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ABSTRACT:  
This paper is a production integrated inventory model between manufacturer and retailer with quadratic demand and time 
dependent deterioration. Paper also considers effect of inflation on total cost. Manufacturer offers lot size dependent ordering 
cost to boost higher orders as well as it decreases manufacturer’s inventory holding cost significantly. Total cost of model is 
obtained using both classical optimization technique and genetic algorithm. Results clearly show that GA has succeeded in 
obtaining global minimum whereas classical method has stuck with local minimum. For using classical optimization technique 
we have used Maple 18 whereas for genetic algorithm we have used MATLAB R2013a.The optimal solution of this model is 
illustrated using numerical example. Sensitivity for inflation and other parameters of demand has been carried out to analyse 
their effect on total cost. This paper will encourage researchers involve in inventory and supply chain management to optimize 
complex problems using different evolutionary search algorithm in order to reach to global optimum.   
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RESUMEN:  
Este documento es un modelo de inventario integrado de producción entre el fabricante y el minorista con demanda cuadrática y 
deterioro dependiente del tiempo. El documento también considera el efecto de la inflación en el costo total. El fabricante ofrece 
un costo de pedido dependiente del tamaño del lote para impulsar pedidos más altos y también disminuye significativamente el 
costo de mantenimiento del inventario del fabricante. El costo total del modelo se obtiene utilizando la técnica de optimización 
clásica y el algoritmo genético. Los resultados muestran claramente que GA ha logrado obtener el mínimo global mientras que el 
método clásico se ha quedado con el mínimo local. Para utilizar la técnica de optimización clásica, hemos utilizado Maple 18, 
mientras que para el algoritmo genético hemos utilizado MATLAB R2013a. La solución óptima de este modelo se ilustra 
mediante un ejemplo numérico. La sensibilidad para la inflación y otros parámetros de la demanda se han llevado a cabo para 
analizar su efecto sobre el costo total. Este documento alentará a los investigadores a participar en el inventario y en la gestión 
de la cadena de suministro para optimizar problemas complejos utilizando diferentes algoritmos de búsqueda evolutiva con el fin 
de alcanzar el óptimo global.  
 
PALABRAS CLAVE:  Inventario integrado, deterioro dependiente del tiempo, algoritmo genético, tamaño del lote dependiente 
del costo de la orden, demanda cuadrática dependiente del tiempo, inflación 

 
1. INTRODUCTION 

 
Till a recent past every member of supply chain was managing its own inventory in isolation and minimizes 
its cost individually. But later researchers realised that optimization of cost or profit with respect to only one 
member could be at the cost of other members. This will not lead to a long term authentic inventory model. 
Therefore researchers started proposing integrated model where joint profit or cost is optimized and at the 
same time individual profits are studied. Goyal (1976): firstly made integrated model for single supplier and 
single customer so that either both the parties get economical benefit or no one at least get loss. Banerjee 
(1986): extended that model for joint optimal total cost for purchaser and vendor. Goyal & Gunasekaran 
(1995): formulated joint optimal model for deteriorating items. Rau et al. (2006): extended optimal total cost 
among the supplier, the producer, and the buyer. Cárdenas-Barrón et al. (2011): optimized integrated 
inventory model using arithmetic–geometric inequality. Chung & Cárdenas-Barrón (2014): formulated two-
echelon model using promotional tool when demand depends on sales team’s initiatives. Sarkar et al. (2014): 
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generated model for defective items in case of payment delay. Sarkar (2016): formulated quantity discount 
model for shortages with three stage inspection. Shah et al. (2017): generated model for multi-items with up-
stream permissible delay. 
Managing inventory of deteriorating items electronic products, medicines and fashion accessories that loses 
their utility and demand with time or perishable items with very less shelf life like dairy products, fish, meat, 
vegetables, etc. is not an easy task. Researchers have already studied effect of deterioration using different 
governing functions. Classical EOQ model was firstly assumed for exponentially deteriorating items by Ghare 
& Schrader (1963): Covert & Philip (1973): formulated model for items that follow two parameter Weibull 
distributiomn. Philip (1974): generalized that model. Patil & Patel (2013): extended that for linear demand 
under inflation. Mohan and Venkateswarlu (2013a, 2013b, 2013c, 2014): extended that model for quadratic 
demand using different promotional tools.  
Classical optimization techniques either unable to address complex multi-variable non-linear problems or 
stuck with local optimum. For this type of problems researchers are using various heuristic search algorithms 
like genetic algorithm, particle swam optimization and simulated annealing. Genetic algorithm is based on the 
natural selection process of nature in which next generation is always better than the previous one. Solutions 
get fitness score in the basis of fitness function and slowly with iterations all the possible solutions move 
towards global optimum. Goldberg (1989): introduces principle and algorithm of GA. Since then it has been 
used in the wide variety of problems for optimization. Murata et al. (1996):, Goren (2008):, Radhakrishnan at 
el. (2009):, Radhakrishnan at el. (2010):, Narmadha et al. (2010):, Woarawichai (2012): , Mishra and Talati 
(2015): etc have used genetic algorithm to solve their optimization problems.  
Inflation plays an important role in inventory management as it may happen in the case of long cycle times 
that the actual value of the revenue is too less than it seems to be. Thus, role of inflation must be studied for 
long term inventory supply chain models. Sarkar & Pan (1994): formulated model under shortages. Sarkar et 
al. (2010): extended that model with permissible delay in payment. Shah & Shukla (2010): generated model 
for order linked trade credit. Shah & Vaghela (2016): formulated model for an imperfect production with 
effort dependent demand. Shah & Vaghela (2017): explained model with an advertisement dependent 
demand. All the above mentioned papers has studied integrated supply chain system either without 
deterioration or with constant deterioration but our proposed model has considered time dependent 
deterioration with the effects of inflation. Moreover, unlike above mentioned papers we have just not solved 
the problem with analytical approach but also analysed it with Genetic Algorithm due to complexity of the 
problem.     In this paper we have considered supply chain of single manufacturer and single retailer for items 
that deteriorate with respect to time and follow Weibull distribution. Demand is time dependent and quadratic 
in nature and model is studied under inflation. We have optimized our problem using classical optimization 
technique and genetic algorithm. Sensitivity analysis of important demand parameters is carried out to study 
its effect on the total cost. 

2. ASSUMPTIONS AND NOTATIONS: 
 
2.1 Notations 

             Inventory parameters for manufacturer 

mA   
Set up costs($): 

mh   
Holding cost / unit / annum($): 

P
  

Production rate (and known): 

1b   
Deteriorating cost /unit ($): 

γ
  

Salvage cost/unit ($): 

mTC
  

Total cost for manufacturer($): 

            Inventory parameters for retailer 
oC   Fix ordering cost($): 

rQ   Retailer’s order quantity per order 

T   Cycle time(Years): 

rh   Holding cost for retailer($): 

( )tθ   Time dependent deterioration of Inventory follows Weibull distribution 
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rTC   Total cost for retailer($): 

r  Rate of inflation 
TC  
T  η     

Joint total cost($): 
Cycle time (Decision variable): 
Lot size parameter (Decision variable):  

2.2. Assumptions 
 
1. Considered system with single manufacturer and single retailer for a single item. 
2.   The demand rate ( )D t  at time t is assumed to be ( ) 2; 0, 0, 0D t a bt ct a b c= + + ≥ ≠ ≠ . 
 Here a  is initial rate of demand. 

              b is the rate with which demand rate is increases. 
              c  is the rate with which the change in the rate demand rate itself increases. 
   
3. Shortages are not allowed and lead time is zero. 
4. The production rate is constant say ( ),P P D t>   
5. Ordering cost is lot size dependent. 
6. System’s inventory depleted with respect to time and follow Weibull distribution. 
( ) 1 ; 0< <1, 1,t>0t tβθ αβ α β−= ≥   

7. Deteriorating items are neither repaired nor replaced during cycle time T. 
8. The effect of inflation and time value of money are considered. 
 
3. MATHEMATICAL MODEL 
 
3.1. Manufacturer’s present worth total cost 
 
The on hand inventory of manufacturer depletes with demand and deterioration. Then the governing equation 
of inventory at any time t is given by 

( ) ( );  0 t Tm
m

dQ
t Q P D t

dt
θ= − + − ≤ ≤  

                                                              (1)                               

  
Solving equation (1): using boundary conditions ( )0 0 mQ =  we get 

( ) ( )
2 3

2 3m
bt ctQ t P a t= − − −   

                                                                 (2) 

       Using ( )Qm mT Q= we get total quantity produce by manufacturer per cycle is  

( )
2 3

2 3m
bT cTQ P a T= − − −  

                                                                 (3) 

       Basic costs associated with manufacturer 
• Set-up Cost 

m mSC A=                                                                    (4) 

• Holding Cost 

( )
0

T
rt

m m mHC h Q t e dt−= ∫   

        
( ) ( )2 34 3 5 4

2 12 6 3 15 8m
P a T P a rTcT bT crT brTh

⎛ ⎞− −
⎜ ⎟= − − − − +
⎜ ⎟
⎝ ⎠

   

       (5) 

 
 

                   Number of deteriorating items 



	 345	

( )
0

( )
T

rt
m mDE T Q D t e dt−= − ∫                

(6) 

• Deteriorating Cost 
( )1m mDC b DE T=                                                      (7) 

• Salvage Cost 
( )1m mSV b DE Tγ=                                                      (8) 

 
So total present worth total cost for manufacturer is 

( )m m m m mTC T SC HC DC SV= + + −   
                                                  (9) 

                                         (Refer Appendix 1 for TCm(T): equation): 
 
3.2. Retailer’s present worth total cost 
 
Here we take demand and deterioration both times dependent. So on hand inventory of retailer at any time t is 
given by differential equation 

( ) ( )  ; 0 t Tr
r

dQ t Q D t
dt

θ+ = − ≤ ≤   
                                                    (10) 

Using boundary condition ( ) 0rQ T =  and ignoring higher term of α  and r  we get 

      (11) 
 
 
 
 
 
 
 

and use ( )0r rQ Q=  we get 

1 2 3
2 3

2 3 1 2 3r
b c aT bT cTQ aT T T

β β β

α
β β β

+ + +⎛ ⎞⎛ ⎞
= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠       

 
                             

(12) 

    Basic costs associated with retailer 

• Ordering cost is lot size dependent so 

0  ,0 <  < 1r rOC C Qη η=                                                  (13) 

• Holding cost  

               ( )
0

T
rt

r r rHC h Q t e dt−= ∫                                                                                                            (14) 

(Refer appendix 2): 

• Number of deteriorating units 

Qr t( ) = 1+αt β( ) a T − t( )+ b2 T
2 − t 2( )+ c3 T

3 − t 3( )
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

α
a
β +1

T β+1 − t β+1( )+ b
β + 2

T β+2 − t β+2( )+ c
β +3

T β+3 − t β+3( )
⎡

⎣
⎢

⎤

⎦
⎥
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( ) ( )
0

T
rt

r rDE T Q D T e dt−= − ∫   

                                                        (15) 

• Deteriorating cost 
( )1r rDC b DE T=                                                     (16) 

• Salvage cost 
( )1r rSV b DE Tγ=                                                     (17) 

So retailer present worth of total cost is  

( ),r r r r rTC T OC HC DC SVη = + + −   
                                            (18) 

3.3. Joint present worth total cost 
 
System present worth of total cost is 

( ) ( ) ( ), ,m rTC T TC T TC Tη η= +                                                       (19): 

 
 

4. COMPUTATIONAL ALGORITHMS 
 
We have three objective functions: Present worth of total cost of manufacturer, retailer and joint for system. 
We optimize those using analytical and Genetic algorithm. Set numerical values for different parameters 
except for decision variables  and T η  . 
 
4.1. Analytical Algorithm 

1. Calculate optimal cycle time *T  from 0mTC
T

∂
=

∂
  

2. Using optimal cycle time obtain optimal lot size and present worth total cost for manufacturer. 

3. Find optimal *T  and *η  from 0 and 0r rTC TC
T η

∂ ∂
= =

∂ ∂
 simultaneously. 

4. Using *T  and *η compute optimal lot size and present worth total cost for retailer. 

5. Obtain *T  and *η  from 0 and 0TC TC
T η

∂ ∂
= =

∂ ∂
 simultaneously. 

6. Using *T  and *η compute optimal lot size and present worth total cost for manufacturer, retailer and hence for system. 

 
4.4. Genetic Algorithm 

 
1. Start with an initial population of 30 chromosomes.  
2. Get there fitness score to rank them.  
3. Chromosomes will get entry in mating pool on the basis of their fitness score using rank selection method. 
4. Perform stochastic uniform crossover for reproduction. Crossover fraction is considered 0.8 and 2-Elites are considered at 
each generation.  
5. Again rank members of new generation by their fitness function and select members which can create next generation.  
6. Perform step 3 and step 4 till absolute difference between two successive members is negligible i.e 1i ix x+ −   < tolerance 

 
5. NUMERICAL EXAMPLES AND SENSITIVITY ANALYSIS 
 
Example: Consider inventory and supply chain parameters  
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1 01000,  b = 1.5, c = 2.5,  = 0.1,  = 1.5,  = 0.1($), P = 3000, A 200($),  b 0.1($),  C 2($),  
2($ / ),  h 2($ / )

m

m r

a
h unit unit

α β γ= = = =

= =
  

Using analytical method we get results that shown in Table-1 
               

Table-1: Computational results obtain using analytical approach 
 Non-integrated scenario Integrated scenario 

Optimal cycle time  0.162 0.2 

Optimal eta  0.135 0.184 

Optimal quantity  277 284 

Manufacturer’s total cost 595.91 590.253 

Retailer’s total cost 432.66 358.352 

System total cost 1028.57 948.605 

 
(Refer Appendix 3 for convexity of analytical solution): 
 
Results obtained for the same scenario using genetic algorithm is given in Table-2. Best fitness function for 
non-integrated scenario using genetic algorithm took 25 iterations for manufacturer and 14 iterations for 
retailer. Those best fitness plot shown in Figure 1 and Figure 2 respectively. And for integrated scenario 
genetic algorithm took 20 iterations. It’s best fitness plot is given in Figure 3.  
 

Table-2: Computational results obtain using genetic algorithm 
 Non-integrated scenario Integrated scenario 
Optimal cycle time  0.1 0.2 
Optimal eta  0.242 0.2 
Optimal quantity  242 262 
Manufacturer’s total cost 541.883 510.182 
Retailer’s total cost 323.872 133.593 
System total cost 865.755 643.775 

 

                
 
Figure 1: Best fitness solution for manufacturer’s present worth total cost in non-integrated scenario 
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Figure 2: Best fitness solution for retailer’s present worth total cost in non-integrated scenario 

 

 

Figure 3: Best fitness solution for system’s present worth total cost in integrated scenario 

 Sensitivity Analysis: Sensitivity analysis is carried out for above example 
 

Table-3: Sensitivity analysis for accelerated growth model 

Parameters Iterations *T  *η  TC($): 

α  

0.1 51 0.2 0.2 643.775 
0.2 51 0.2 0.2 643.818 
0.3 51 0.2 0.2 643.830 
0.4 51 0.2 0.2 643.841 
0.5 52 0.2 0.2 643.879 
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Case-(i): Accelerated growth model: If 0 and c 0 b > > , demand   increases rapidly which is shown in Figure 
4. Further, sensitivity of different parameters in this case is shown in Table 3. 
 
 

 
 
                        
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Demand verses Time in accelerated growth model 
 
 
 
 
 
Case-(ii): Accelerated decline model: If 0 and c 0 b < < , demand decrease  rapidly  which is shown in Figure 
5. Further, sensitivity of different parameters in this case is shown in Table 4. 
 

Table-4: Sensitivity analysis for accelerated decline model 
Parameters Iterations *T  *η  TC 

α  
0.1 51 0.2 0.2 642.511 
0.2 51 0.2 0.2 642.481 
0.3 51 0.2 0.2 642.458 

β  

1.5 51 0.2 0.2 643.775 
2.0 54 0.2 0.19 643.438 
2.5 51 0.2 0.198 643.368 
3.0 52 0.2 0.196 642.903 
3.5 51 0.2 0.194 642.803 

r  

0.1 51 0.2 0.2 643.775 
0.2 51 0.2 0.2 642.484 
0.3 54 0.2 0.2 641.018 
0.4 52 0.2 0.2 639.622 
0.5 51 0.2 0.284 638.622 

Time 

Demand 

0.5	 1	 1.5	 2.5	2	 3	

200	

			300	

400	

100	
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0.4 51 0.2 0.2 642.431 
0.5 51 0.2 0.2 642.408 

β  

1.5 51 0.2 0.2 642.511 
2.0 51 0.198 0.221 642.415 
2.5 51 0.197 0.2 642.395 
3.0 51 0.195 0.2 642.382 
3.5 51 0.192 0.2 642.376 

r  

0.1 51 0.2 0.2 642.511 
0.2 51 0.2 0.2 633.356 
0.3 52 0.2 0.2 630.568 
0.4 51 0.2 0.2 624.507 
0.5 51 0.2 0.2 618.545 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Demand verses Time in accelerated decline. 
 
 
 
 
 
Case-(iii): Retarded growth model: If

 
0 and c > 0 b < ,  demand slightly decreasing but then rapidly 

increase which is shown in Figure 6. Further, sensitivity of different parameters in this case is shown in Table 
5. 

Table-5: Sensitivity analysis for Retarded growth model 
Parameters Iterations *T  *η  TC 

α  

0.1 51 0.2 0.2 642.501 
0.2 51 0.2 0.2 642.495 
0.3 51 0.2 0.2 642.439 
0.4 51 0.2 0.2 642.426 
0.5 51 0.2 0.2 642.400 

β  

1.5 51 0.2 0.2 642.501 
2.0 51 0.21 0.2 642.439 
2.5 51 0.22 0.2 642.375 
3.0 51 0.23 0.2 642.280 
3.5 51 0.2358 0.2 642.192 

0.5	 1	 1.5	 2.5	2	 3	

100	

200	

300	

40
0	

Time 

Demand 



	 351	

r  

0.1 51 0.2 0.2 642.501 
0.2 51 0.2 0.2 642.374 
0.3 52 0.2 0.212 639.951 
0.4 51 0.2 0.2 639.589 
0.5 51 0.2 0.2 638.125 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
                  

Figure 6: Demand verses time in retarded growth model 
Case-(iv): Retarded decline model: If

 
0 and c < 0 b > , demand slightly increasing but then rapidly decrease. 

which is shown in Figure 7. Sensitivity of different parameters in this case is shown in Table 6. 

  
 
 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Demand verses time in retarded decline model 
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Table-6: Sensitivity analysis for retarded decline model 
Parameters Iterations *T  *η  TC 

α  

0.1 51 0.2 0.212 642.431 
0.2 51 0.2 0.2 642.458 
0.3 51 0.21 0.198 642.489 
0.4 51 0.214 0.195 643.251 
0.5 51 0.219 0.184 643.554 

β  

1.5 51 0.2 0.212 642.431 
2.0 51 0.2 0.2156 642.692 
2.5 51 0.2 0.2158 642.744 
3.0 51 0.2 0.222 643.024 
3.5 51 0.2 0.231 643.524 

r  

0.1 51 0.2 0.212 642.431 
0.2 53 0.2 0.2 642.244 
0.3 51 0.2 0.2 641.581 
0.4 51 0.2 0.2 641.123 
0.5 51 0.2 0.2 640.842 

The outcomes from sensitivity analysis are as follow. 

• For accelerated growth model 
As scale parameter increase present worth of total cost increase with same optimal cycle time T and order power η   
As shape parameter increase present worth of total cost and optimal cycle time decrease with same optimal order power η   
As inflation increase present worth of total cost decrease with keeping optimal cycle time T and order power η   
• For accelerated decline model 
As scale parameter increase present worth of total cost increase with same optimal cycle time T and order power η   
As shape parameter increase present worth of total cost and optimal cycle time decrease with same optimal order power η   
As inflation increase present worth of total cost decrease with keeping optimal cycle time T and order power η   

• For retarded growth model 
As scale parameter increase present worth of total cost decrease with same optimal cycle time T and order power η   

As shape parameter increase present worth of total cost decrease and optimal cycle time increase with same optimal order power η   
As inflation increase present worth of total cost decrease with keeping optimal cycle time T and order power η   
• For retarded decline model 
As scale parameter increase present worth of total cost increase with increasing in optimal cycle time T and decreasing in optimal order 
power η   
As shape parameter increase present worth of total cost increase and with increasing optimal order power η  while optimal cycle time 
remain constant. 
As inflation increase present worth of total cost decrease with keeping optimal cycle time T and order power η . 

  
6. CONCLUSIONS 
 
In this paper, we have developed an integrated production inventory model for time dependent deteriorating 
units when demand rate follows time dependent quadratic function under inflation. To make model more 
authentic and usable lot size dependent ordering cost is being assumed. Total system cost as well as cost of 
individual players has been studied. The most important part of the paper is that model has been optimized 
using both classical optimization technique and genetic algorithm. Major conclusion of the paper is that GA 
approaches to global minimum whereas analytical method got stuck with local minimum for the problem 
discussed in the Mathematical model. Effect of demand parameters and inflation towards total cost is studied. 
Model is illustrated with a numerical example to illustrate present worth of total cost is less in genetic 
algorithm as compared to classical optimization technique. Sensitivity analysis of shape parameter, scale 
parameter and inflation with respect to demand rate is carried out. 
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APPENDIX  

1. 
TCm T( ) = Am + hm
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3. Convexity of minimum cost for both the scenarios are as follows: 
 
              For non-integrated scenario convexity of present worth total cost is  

∂2TCr
∂η2

∂2TCr
∂T ∂η

∂2TCr
∂T ∂η
∂2TCr
∂T 2

=1.9902856*10^3> 0 and 
∂2TCr
∂T 2

=12453.85 > 0

 
And for integrated scenario convexity of present worth total cost is 
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∂2TC
∂η2

∂2TC
∂T ∂η

∂2TC
∂T ∂η
∂2TC
∂T 2

= 7.570856646*10^6> 0 and ∂
2TC
∂T 2

=12578.15798 > 0  


