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ABSTRACT   
A Multi-Level Programming Problem (MLPP) is a hierarchical optimization problem where the constraint region of the 
first level is implicitly determined by the other optimization problems. In this paper, an integer multi-level programming 
problem is considered. At each level, there are multiple objective functions which are linear fractional and the feasible 
region is assumed to be a convex polyhedron. Here, the variables are bounded. An algorithm is developed for ranking and 
scanning the set of feasible solutions. These ranked solutions are used to find the efficient solution of Multi- Level Linear 
Fractional Programming Problem (MLLFPP). An example is illustrated and solved using LINGO 17. 
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RESUMEN 
A multi-level integer linear fractional programming problem with bounded variables is considered. The multiple objective 
functions at each level are linear fractional. To find the set of efficient solutions for this multi-level programming 
problem, a mathematical model is evolved. This model scans the feasible region to find the efficient integral points. A 
solution procedure has been developed describing the above model. A numerical example is illustrated which is also 
solved by the software LINGO 17. 
 
PALABRAS CLAVE: Problema de programación  Lineal fraccional, programación  entera , programación multi-nivel, 
eficiente solución, variables acotadas, programación multi-objectivo. 
 

 
1. INTRODUCTION 
 
A Multi-Level Programming Problem (MLPP) deals with decentralized planning problems with multiple 
decision makers in a multi-level or hierarchical organization where decisions have interacted with each other. 
Herein, at each level, attempts are made by each decision maker to optimize their objective functions. In this 
process, it is also affected by the actions of the other decision makers. Distinct solution methodologies for 
multi-level programming problem and its applications have been analyzed by various authors. Candler et al. 
[11] in 1981, discussed the role of multilevel programming in agricultural economics. Bard and Falk [4] in 
1982, proposed an explicit solution to the multi-level programming problem. In 1988, Anandalingam [3] 
proposed a model of decentralized multi-level systems. In 1992 [7], Blair discussed the computational 
complexity of multi-level linear programs. Pramanik and Roy [28] in 2007, solved multilevel problems by 
fuzzy goal programming approach. In 2015, Liu and Yao [21] applied genetic algorithm to solve uncertain 
multilevel programming problem.  In 2016, Kassa [18] gave a branch and bound multi-parametric 
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programming approach for multi-level optimization. The detailed literature review on bilevel, multi-level 
programming problems with their solution techniques can be found in [20]. 
There are many scenarios which require planning/ execution. These situations can be properly represented by a 
multi-objective programming model. Mathematically, a Multi-Objective Programming Problem (MOPP) is 
defined as,  
1  
(MOPP): Max {f1(X) = Z1} 
  Max {f2(X) = Z2} 
  - - - 
  Max {fK(X) = ZK} 
  subject to X ∈ S, 
where S is a feasible set and fj(X); {j = 1, 2, ..., K}, be linear/non-linear. 
In 1971, Benayoun et al. [6] described a solution technique for linear programming problems with multiple 
objective functions. Evans [13] in 1984 discussed the techniques for solving multi-objective mathematical 
programs. Models with fractional objectives are more expedient as they are relevant in production planning, 
financial and corporate planning, health care and so forth. Evaluation of economic activities require indices in 
the form of ratios, like profit/cost, inventory/sales, output/employees', etc. Kornbluth and Steuer [19] have 
been pioneers in this field. Nykowski et al. [24] proposed a compromise solution for the multiple objective 
linear fractional programming problem. In 1995, Gupta and Malhotra [17] proposed a cutting plane 
algorithmic approach for multi-criteria integer linear fractional programming problem. In order to solve fuzzy 
multiobjective linear fractional programming problem, a goal programming method was developed by Pal et 
al. [26] in 2003. Abo Sinna [1] in 2007 proposed a method for solving multi-level multi-objective problem 
with linear or non-linear constraints. Emam [12] in 2013 developed an interactive approach for solving bi-
level integer multi-objective fractional programming problem. Mishra and Singh [23] in 2013 developed a 
linear fractional model for agricultural production system. Mehdi et.al [22] in 2014 proposed a method to 
generate the efficient set of a multi-objective integer linear fractional program by branch and cut concept. 
Osman [25] in 2016 gave a solution procedure for multi-level multi-objective fractional programming with 
fuzziness in the constraints.  
Extensive work has been done on integer programming problems. Many cutting plane algorithms like Dantzig 
cut, Gomory cut, edge truncating cut etc. are used to solve such problems. The first cutting plane algorithm 
was developed by Gomory in 1958 [16] for the pure integer programming problem. In 1969, Geoffrian [15] 
proposed an implicit enumeration approach for integer programming. Fisher in 1981 [14], solved the integer 
programming problems by the lagrangian relaxation method. Alves and Climaco [2] in 2007 reviewed the 
methods for multi-objective integer and mixed integer programming problems. Integer Programming 
problems are of paramount importance in business and industry since they have many practical implications 
in the actuality. Paquay et.al [27] in 2016 in his paper dealt with real world applications in the three 
dimensional case. In 2017, Gustavo Braier [8] in 2017 developed an integer programming approach for 
recyclable waste collection. 
 
2. CONVENTIONAL DEFINITION 
 
The linear fractional bilevel programming problem with bounded variables is mathematically stated as, 

(BLFPP):  
1

11 1 12 2 1
1 1 2X

11 1 12 2 1

c X c X
MaxZ (X ,X )

d X d X
+ +α

=
+ +β

 

  where X2 solves 

  
2

21 1 22 2 2
2 1 2 1X

21 1 22 2 2

c X c X
MaxZ (X ,X ) , for a given X

d X d X
+ +α

=
+ +β

 

  subject to 1 1 2 2A X A X b+ =  

  1 2n n
1 2X , X∈ ∈° °  

  1 2n nT T T T T T T T
11 11 21 21 12 12 22 22c ,d ,c ,d , c ,d ,c ,d∈ ∈° °  

  1 2m n m n m
1 2 1 2 1 2A , A , b and× ×∈ ∈ ∈ α ,α ,β ,β ∈° ° ° °  

Here,     11 1 12 2 1 21 1 22 2 2 1 2(d X d X ) 0 and (d ,X d X ) 0 ; (X ,X ) S,+ +β > + +β > ∀ ∈   
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where 1 2 1 1 2 2 1 1 1 2 2 2 1 2S {(X ,X ) :A X A X b; X u , X u , (X ,X )= + = ≤ ≤ ≤ ≤l l is an integer vector}. 

Here, 1l ,u1 and 2l , u2 are lower and upper bounds for the upper level problem and lower level problem 
respectively. Also, S is non-empty and compact.  
In the bilevel linear fractional programming problem defined above, each of the objective functions at both 
the levels are linear fractional. Therefore, they are both pseudoconcave and pseudoconvex and thus, its 
optimal solution will be at an extreme point of S. The optimality criterion for solving (BLFPP) with bounded 
variables is that j 0Δ ≥  for upper bounded non-basic variables and j 0Δ ≤  for lower bounded non-basic 

variables, where 2 1
j 1 j j 2 j jZ (z d ) Z (z c )Δ = − − − . Kanti Swarup [29] and Bazarra [5] have explained the 

criterion for entering and departing of variables in linear fractional programming problem with bounded 
variables. V. Verma et al. [31] developed an algorithm to rank the integer feasible solutions of an integer 
linear fractional programming problem. Thirwani and Arora [30] gave an algorithm for solving integer linear 
fractional bilevel programming problem. Calvete and Gale [9] in 1998, proved that the optimal solutions of 
the bilevel programming problem in which the objective functions are quasi- concave and the constraint 
region of both the levels is a convex polyhedron can be found at the extreme point of the polyhedra. In 1999 
[10], they proposed an enumerative algorithm that finds a global optimal solution to the bilevel linear/ linear 
fractional programming problem.  
In the present paper, a mathematical model is developed with a novel technique which disparate it from the 
methods proposed by the past authors. In this model, an algorithm is developed to solve a multi-level 
programming problem in which the variables are integers and bounded. At each level, multiple objective 
functions are considered which are linear fractional. The algorithm scrutinizes the set of feasible solutions to 
procure the efficient solution for the multi-level programming model. The method is elucidated with an 
example which is solved using computing software LINGO 17. 
 
3. MATHEMATICAL FORMULATION 
 
The Multi-Level Integer Linear Fractional Programming Problem with bounded variables is defined as, 
(MLLFPP):  

1
1

1 11 12 1sX
MaxZ (X) Max(g (X),g (X),...,g (X))=  

  
2

2
2 21 22 2sX

MaxZ (X) Max(g (X),g (X),...,g (X))=   for a given X1 

  - - - - - - - - 
  

n
n

n n1 n2 nsX
MaxZ (X) Max(g (X),g (X),...,g (X))= , for a given (X1,X2,...,Xn−1) 

where X = (X1,X2,....,Xn) ∈ S*. 
Here, S* = {X | AX = b | L ≤ X ≤ U} is non-empty and bounded. 
Define, *

1S {X | AX b | L X U, X= = ≤ ≤  is an integer vector}. 

Clearly, *
1S S⊆ . We are interested in finding the solution of the problem in *

1S . 
 
(MLLFPP) can be written as 
 i iu iMaxZ (X) Max(g (X)), i 1,2,...n; u 1,2,...s= = = . 

Here,  u1 1 u2 2 un n u1
1u 1

u1 1 u2 2 un n u2

c X c X .... c X
g (X) , u 1,2,...,s

d X d X .... d X
+ + + +α

= =
+ + + +α

 

 u1 1 u2 2 un n u1
2u 2

u1 1 u2 2 un n u2

e X e X .... e X
g (X) , u 1,2,...,s

f X f X .... f X
+ + + +β

= =
+ + + +β

 

 - - - - - - - -

 u1 1 u2 2 un n u1
nu n

u1 1 u2 2 un n u2

q X q X .... q X
g (X) , u 1,2,...,s

p X p X .... p X
+ + + + γ

= =
+ + + + γ
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1

1

1

n

n

n

n
u1 u1 1 1

n
u1 u1 1 2

n
u1 u1 1 n

n
un un n 1

n
un un n 2

n
un un n n

Here, c ,d ,X ; u 1,2,....,s

e , f ,X ; u 1,2,....,s
. . . . .

q ,p ,X , u 1,2,....s
. . . . .

c ,d , X R ; u 1,2,...,s

e , f ,X ; u 1,2,....,s
. . . . .

q ,p ,X , u 1,2,....s

∈ =

∈ =

∈ =

∈ =

∈ =

∈ =

°

°

°

°

°

u1 1 u1 2 un n u2

u1 1 u2 2 un n u2 *
1 2 n 1

u1 1 u2 2 un n u2

Also, (d X d X .... d X ) 0
(f X f X .... f X ) 0

(X ,X ,...,X ) S
. . . . .
(p X p X .... p X ) 0

+ + + +α > ⎫
⎪+ + + +β > ⎪
∀ ∈⎬

⎪
⎪+ + + + γ > ⎭

 

   
1 2 nm n m n m n m 1

1 2 nA , A ,....,A ; b× × × ×∈ ∈ ∈ ∈° ° ° °  

                  

1 2

1 2

1 2

u u 1

u u 2

u u n

, , u 1,2,....,s

, , u 1,2,....,s

. . . . .
, ; u 1,2,...,s

α α ∈ =

β β ∈ =

γ γ ∈ =

°

°

°

 

     
n 1T

1 2 nL (L ,L ,....,L ) , L , 1,2,...,n×= ∈ =l
l ° l  

     
n 1T

1 2 nU (U ,U ,....,U ) , U , 1,2,...,n×= ∈ =l
l ° l  

The objective functions defined in the above problem at each level are linear fractional programming 
problems. The polyhedron *

1S  defined by the constraint region of the problem (MLLFPP) is assumed to be 
non-empty and compact. 
Constraint region of the problem Zn(X) for given value of (X1,X2,....,Xn−1) is given by 

*
1 1 2 n 1 n n n 1 1 2 2 n 1 n nn 1 n nS (X ,X ,....X ) {X | A X A X A X .... X is anA  integer vX , L X U t r, }c o .− − −= ≤ + + + ≤ ≤  

The inducible region of (MLLFPP) is given by 
*

1 2 n 1 2 n 1 n 1 2 n 1IR {(X ,X ,....,X ) | (X ,X ,....,X ) S ,X M(X ,X ,...,X )}−= ∈ ∈  
where 1 2 n 1 n n n 1 2 nM(X ,X ,....,X ) {X | X argmax Z (X ,X ,....,X )}− = ∈ , is the rational reaction set of the 
follower's problem Zn(X), for given value of (X1,X2,...,Xn−1). 
 
3.1 Definitions Used For Developing Algorithm 
 
Definition (1):  Feasible Solution for (MLLFPP) 
A point 1 2 n(X ,X ,...,X )  is called feasible for (MLLFPP) if 1 2 n(X ,X ,...,X )∈IR. 
Definition (2):  Efficient Solution 
A feasible solution 1 2 n(X ,X ,...,X ) IR∈  is an efficient solution for (MLLFPP) if there is no 1 2 n(X ,X ,...,X ) IR∈  
such that i 1 2 n i 1 2 nZ (X ,X ,...,X ) Z (X ,X ,...,X )≤    for   i = 1, 2,...,n and j 1 2 n j 1 2 nZ (X ,X ,...,X ) Z (X ,X ,...,X )<  for 
some j ∈ {1, 2,...,n}. 
Definition (3): Efficient set 
The set of all efficient solutions is denoted by (SE) and is called the efficient set. 
 
3.2 Technique to solve the problem (MLLFPP) in S1

*. 
 
3.2.1 Consider the problem (MLLFPP) in S* 
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For i ≥ 1 and K ≥ 1, let BK be the basis matrix corresponding to the basic feasible solution 
KB

X . 

Suppose that the non-basis matrix is decomposed into 1 2
K KN and N , where  

1 K K
K j K jN {j | a B and x= ∉  is at its lower bound}, 
2 K K
K j K jN {j | a B and x= ∉  is at its upper bound}, 

K t KI {t | a B }= ∈ . 

Further, 1
K

K 1
j KN

A {a A | j N }= ∈ ∈ , 2
K

K 2
j KN

A {a A | j N }= ∈ ∈ . 

Let 1
K

1
j KN

X {x | j N }= ∈  be a vector of non-basic variables at their lower bounds and 2
K

2
j KN

X {x | j N }= ∈  be 

a vector of non-basic variables at their upper bounds respectively. 
For K ≥ 1, we have 
 1 2K K K

1 2
K B K KN N
B X N X N X b+ + =  

This implies 2K K K

1 1 1 1 2 1
B K K N K K KN
X (B N )X (B N )X B b− − −+ + =      (1) 

This implies 
K j j

1 2
K K

K K 1
B K j K j K

j N j N

X y x y x B b−

∈ ∈

+ + =∑ ∑  (2) 

 
3.2.2  The problem (MLLFPP) at the first level in S*. 
 
 It is defined as  
 (MLLFPP1):  

1
1

1 11 12 1sX
MaxZ (X) (g (X),g (X),...,g (X))=  

   subject to *
1 2 nX (X ,X ,...,X ) S .= ∈  

Here, (MLLFPP1) is a multi-objective programming problem where each objective function is a linear 
function. 
 
3.3.3.  Solving each of the objective function  
 
1u 1g (X); u 1,2,...,s=  w.r.t. the basis Bk. 

For K ≥ 1 the value of the objective function corresponding to the basis BK is given by 
1 1 2 2K K K K K K

1 2 2 2K K K K K K

B u1 B u1 u1 u1N N N N
1u

B u1 B u1 u1 u2N N N N

(C ) X (C ) X (C ) X N(X)g (X)
(D ) X (D ) X (D ) X D(X)

+ + +α
= =

+ + +α
 (say) (3) 

Consider the numerator N(X) in equation (3), using equation (1), it can be  
re-written as 

1 2 1 1 2 2K K K K K K K

1 1 1 1 2
B u1 K K K K K u1 u1 u1N N N N N N

N(X) (C ) [B b (B N )X (B N )X ] (C ) X (C ) X− − −= − − + + +α
 

          
1 1 2 2K 1 K 1 KK K K K

1 1 1 1 2
B u K u1 B u K K u1 B u1 K K u1N N N N

(C ) B b [(C ) (C ) B N )]X [(C ) (C ) B N ]X− − −= + − + − +α  

          
K K K

1 2
K K

1 u1 u1
B u1 K j j K j j j K j u1

j N j N

(C ) B b (z c ) x (z c ) x−

∈ ∈

= − − − − +α∑ ∑  (4) 

Similarly, D(X) in equation (3) can be rewritten as 

K K K
1 2
K K

1 u1 u1
B u1 K j j K j j j K j u2

j N j N

D(X) (D ) B b (z d ) x (z d ) x−

∈ ∈

= − − − − +α∑ ∑  (5) 

Suppose that we have a current basic feasible solution,  
 

K k k k k k

0 0 0 1 0 2
B j j j k k j j k KX (x ), where x , j N and x u , j N= = ∈ = ∈l . 

Therefore, improved objective function value for u ≥ 1 is given by 
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K K K
1 2
K K

K

K K K
1 2
K K

1 u1 u1
B u1 K j j K j j j K j u1

j N j N0
1u B

1 u1 u1
B u1 K j j K j j j K j u2

j N j N

(C ) B b (z c ) (z c ) u
g (X )

(D ) B b (z d ) (z d ) u

−

∈ ∈

−

∈ ∈

− − − − +α

=
− − − − +α

∑ ∑

∑ ∑

l

l
 (6) 

We have,  K

K

K

0
B u10

1u B 10
B u1

N(X )
g (X ) , u 1,2,...,s .

D(X )
= =  (7) 

3.2.4 To find a new feasible solution for each objective function  
 
Take giu(X); u = 1, 2, ...s, of the problem  
         (MLLFPP1). 
We have,  

K

0
BAX b=  

That is, .K K KK K1 2
K K

0
K B j jj j

j N j N

B X a x a x b
∈ ∈

+ + =∑ ∑  

Therefore, corresponding to the current basic feasible solution,  
 

K K K K

0 1 0 2
j j K K j j K Kx , j N and x u , j N ,= ∈ = ∈l  we have 

 
t K K K K

1 2
K K K

0
t B j j j j

t I j N j N

b x a a u b
∈ ∈ ∈

+ + =∑ ∑ ∑l  (8) 

Suppose a non-basic variable 
Kr
x  at its lower bound undergoes a change K

r ,φ  where K
rφ  > 0. We have from 

equation (8), 

 
t K K K K K K

1 2
K K K

0 K K
t B j j j j r r r r

t I j N j N

b x a a u a a b
∈ ∈ ∈

+ + + φ − φ =∑ ∑ ∑l  

This implies 
t K K K K K r

1 2
K KK K

0 K K K
t B j j j j r r r t t

t I t Ij N j N

b x a a u a y b b
∈ ∈∈ ∈

⎡ ⎤
+ + +φ −φ =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑ ∑l  

That is,  
t K K K K K K K

1 2
K K K

0 K K
B r t t j j r r r j j

t I j N |{r} j N |

[x y ]b a a ( ) a u b
∈ ∈ ∈

− φ + + + φ + =∑ ∑ ∑l l  (9) 

Equation (9) gives the new solution, 
KK j

ˆ ˆX (x )= , where 

 
K K r

K K

K K

0 K K
t t r t K

K
r r r

0 1 2
j j K K K

x̂ x y , t I

x̂ ,

x̂ x , j N N \{r}

⎧ = −φ ∀ ∈
⎪⎪

= + φ⎨
⎪

= ∈ ∪⎪⎩

l  (10) 

The objective function value of the problem g1u(X); u = 1, 2, ...., s1 corresponding to a new feasible solution 

KX̂  is given by 

K K KK 1 2
K K

1 u1 u1 K u1
ˆK u1 u1 K j j K j r r K r r j j K j u1B

j N \{r} j N

ˆN(X ) (C ) (B b) (z c ) (z c ) ( ) (z c ) u−

∈ ∈

= − − − − + φ − − +α∑ ∑l l  

              
K K Kk 1 2

K K

1 u1 u1 K u1 u1
ˆ u1 K j j K j r r K r r r r K j j K j u1B

j N j N

(C ) (B b) (z c ) (z c ) (z c ) (z c ) u−

∈ ∈

⎡ ⎤
= − − − − −φ − − − +α⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑l l  

              
K Kk 1 2

K K

1 u1 u1 K u1
ˆ u1 K j j K j j j K j u1 r r r KB

j N \{r} j N

(C ) (B b) (z c ) (z c ) u (z c )−

∈ ∈

⎡ ⎤
= − − − − +α −φ −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑l  

              
0 K u1
K r r r KN(X ) (z c )= −φ − . 

1

1

u0 K
K K r r r K

u0 K
K K r r r K

ˆTherefore, N(X ) N(X ) (z c )
ˆSimilarly, D(X ) D(X ) (z d )

⎤= −φ −
⎥

= −φ − ⎥⎦
 (11) 
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Therefore, 
0 K u1

K u1 K u1 r r r K
1u K 0 K u1

K u1 r r r KK u1

ˆN(X ) N(X ) (z c )ˆg (X ) ˆ D(X ) (z d )D(X )
−φ −

= =
−φ −

, u = 1,2, ..., s1                                         (12) 

The new solution will be a feasible extreme point solution, provided 

t t

j j

j j

K K K
Bt B Bt BK

r r r K t K K t K K
t k t k

x u x
Min (u l ) , (y ) 0, t I , (y ) 0, t I .

(y ) (y )

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪⎜ ⎟ ⎜ ⎟φ = − > ∈ < ∈⎨ ⎬
⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

l

 The change in the value of the objective function g1u(X) is given by 

   
0

0 K u1 K u1
1u K 1u K 10

K u1K u1

ˆN(X ) N(X )ˆg (X ) g (X ) ; u 1,2,....,sˆ D(X )D(X )
− = − =  

        
0 K u1 0
K u1 r r r K K u1
0 K u1 0
K u1 r r r K K u1

N(X ) (z c ) N(X )
D(X ) (z d ) D(X )

−φ −
= −

−φ −
 

         
K 0 u1 0 u1
r K u1 r r K u1 r r K

0 0 K u1
K u1 K u1 r r r K

[N(X ) (z d ) D(X ) (z c ) ]
D(X ) [D(X ) (z d ) ]

φ − − −
=

−φ −
 

K

K
r r u10

1u K 1u K 10 0 K u1
K u1 K u1 r r r K

( )ˆg (X ) g (X ) ;     u 1,2,....,s
D(X ) [D(X ) (z d ) ]

φ Δ
∴ − = =

−φ −
 
 (13) 

where     
K

0 u1 0 u1
r u1 K u1 r r K K u1 r r K( ) N(X ) (z d ) D(X ) (z c )Δ = − − −  (14) 

Similarly, if variable 
K Kr rx u=  undergoes a change, then the new solution 

KK j
ˆ ˆX (x )=  is defined as 

 
K K r

K K

K K

0 K K
t t t r K

K
r r r

0 1 2
j j K K K

x̂ x y , t I

x̂ u

x̂ x , j N N \{r}

⎧ = + φ ∀ ∈
⎪⎪

= −φ⎨
⎪

= ∀ ∈ ∪⎪⎩

 (15) 

The objective function value corresponding to a new feasible solution KX̂  is given by 

 
0 K u1
K u1 r r r K

1u K 0 K u1
K u1 r r r K

N(X ) (z c )ˆg (X )
D(X ) (z d )

+ φ −
=

+ φ −
 (16) 

The new solution will be a feasible extreme point solution, provided 

t t t t

j j

j j

K K K
B B B BK

r r r K t K K t K K
t K t K

x u x
Min (u ) , (y ) 0, t I , (y ) 0, t I .

(y ) (y )

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪⎜ ⎟ ⎜ ⎟φ = − < ∈ > ∈⎨ ⎬
⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

l
l  

The change in the value of the objective function (MLLFPP1) is given by  

K

K
r r u10

1u K 1u K 0 0 K u1
K u1 K u1 r r r K

( )ˆg (X ) g (X )
D(X ) [D(X ) (z d ) ]

−φ Δ
− =

+ φ −
 (17) 

Thus, we conclude that the non-basic variable 
Kr
x  enters the basis which gives maximum improvement in the 

value of the objective function. 
 
3.2.5. To find the integral solution for the objective function  g1u(X)  
 
Take u = 1, 2,...., s1 
Define, 

 K K K K Kj K j j K j jN(X )(z d ) D(X )(z c )Δ = − − −  

   
K

K 1
1 K jJ {j | j N such that 0}= ∈ Δ =  

  
K

K 2
2 K jJ {j | j N such that 0}= ∈ Δ =  

  
K

K 1
1 K jT {j | j N such that 0}= ∈ Δ ≠  

  
K

K 2
2 K jT {j | j N such that 0}= ∈ Δ ≠  
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In (MLLFPP1) problem, each of the objective function is linear fractional. For the problem  g1u(XK),  (u = 1, 
2, ..., s1) any basic feasible solution for which 

K K

1 2
j K j K( ) 0 j N and ( ) 0 j NΔ ≤ ∀ ∈ Δ ≥ ∀ ∈  is a locally optimal 

solution.  
Since each of the objective function g1u(X), (u = 1, 2, ....,s1) in (MLLFPP1) problem is quasi-monotone and is 
maximised over a compact polyhedron, every locally optimal solution will also be a globally optimal solution. 
An optimal integer solution can be obtained by repeated application of mixed integer cut in the simplex table. 
This helps in finding  the  optimal  feasible  solution  of  each  objective  function  g1u(X), (u= 1, 2, ....,s1). 
 
4.  THEOREMS 
 
Theorem 4.1: Let (XK)ω (K ≥ 1); ω ∈ {1, 2, ....s1} be an integer feasible solution for the problem g1ω(X), 
where g1ω(X) is one of the objective function of the problem (MLLFPP1). Then, all integer feasible solutions 
in *

1S  for g1ω(X) yielding value lesser than g1ω(XK) (K ≥ 1), ω ∈ {1, 2, ..., s1} lies in the closed half space 

 
K K
1 2

j j j j
j T j T

(x ) (u x ) 1ω ω
∈ ∈

− − − ≥∑ ∑l  (18) 

Proof: Let (XK)ω (K ≥ 1) be an integer feasible solution for the problem  
g1ω(X) ω ∈ {1,2, ..., s1}. We need to show that all integer feasible solutions which give value less than (XK)ω 
for g1ω(X) lies in the closed half space, given by equation (18). 
Let KB ω  be the basis matrix corresponding to (

KB
X

ω
). 

We have  
KB

AX b
ω
=  

That is,  
K

1 2
K K

K B j j j j
j N j N

B X a x a x b
ωω

∈ ∈

+ + =∑ ∑  (19) 

Suppose that corresponding to the current feasible solution, we have 

K K K K

1 2
j j K K j j K Kx , j N and x u , j Nω ω= ∈ = ∈l . Therefore, from (19), we have 

 
K K K K K

1 2
K K

K B j j j j
j N j N

B X a a u b
ωω

∈ ∈

+ + =∑ ∑l  (20) 

For some 
K r

K

K K
1 r t r K t K

t I
r T , a y b , where I {t | a B }

ω

ω
ω ω

∈

∈ = = ∈∑ . Choose a scalar K
r 0,φ >  equation (20) 

becomes 

 
t K K K K K K

1 2
K K K

K K K
t B j j j j r r r r

t I j N j N

b x a a u a a b
ω∈ ∈ ∈

+ + + φ −φ =∑ ∑ ∑l  

That is,  

 
t r K K K K K K

1 2
K K K

K K K K
B r t t j j r r r j j

t I j N \{r} j N

[x y ]b a a ( ) a u b
ω∈ ∈ ∈

−φ + + + φ + =∑ ∑ ∑l l  (21) 

Equation (21) gives a new basic feasible solution for the objective function g1ω(X). It is given by

 

t t r

K K

K K

K K

1 K K K
B B r t K

1 K K
r r r 11

K 1 1
j j K

1 2
j j K

x x y , t I

x , for r T
X

x , j N \{r}

x u , j N

ω

ω

ω

ω

⎧ = − φ ∀ ∈
⎪

= + φ ∈⎪⎪
= ⎨

= ∀ ∈⎪
⎪

= ∀ ∈⎪⎩

l

l
 (22) 

Here, 
K K

1 1
j j Kx , j N \{r}ω= ∀ ∈l  and 

K K

1 2
j j Kx u , j N ω= ∀ ∈  are integers. Therefore, for 1

KX ω  to be an integer 

solution, it is required that K
rφ  should be a positive integer, so that 

K

1 K K
K r r 1x , for r T ω
ω = +φ ∈l  is also an 

integer. It is required that 
r

K K
r t Ky , t I ωφ ∀ ∈  is an integer, so that 

t t r

1 K K K
B B r t Kx x y , t I ω= −φ ∀ ∈  is an integer. 

Besides this, 
t K

1 1
B rx and x  should lie between the specified bounds, that is, 

  
t t t

1
B B B Kx u t I ω≤ ≤ ∀ ∈l , 
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and  
K K K

1 K
r r r 1x u r T ω≤ ≤ ∀ ∈l  

This implies  
K K K

K
r r r ru≤ +φ ≤l l , that is, 

K u

K K
r r r 1u for r T ωφ ≤ − ∈l  (23) 

Again, we have 
t t t

1
B B B Kx u t I , that isω≤ ≤ ∀ ∈l ,   

  
t t r t

K K K
B B r t B Kx y u t I ω≤ −φ ≤ ∀ ∈l . 

Three different cases arise depending on the value of 
r

K
ty . 

Case (1) : If 
r r

K K K
t r ty 0, then y 0= φ = . 

This implies 
t t t

K
B B B Kx u t I ω≤ ≤ ∀ ∈l . 

The condition is satisfied. 
Case (2) : If 

r r

K K K
t r ty 0, then ( y ) 0< −φ > . 

This implies 
l r

K K K
B r t(x y )−φ  is a positive integer which cannot exceed its upper bound that is, 

 
t r t

K K K
B r t B Kx y u t I ω−φ ≤ ∀ ∈  

or t t

r

K
B BK

r KK
t

u x
t I

y ω

−
φ ≤ ∀ ∈

−
 (24) 

Case (3): If 
r r

K K K
t r ty 0, then ( y ) 0> − φ <  

Thus, we have 
t r

K K K
B r t(x y )−φ   which cannot be less than its lower bound, that is, 

 
t t r

K K K
B B r t Kx y t I ω≤ −φ ∀ ∈l  

or t t

r

K
B BK

r KK
t

x
t I

y ω

−
φ ≤ ∀ ∈

l
 (25) 

Thus, from (23), (24) and (25), we get K
rφ  can assume any possible value given by 

t t t t

K K r r

r r

K K
B B B BK K K

r r r t K t KK K
t t

x u x
Min (u ), : y 0, t I , : y 0, t I ,

y yω ω

⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪
φ = − > ∈ < ∈⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟−⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

l
l  

 
The change in the value of the objective function g1ω (X) is given by 

 K

K
r r

1 K 1 K 1K u
K K r r r K

( )
g (X ) g (X ) ; {1, 2, ..., s }

D(X ) [D(X ) (z d ) ]
ω

ω ω

ω ω ω

φ Δ
ʹ − = ω∈

−φ −
 

where 
Kr K r r K K r r K( ) N(X ) (z d ) D(X ) (z c )ω ω

ω ω ω ω ωΔ = − − −  

Since 
K

K
r 1 1 K 1 K( ) 0 for r T , therefore, g (X ) g (X )ω ω ωʹΔ < ∈ < . 

Thus, all other integer feasible solutions which can be derived from K u(X )  by moving in the direction of 
K
1r T∈  will give value lower than 1 Kg (X )ω  and lie in the closed half space 

 
K K

K
1

j j
r T

(x ) 1
∈

− ≥∑ l  (26) 

Similarly, it can be shown that all integer feasible solutions which can be derived from K(X )ω by moving in 
the direction of K

2r T∈  will give value lesser than 1 Kg (X )ω  and lie in the closed half space  

 
K K

K
2

j j
r T

(u x ) 1
∈

− ≥∑  (27) 

From (26) and (27), we have 
K K K K

K K
1 2

j j j j
r T r T

(x ) (u x ) 1
∈ ∈

− + − ≥∑ ∑l . 
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Note: The result in Theorem (1) is proved for g1ω(X), one of the objective function of the problem 
(MLLFPP1). It holds for each objective function at the first level g1u(X), u = 1, 2, ..., s1. The result can be 
proved for each of the objective function of the problem (MLLFPP), iug (X); i 1,2,....,n;=  iu 1,2,....,s= . 
Definition 4.1: Edge - An edge K

rE  for some 1
K{r} N∈  incident at an integer feasible solution K(X )  is 

defined as 

  

K rK

K K

K K

K K

K
t t r t K

K 1
j t r KK

r 1
j j K

2
j j K

x x (y ), t I

x , {r} N
E :

x , j N \{r}

x u , j N

⎧ = −φ ∈
⎪
⎪ = + φ ∈⎪
⎨

= ∈⎪
⎪

= ∈⎪⎩

l

l
 (28) 

where 

t t t t

K K j j

j j

K K K t
B B B B

r r t K K t K KK
r t K t K

x u x
(u ), : (y ) 0, t I , : (y ) 0, t I

0 Min (y ) (y )

⎧ ⎫⎛ ⎞ ⎛ ⎞− −
⎪ ⎪⎜ ⎟ ⎜ ⎟− > ∈ < ∈⎪ ⎪⎜ ⎟ ⎜ ⎟≤ φ ≤ −⎨ ⎬⎝ ⎠ ⎝ ⎠
⎪ ⎪
⎪ ⎪⎩ ⎭

l
l

 (29) 

 
Definition 4.2:  An edge K

rE  for some 2
K{r} N∈  incident at an integer feasible solution K(X )  is defined as 

 

 

K jk

k K

K K

K K

K
t t r t K

K 2
r r r KK

r 1
j j K

2
j j K

x x (y ), t I

x u , {r} N
E :

x , j N

x u , j N \{r}

⎧ = + φ ∈
⎪
⎪ = − φ ∈⎪
⎨

= ∈⎪
⎪

= ∈⎪⎩

l
                                                        (30) 

where  

t t t t

K K j j

j j

K K K K
B B B B

r r t K K t K KK
r t K t K

x u x
(u ), : (y ) 0, t I , : (y ) 0, t I

0 Min (y ) (y )

⎧ ⎫⎛ ⎞ ⎛ ⎞− −
⎪ ⎪⎜ ⎟ ⎜ ⎟− < ∈ > ∈⎪ ⎪⎜ ⎟ ⎜ ⎟≤ φ ≤ −⎨ ⎬⎝ ⎠ ⎝ ⎠
⎪ ⎪
⎪ ⎪⎩ ⎭

l
l

 (31) 

 
Theorem 4.2: Edge Truncating Cut [ETC]: An integer feasible solution of the objective function g1ω(X), ω 
∈ {1, 2, ..., s1} for the problem (MLLFPP1), not lying at an edge K K

r 1E , r T∈  of the truncated region, through 
an integer point, say K(X )ω , lies in the closed half space 

 
K K K K

1 2
K K

j j j j
j N \{r} j N

(x ) (u x ) 1
∈ ∈

− + − ≥∑ ∑l  (32) 

Proof: Let 
K

* *
K u j u(X ) (x )=  be an integer feasible solution of the objective function g1ω(X) such that 

K

*
j(X )ω  

does not lie in the closed half space. Then,  
K

*
j(X )ω  must lie in the open half space, given by 

 
K K K K

1 2
K K

j j j j
j N \{r} j N

(x ) (u x ) 1
∈ ∈

− + − <∑ ∑l   

Since 
K

*
j(X )ω  is an integer feasible solution of g1ω(X), ω ∈ {1, 2, ..., s1}, which is lying in the open half space, 

therefore,  

 

t t rK K K

k K

K K

K K

* K
B B r t K

* K 1
r r r K*

K * 1
j j K

* 2
j j K

x x y , t I

x , r N
(X )

x , j N \{r}

x u , j N .

ω

ω

⎧ = −φ ∀ ∈
⎪
⎪ = + φ ∈⎪

= ⎨
= ∀ ∈⎪

⎪
= ∀ ∈⎪⎩

l

l
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We have, 
k K

*
j jx = l 1

Kj N \{r}∀ ∈ ; 
K K

*
j jx u= 2

Kj N∀ ∈  and either 
K K

*
j jx = l  or 

k K

*
r rx > l . 

Case (1):  Suppose that 
k K

*
r rx = l . 

We have, 
k K

*
j jx = l  1

Kj N∀ ∈  and 
K K

*
j jx u=  2

Kj N∀ ∈ . 
1 2 1 2
K K K K(N \{r}) {r} N N N∴ ∪ ∪ = ∪ . 

This means that index set of non-basic variables corresponding to *
K(X )ω  is same as K(X )ω . This implies that 

*
K K(X ) (X )ω ω= . But this is not possible, since (XK)ω lies on edge K

rE , whereas *
K(X )ω  does not. Hence 

K K

*
r rx ≠ l . 

Case (2): Suppose that
k K

*
r rx > l . 

We have, 
k K

* K
r r rx = +φl  where K

r 0φ >  is a scalar. This means that *
K(X )ω  lies in the direction of vector 

1
r Ka , r N∈ . Since (X*

K)ω is a positive integer satisfying 
K K

* K
r r rx = + φl  and  

t t t t

K K j j

j j

K K K K
B B B B

r r t K K t K KK
r t K t K

x u x
(u ); : (y ) 0, t I , : (y ) 0, t I

Min (y ) (y )ω ω

⎧ ⎫⎛ ⎞ ⎛ ⎞− −
⎪ ⎪⎜ ⎟ ⎜ ⎟− > ∈ < ∈⎪ ⎪⎜ ⎟ ⎜ ⎟φ ≤ −⎨ ⎬⎝ ⎠ ⎝ ⎠
⎪ ⎪
⎪ ⎪⎩ ⎭

l
l

 

Thus, *
K(X )ω  lies on an edge K

rE  in the direction of vector 1
r Ka , r N∈ . But this is a contradiction to our 

assumption that *
K(X )ω  does not lie on edge K

rE . Therefore, we have either 
K

*
j jKx > l  for at least one 

1
Kj N \{r}∈  or 

K K

*
j jx u<  for some 2

Kj N∈ .  

If 
K K

*
j jx > l  for at least one 1

Kj N \{r}∈  this implies that 
K K

*
j j(x ) 0− >l  or 

K K

*
j j(x ) 1− ≥l  for at least one 

1
Kj N \{r}.∈  If 

K K

*
j jx u<  for some 2

Kj N∈ , then 
K K K K

* *
j j j j(x u ) 0 or (x u ) 1− < − ≤  for some 2

Kj N ,∈  that is, 

K K

*
j j(u x ) 1− ≥  for some 2

Kj N∈ . Thus, integer feasible solution *
K(X )ω  not lying on edge K

rE , lies in the 
closed half space  

 
K K K K

K 2
1 K

j j j j
j N \{r} j N

(x l ) (u x ) 1
∈ ∈

− + − ≥∑ ∑  

Proposition 4.1: For K ≥ 1, all integer feasible solutions alternate to K(X )ω,  
ω ∈ {1, 2, ..., s1} depends on whether K

r 1φ <  or K
r 1φ ≥ . 

Proof:  Let K(X )ω  be an integer feasible solution for g1ω(X), one of the objective functions of the problem at 
the first level (MLLFPP1).  
Let K(X ) (K 1)ʹ ω ʹ ≥  be its Kth best integer feasible solution. Let K

jA
ʹ  denote the set of integer feasible 

solutions alternate to K(X )ʹ ω  on an edge K
rE
ʹ . The alternate solution to KX ʹ  if it exists is obtained by moving 

along the edge  K
rE
ʹ  for some K K

1 2r J Jʹ ʹ∈ ∪ . Suppose that for some K K K
1 2 rr J J , K 1, 1ʹ ʹ ʹʹ∈ ∪ ≥ φ < . Then, there is 

no eligible directions incident at the integer feasible solution K(X )ʹ ω . Hence, there is no integer feasible 
solution on the edge K

rE
ʹ . This edge K

rE
ʹ  is truncated by applying ETC. 

Let K
r 1ʹφ ≥  for some K K

1 2r J J .ʹ ʹ∈ ∪  Since 
r

K K K
r r tand yʹ ʹ ʹφ φ  are integers for all kt I

ώ
∈ , therefore, by moving 

along the edge K
rE
ʹ , a solution alternate to K(X )ʹ ω  is obtained. After obtaining all integer feasible solutions on 

the edge K
rE
ʹ , this edge is truncated using ETC. Thus, an optimal feasible solution for g1ω(X) is obtained over 

the truncated region. It is either an integer feasible solution alternate to K(X )ʹ ω  or the next best integer 
solution K 1(X )ʹ+ ω  or a non-integer point. Therefore, by repeated application of ETC and the mixed-integer 
cuts, whole feasible region for the integer solution at each level is scanned. 
If after applying ETC's the solution at any level is infeasible, the objective function g1ω(X) is infeasible. Thus, 
the process terminates. 
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For the problem g1ω(X), ω ∈ {1, 2, ...,s1}, the procedure for finding the integer solution moves from one 
extreme point to another which are finite in number, therefore, the procedure for finding the optimal solution 
for g1ω(X) terminates in a finite number of steps. 
Note: The above results have been proved for each g1ω(X); ω ∈ {1, 2, ....,s1}, one of the objective function of 
the problem (MLLFPP1). These results also hold for each of the objective functions (g1ω(X); i = 1, ..., n, u = 1, 
2, ..., si) at K-levels of the problem (MLLFPP). 
 
5. ALGORITHM FOR SOLVING MULTI-LEVEL INTEGER     PROGRAMMING PROBLEM 
WITH MULTIPLE OBJECTIVES AT EACH LEVEL 
 
Step 1  Set i = 1, K = 1. 
Step 2                 Set u = 1, 2, ..., si. 
Step 3                Consider Zi(XK). Let r

K i,u(X )  be an optimal solution of giu(X), (u = 1, 2, ..., si). 

  If r
K i,u(X )  is an integer solution for g1u(X), go to step 4. 

  Otherwise, apply the mixed integer cut to find the integer solution of g1u(X). 
 
Step 4                  Consider Zi+1(XK). Solve gi+1,u(X), u = 1, 2, ..., si+1. 
  Let its optimal integer solution be r

K i 1,u i 1(X ) ,u 1,2,...,s+ +=% .  

If r r
K i,u K i 1,u(X ) (X ) += % , go to step 6 or to step 9.  

Otherwise, set K K K
i,u 1,r i,u 2,r i,u(J ) (J ) (J )= ∪ . Go to step 5. 

Step 5                 If K
i,u(J ) ,= φ   introduce the cut given by equation (18) into the optimal table of r

K i,u(X ) . 
Go to step 8. 

  If K
i,u(J ) ≠ φ  choose j ∈ JK for which K

j i,u( ) 1φ ≥  and determine all the integer solutions 

along the edge K
j i,u(E ) . Formulate the set K r

j i,u(A ) ,  that is the set of integer feasible solutions 

alternate to r
K i,u(X )  on the edge K r

j i,u(E ) . Go to step 7. 

  If K
j i,u( ) 1φ < , for K

i,uj (J )∈ , choose any {j} and go to step 7. 

Step 6  Formulate the set K r
j i 1,u(A ) + . 

  If K r K r
j i,u j i 1,u(A ) (A ) +∩ ≠ φ i.e. for some j, K K

j i,u j i 1,u(X ) (X ) ;+=  go to step 9. Otherwise, go to 
step 7.  

  If K r K r
j i,u j i 1,u(A ) (A ) +∩ = φ. Go to step 9. 

Step 7  Truncate the edge K
j i,u(E )  by applying the cut 

        
k K k K

1 2
K K

1
j j u j j u K

j N \{r} j N

(x ) (u x ) 1 {j} T
∈ ∈

− + − ≥ ∈∑ ∑l  

  or    
K K K K

1 2
K K

2
j j u j j u K

j N j N \{r}

(x ) (u x ) 1 {j} T
∈ ∈

− + − ≥ ∈∑ ∑l  

 
Step 8  If the problem so obtained is infeasible, go to step 11. Otherwise, set  
                             r = r + 1. Go to step 3. 
 
Step 9                Find the efficient feasible solution for the problem Zi(XK).  
  Set i = i + 1. Go to step 2. 
 
Step 10               Formulate the set of efficient feasible solutions at every level of the problem (MLLFPP). 
  From the set of efficient feasible solutions so formed at each level of the problem, formulate 

the set of efficient solutions (SE) for the problem (MLLFPP).  
Step 11               (MLLFPP) is infeasible. 
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 6. ILLUSTRATIVE EXAMPLE 
 
 Consider the Multi-Level Integer Linear Fractional Programming Problem with Bounded Variables 
 
                                      
(MLLFPP):  

1
1 1 2 3 4 11 12x

MaxZ (x ,x ,x ,x ) Max(g (X), g (X))=   

  

1 31 2
11 12

1 4 3 4

x x 52x 3x 2
g (X) , g (X)

x 3x 4 x x 3
+ ++ +

= =
+ + + +

  

                            where (x2, x3, x4) solves 
  

2 3 4
2 1 2 3 4 21 22x ,x , x

Max Z (x ,x ,x ,x ) Max(g (X), g (X))=  

  1 2 31 2 4
21 22

2 3 2 4

x 2x x 2x 2x x 5
g (X) , g (X)

x 2x 3 x x 5
+ + ++ + +

= =
+ + + +

 

  subject to   
                    2x1 + x2 + 3x3        ≤ 13 
                            2x2 +  x3 + x4 ≤ 10 
                  x2 + 5x3       ≤ 11 (33) 
                   −x1 + 4x2 + x3 + x4 ≤ 15 
                      x1 + x2          + x4 ≤ 12 
where 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2, 1 ≤ x3 ≤ 3, 0 ≤ x4 ≤ 5  x1, x2, x3, x4 are integers. 
Solution: Consider the problem at first level w.r.t. the constraints (33), defined as (MLLFPP1). 
(MLLFPP1): 1 1 2 3 4 11 12Max Z (x , x , x , x ) Max (g (X), g (X))=  
 subject to 
  2x1 + x2 + 3x3       + x5  = 13 
          2x2 +  x3 + x4       + x6  = 10 
    x2 + 5x3                    + x7  = 11 (34) 
  −x1 + 4x2 + x3 + x4                       + x8  = 15 
     x1 + x2          + x4                               + x9 = 12 
where 1 2 3 4 5 6 7 8 90 x 4, 0 x 2, 1 x 3, 0 x 5, 0 x ,x ,x ,x ,x .≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤∞  

 Solving 1 2
11

1 4`

2x 3x 2
Maxg (X)

x 3x 4
+ +

=
+ +

 

 subject to the constraints (34). 
At lower bound, we have x1 = 0, x2 = 0, x3 = 1, x4 = 0, x5 = 10, x6 = 9, x7 = 6,  
x8 = 14, x9 = 12. 

    ℓ ℓ ℓ ℓ      
   cj→ 2 3 0 0 0 0 0 0 0 
   dj→ 1 0 0 3 0 0 0 0 0 
CB DB VB XB x1 x2 x3 x4 x5 x6 x7 x8 x9 

0 0 x5 10 2 1 3 0 1 0 0 0 0 
0 0 x6 9 0 2 1 1 0 1 0 0 0 
0 0 x7 6 0 1 5 0 0 0 1 0 0 
0 0 x8 14 −1 4 1 1 0 0 0 1 0 
0 0 x9 12 1 1 0 1 0 0 0 0 1 
N1(X) = 2 zj

11−cj→ −2 −3 0 0 0 0 0 0 0 
D1(X) = 4 zj

12−dj→ −1 0 0 −3 0 0 0 0 0 
 Δj → 6 12 0 −6 0 0 0 0 0 

Table 1: Solution table for the problem g11(X) 
Entering Variable: x2 
Departing Variable: Δ2= Min(γ1, γ2, u2 − ℓ2), 

where t t t t

r r

r r

B B B B
1 t 2 t

t t

x u x
Min : y 0 and Min : y 0

y y
⎛ ⎞ ⎛ ⎞− −

γ = > γ = <⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

l
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2
9 14Min 10, ,6, ,12, 2 2
2 4

⎛ ⎞∴ Δ = =⎜ ⎟
⎝ ⎠

 

2 2 2x 0 2 2∴ → +Δ = + =l  

Corresponding changes in the values of xi's is given by B 2 2
ˆX b y= − Δ . 

5

6

7

8

9

x 10 1 8
x 9 2 5
x 6 2 1 4

14 4 6x
12 1 10x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

1
11

1

N (X) 8g (X) 2
D (X) 4

∴ = = =  

The optimal table for the problem g11(X) is given by 
 

    ℓ u ℓ ℓ      
   cj→ 2 3 0 0 0 0 0 0 0 
   dj→ 1 0 0 0 0 0 0 0 0 
CB DB VB XB x1 x2 x3 x4 x5 x6 x7 x8 x9 

0 0 x5 8 2 1 3 0 1 0 0 0 0 
0 0 x6 5 0 2 1 1 0 1 0 0 0 
0 0 x7 4 0 1 5 0 0 0 1 0 0 
0 0 x8 6 −1 4 1 1 0 0 0 1 0 
0 0 x9 10 1 1 0 1 0 0 0 0 1 
N1(X) = 8 zj

11−cj→ −2 −3 0 0 0 0 0 0 0 
D1(X) = 4 zj

12−dj→ −1 0 0 −3 0 0 0 0 0 
 Δj → 0 12 0 −24 0 0 0 0 0 

Table 2: Optimal Table for the problem g11(X) 
Here, j 0Δ ≤  for lower bounded non-basic variables and j 0Δ ≥  for upper bounded non-basic variables. 

∴ Optimal solution for g11(X) is 1
1 1,1(X ) (0,2,1,0).=  

Putting 1
1 1,1(x ) 0=  in g21(X) and solving as explained above, we find that 1

1 2,1(X ) (0,2,1,5)= .   

∴ 1 1
1 1,1 1 2,1(X ) (X )≠ . 

Formulate the set (J1)1,1 = 1
K j{j N : 0} {1,3}∈ Δ = = , from Table 2. 

Take j = 1. We have 1
10 min(4,4,0,6),< φ ≤ , i.e. 1

10 4< φ ≤ . 
Since 1

1φ  is an integer ∴ it can assume values 4, 3, 2, 1. Using equation (22), for the values of 1
1φ  = 4, 3, 2, 1, the 

corresponding solutions of g11(X) are given by 
1

2 1,1(X ) (4,2,1,0)= ,    1
3 1,1(X ) (3, 2,1,0),=      

1
4 1,1(X ) (2,2,1,0)= ,     1

5 1,1(X ) (1,2,1,0)= . Again if we take j = 3, 

then 1
3
40 1
5

< φ ≤ < . 

Therefore, no alternate feasible solution exists corresponding to this edge. 

Applying the cut 
1 2
K K

jK jK jK jK
j N \{r] j N

(x ) (u x ) 1
∈ ∈

− + − ≥∑ ∑l  in the optimal table of g11(X), the solution so 

obtained is 1
6 1,1(X ) (1,2,1,0)= . Thus, by applying the algorithm for the various values of g11(X), the 

corresponding values of g21(X) and g22(X) are tabulated as below: 
 g11(X) g21(X) g22(X) 

1
1 1,1(X ) =  

(0, 2, 1, 0) (0, 2, 1, 5) (0, 2, 1, 0) 

1
2 1,1(X ) =  

(4, 2, 1, 0) (4, 0, 1, 5) (4, 2, 1, 0) 

1
3 1,1(X ) =  

(3, 2, 1, 0) (3, 0, 1, 5) (3, 2, 1, 0) 
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1
4 1,1(X ) =  

(2, 2, 1, 0) (2, 0, 1, 5) (2, 2, 1, 0) 

1
5 1,1(X ) =  

(1, 2, 1, 0) (1, 0, 1, 5) (1, 2, 1, 0) 

1
6 1,1(X ) =  

(1, 2, 1, 0) (1, 0, 1, 5) (1, 2, 1, 0) 

2
7 1,1(X ) =  

(0, 0, 1, 0) (0, 2, 1, 5) (0, 2, 1, 0) 

2
8 1,1(X ) =  

(0, 0, 1, 2) (0, 2, 1, 5) (0, 2, 1, 3) 

2
9 1,1(X ) =  

(0, 2, 1, 5) (0, 2, 1, 5) (0, 2, 1, 0) 

Table 3: Evaluation of g21(X) and g22(X) corresponding to the values of g11(X) 
From above, we obtain the set of efficient feasible solution is given by   (SE)1 = {(4, 2, 1, 0)} corresponding 
to which Z1(X) = 2 and Z2(X) = 2.5. 
Again, applying the algorithm to g12(X), the table so formed is given below: 

 g12(X) g21(X) g22(X) 
1

1 1,2(X ) =  
(4, 0, 1, 0) (4,0, 1, 5) (4, 0, 1, 0) 

1
2 1,2(X ) =  

(4, 0, 1, 5) (4, 0, 1, 5) (4, 2, 1, 0) 

2
3 1,2(X ) =  

(3, 0,1, 0) (3, 0, 1, 5) (3, 2, 1, 0) 

3
4 1,2(X ) =  

(2, 2, 1, 0) (2, 0, 1, 5) (2, 2, 1, 0) 

3
5 1,2(X ) =  

(2, 2, 1, 5) (2, 0, 1, 5) (2, 2, 1, 0) 

3
6 1,2(X ) =  

(3, 0, 1, 5) (3, 0,1, 5) (3, 0, 1, 0) 

3
7 1,2(X ) =  

(1, 0, 2, 5) (1, 0, 1, 5) (1, 2, 1, 0) 

3
8 1,2(X ) =  

(4, 0, 1, 5) (4, 0, 1, 5) (4, 2, 1, 0) 

3
9 1,2(X ) =  

(4, 2, 1, 0) (4, 0, 1, 5) (4, 2, 1, 0) 

3
10 1,2(X ) =  

(4, 2, 1, 5) (4, 0, 1, 5) (4, 2, 1, 0) 

Table 4: Evaluation of g21(X) and g22(X) corresponding to the values of g12(X) 
From above, the set of efficient feasible solutions is given by (SE)2 ={(4, 2, 1, 0)}, corresponding to which Z1(X) = 
2 and Z2(X) = 2.5 
Thus, the set of efficient feasible solutions for the problem (MLLFPP) is given by

1 2(SE) (SE) (SE) {(4,2,1,0)}= ∪ = . 
The above problem is solved using LINGO 17. The set of efficient solution for the problem (MLLFPP) so 
obtained is (4, 2, 1, 0). 
 
7. CONCLUSION  
 
The proposed algorithm scans the feasible region of multi-level programming problem with multi-objectives at each 
level (MLLFPP). The scanning is done to find the efficient integral solutions of (MLLFPP) problem. The portion of 
the feasible region which contains no integer feasible solution is removed by the edge truncating cut. The algorithm 
scrutinizes the edges in such a manner that edges once removed cannot reappear. The problem (MLFPP) is also solved 
using LINGO17. With the computing software, the following observations are noted: 
For the objective function g11(X), total solver iterations: 21, Elapsed runtime in seconds: 0.19 
For the objective function g12(X), total solver iterations: 26, Elapsed runtime in seconds: 0.22 
After putting the value of x1=0 from the upper level problem in the lower level problem and solving, we get 
For the objective function g21(X), total solver iterations: 20, Elapsed runtime in seconds: 0.11 
For the objective function g22(X), total solver iterations: 20, Elapsed runtime in seconds: 0.12 
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Thus, we observe that the computing software LINGO 17 supports the calculations and the convergence time 
of the algorithm is apparently reducing. 
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