TAHMASEBI, S. and JAFARI. A.A. (2015) Exponentiated extended Weibull-power series class of
distributions. Ciéncia e Natura, Santa Maria, 37, 183—-193.

175



