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ABSTRACT 
CUR decomposition is one of the matrix decomposition techniques proposed in the literature for the selection of rows and/or 
columns of a data matrix. Dynamic CUR is proposed as an alternative to the selection criteria of the CUR decomposition based 
on probabilistic criteria. This alternative tries to fit the most adequate theoretical probability distribution to the empirical 
distribution of the leverages obtained from the start and based on it, automatically determines not only the individuals and/or 
variables that need to be selected, but also their numbers. In this way, Dynamic CUR sets itself apart from CUR in the 
information selection criteria, dynamizing the calculation of the approximation error starting from an optimal initial selection of 
parameters based on the most adequate probability distribution. Lastly, with the purpose of facilitating the use of this new 
method in any practical context, the Dynamic CUR algorithm has been developed in C#.NET and R languages. 
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RESUMEN 
La descomposición CUR es una de las técnicas de descomposición matricial propuesta en la literatura para la selección de filas 
y/o columnas de una matriz de datos. Se propone Dinamic CUR, una alternativa al criterio de selección de la descomposición 
CUR basada en criterios probabilísticos. Esta propuesta trata de ajustar la distribución de probabilidad teórica más adecuada a la 
distribución empírica de los puntajes altamente influyentes obtenidos de partida y, a partir de ella, determina de manera 
automática no sólo los individuos y/o variables a seleccionar sino el número de ellas. Así, DinamicCUR se diferencia de CUR en 
el criterio de selección de la información, dinamizando el cálculo del error de aproximación a partir de una óptima elección 
inicial de parámetros en base a la distribución de probabilidad más adecuada. Por último, con el fin de facilitar el uso de este 
nuevo método en cualquier contexto práctico, se ha desarrollado el algoritmo DinamicCUR en lenguaje C#.NET y R. 
 
PALABRAS CLAVE: Análisis Multivariado, Análisis de Componentes Principales, CUR descomposición, Correlación, 
Descomposición Singular Del Valor.  
 
 

1. INTRODUCTION 
 
Data analysis has evolved in a considerable manner in recent years, going from basic descriptive analysis 
with few variables to the use of multivariate statistical techniques to work with “Big Data”. Analysis tools 
must take advantage of all the information the data provides to be able to accurately reproduce reality 
because the power of individual studies and the understanding of all the phenomena lies in the multivariate 
vision of the world ): 

Principal Component Analysis (PCA) (Jolliffe, 2002) came to be from the classical methods to reduce data 
matrix dimensionality, started by Pearson (1901) who searched for a better fitted subspace and Hotelling 
(1933) for variance maximization. PCA is the most used multivariate dimension reducing technique used to 
date. It allows, starting from a p set of related variables, to extract q non-correlated latent variables (known as 
principal components), with q<<p, and using them to get to know the sample’s behavior, absorbing the most 
amount of variability possible.  
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Like many other multivariate techniques, PCA is a method that can be derived straight from Singular Value 
Decomposition (SVD) ): Given that each PC is calculated from the singular vectors obtained in the SVD of 
the data matrix, these are expressed considering all the original variables, each PC is calculated as a 
combination of all of the original variables too. The coefficients of these linear combinations, called loadings, 
indicate the contribution of each of the original variables to each PC.  
Unfortunately, understanding linear combinations as the mathematical abstractions that they are, and due to 
the fact that, in practice, loadings are usually different from zero, there is no guarantee of providing meaning 
to these mathematical concepts, and consequently, meaning to the PCs. This hinders the informative 
capability of the data and raises the main inconvenient of PCA, it’s interpretation.  
Throughout the years, different alternatives have emerged in literature to try and improve the informative 
capability of these types of results. Among the rotation methods, Kaiser (1958) proposes the Varimax 
rotation with the purpose of rotating the new axes in search of the variables that present the highest loadings 
on them. In the late 60’s, with the goal of making components interpretation easier, Jeffer suggested the use 
of a “subjective” threshold regarding factorial loadings, so that those variables which loadings were below 
the given threshold’s value would not be considered. These ideas were supported by Hausman (1982) and 
Cadima & Jolliffe  ): 

The first ideas in the determination of principal variables in a data matrix were introduced by McCabe (1982) 
who gave the first steps to get to CUR Decomposition. In the late 90’s and early 2000’s Tibshiriani (1996) 
and Vines (2000) laid out their ideas. Tibshiriani first defined the Lasso “Least Absolute Shrinkage and 
Selection Operator” norm in the ambit of regression. With Lasso, the sum of the absolute values of the 
coefficients of each coefficient vector is penalized, giving place to the automatic selection methods of 
relevant variables. 
On the other hand, Vines (2000) continued working on the ideas previously raised by Hausman (1982) and 
proposed the restriction of loadings values to a small subset of whole numbers ({-1,0,1}): Later, several 
authors like Jolliffe, Trendafilov & Uddin (2003) and Zou, Hastie & Tibshirani (2006) reformulated PCA, 
giving place to Sparse PCA. This methodology is raised with the purpose of generating projection vectors in 
the new subspace that have some of their loadings as null, through the addition of a penalization coefficient 
on the optimization problem of PCA.  
Jolliffe, Trendafilov & Uddin (2003) proposed SCoTLASS (Simplified Component Technique for Least 
Absolute Shrinkage and Selection), in which the Lasso penalization is added to the variance maximization 
problem on PCA developed by Hotelling in 1933. On the other hand,	(Zou, Hastie, & Tibshirani, 2006) 
proposed SPCA, a reformulation of PCA as a problem of optimization in minimizing error with the Elastic net 
(Zou & Hastie, 2005) penalty. As a result, Sparse PCA became one of the first methods which simultaneously 
reduces dimensionality and automatically selects variables. It is important to mention that, even though a part 
of the variability explained by latent variables is sacrificed, an important improvement in the interpretation of 
the PCs is achieved, in regards to the ideas that existed up until that moment. 
Conversely, Mahoney & Drineas (2009) identified the singular vectors of the SVD as the PCs’ interpretation 
problem and proposed another type of matrix factorization known as CUR Decomposition (Mahoney & 
Drineas, 2009; Mahoney, Maggioni, & Drineas, 2008; Bodor, Csabai, Mahoney, & Solymosi, 2012): The 
goal of CUR Decomposition is to give a better interpretation of the matrix decomposition by means of 
relevant variable selection in the data matrix, in a way that yields a simplified structure. Its origins come 
from analysis in genetics. One example is the one showed in Mahoney & Drineas (2009), in which cancer 
microarrays are highlighted with the purpose of recognizing, based on 5000 variables, genetic patterns in 
patients with soft tissue tumors analyzed with cDNA microarrays.  
The CUR theoretical basis comes from the SVD of the matrix of interest, in order to make a new 
factorization by selecting columns and rows from the original matrix. This is basically a low-rank 
approximation to the original matrix expressed in a small number of rows and/or columns, which are easier 
to interpret than the singular vectors of the SVD. The main advantage of CUR Decomposition over SVD is 
that the original data matrix can be expressed with a reduced number of rows and columns instead of 
obtaining factorial axes that result of a linear combination of all the original variables.   
The objective of this article is to show an alternative to variable selection (columns) or individuals (rows) to 
the ones developed by Mahoney & Drineas (2009): The idea proposed consists of adjusting the probability 
distributions to the leverage scores and selecting the best columns and rows that minimize the reconstruction 
error of the matrix approximation 𝐴 − 𝐶𝑈𝑅 . Additionally, another objective of the article is to present the 
Dynamic CUR algorithm, developed in C#.NET and R languages.  



	 393	

In the following section, the theoretical basis of CUR Decomposition is presented, giving emphasis to the 
leverage influence factors’ method of calculation, to the columns and rows selection criteria, and to the 
available R library for its practical application. Furthermore, a short revision of some extreme value 
probability distributions and the theoretical basis of Dynamic CUR is presented. Lastly, the details regarding 
the use of the Dynamic CUR program, its application on a real practical case and some conclusions are 
presented.  
 
𝟐 .𝑪𝑼𝑹 DECOMPOSITION 
 
Given a real matrix 𝐴 of dimension 𝑀𝑥𝑁 which contains information of 𝑁 variables for 𝑀 individuals or 
analysis objects. Given 𝐴 ∈ ℝ!"# , the CUR Decomposition of 𝐴 tries to approximate this matrix by means 
of the product of three matrixes 𝐶, 𝑈 and 𝑅, where  𝐶 is a matrix formed by a subset of 𝑐 columns from the 
original matrix, 𝑅 contains a subset of 𝑟 rows of 𝐴, and the 𝑈 matrix is defined as  𝑈 = 𝐶!𝐴𝑅! (where C! 
and R! are the pseudoinverse matrixes of C and R respectively) in a way that the CUR matrix product 
approximates 𝐴 satisfactorily ): Thus,  
 

𝐴!"# ≈ 𝐶!"#𝑈!"#𝑅!"# 
 
The rows and columns that make up the R and C matrixes respectively are selected based on the influence 
level (or leverage) of the observations and variables of the global model. For each row (individuals) and/or 
column (variables) of the data matrix, these factors of importance are defined based on the Singular Value 
Decomposition of the original matrix. Given the considered matrix A of rank 𝑟 ≤ min (𝑀,𝑁), the Singular 
Value Decomposition (SVD) of A is defined as the matrix approximation  
 

𝐴!"# = 𝑈!"#Σ!"!𝑉!!"# 
where  𝑈 = [𝑢!,… , 𝑢!] and 𝑉 = [𝑣!,… , 𝑣!] are the orthonormal matrixes whose column vectors are the 
singular vectors to the left and right respectively, 𝑈!𝑈 = 𝐼 𝑎𝑛𝑑 𝑉!𝑉 = 𝐼, and Σ the diagonal matrix that 
stores the singular values of 𝑋, conveniently expressed in a way that: 𝜆! ≥ 𝜆! ≥ ⋯ ≥ 𝜆! ≥ 0. From the point 
of view of the SVD, for 𝑘 < 𝑟, the low rank approximation 𝐴! is defined as: 

𝐴! = 𝑈!"#Σ!"!𝑉!!"# 
Furthermore, given 𝐴! the 𝑘 rank approximation to the A matrix, the best starting matrix approximation will 
be that which minimizes the squared Frobenius norm between A and 𝐴! ): 

𝐴 − 𝐴! !
!  

 
3. THE STATISTICAL LEVERAGE AND THE BEST DECOMPOSITION OF THE 𝑨𝒎𝒙𝒏 ≈ 𝑪𝑼𝑹 
MATRIX 
 
The selection criteria for the relevant columns and rows of the original matrix is crucial in the 𝐶𝑈𝑅 
Decomposition. In both cases, a leverage score which takes into consideration the importance of each column 
or row of 𝐴!"# is calculated. Said influence factors’ calculation is done as follows. Given 𝑣!  (n = 1,… ,N) 
the singular vectors to the right, obtained in the SVD of the 𝐴 matrix. The leverage score of each variable is 
defined as: 

 𝜋! =
1
𝑘

(𝑣!")!
!

!!!

 
 (8) 

where 𝑘 is the number of new axes in the dimensionality reduction. The leverage scores calculation for each 
of the matrix’s individuals, when selecting the most influential, is done respectively from the 𝑢! vectors of 
the 𝑈 matrix obtained in the SVD.  
Additionally, using this normalization, it is simple to demonstrate that 𝜋! ≥ 0 and that 𝜋! = 1!

!!!  , 
therefore the leverage scores create a probability distribution over the N original columns. This last point that 
Mahoney & Drineas (2009) make is crucial in this article, due to the fact that the leverages have special 
properties that allow them to be fitted to a probability distribution, being this one of the points not 
approached by the 𝐶𝑈𝑅 decomposition authors. 
Given that the leverage scores are a quadratic combination of the factor loadings of the 𝑘 retained PCs, it is 
possible to see the value 𝜋! takes as the importance that the column or row has on the original data matrix. 
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Once the influence factors for each variable and/or individual of the original matrix is defined, the columns 
and/or rows of the matrix are selected according to different criteria that take into consideration the 
distribution established by the leverages. It becomes clear that, unlike what happened in the SVD, the CUR 
approximation of a matrix is not unique.  
Multiple algorithms that differ from each other in the obtained error bounds and in the criteria for selecting 
rows and columns exist. For the selection of the 𝐶 and 𝑅 matrixes, Mahoney & Drineas (2009) proposed five 
different selection criteria, based on the obtained leverages, always taking into consideration that the error in 
the 𝐴 − 𝐶𝑈𝑅  approximation has to be minimal, according to the c columns and r rows selected.  
 
rCUR algorithm 1.3 R library for the selection of columns and rows 
 
The algorithm for the CUR decomposition calculation is implemented in the rCUR library (Bodor, Csabai, 
Mahoney & Solymosi, 2012) of the R software ): 
 
Column and row selection criteria according to rCUR 
 
Once the leverage scores have been calculated, the rCUR algorithm selects the columns and rows with one of 
the following selection criteria: a) "random", b) "exact.num.random", c) "top.scores", d) "highest. ranks" y e) 
"ortho.top.scores".
 
Column and row 
selecton criteria 

Criteria description 

random 
 

 
With this method, the probability of selection of each column is defined as the 
minimum between 1 and 𝑐𝜋. This 𝑝! probability is then compared to the probability 
obtained from a uniform distribution with parameter 𝑚. This probability distribution is 
defined in R as runif(𝑚), which provides 𝑚 probabilities with values between 0 and 1. 
The selection criterion is if 𝑝! ≥ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 then that column is selected, 
for as many columns as indicated by parameter c. When the number of columns is 
reached, the algorithm stops, even if there are more 𝑝! ≥ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. The 
number of columns, even if set in parameter c, could differ from the one actually 
obtained, which means that the final size of selected columns and rows is also random. 

exact.num.random 
 

With this method a leverage scores vector which considers the first 𝑘 components of 
the 𝑉 matrix is created. The difference between the leverage score multiplied by c and 
the probability obtained under the uniform distribution with parameter n is calculated. 
This difference is then ordered from highest to lowest and the exact number of 
variables corresponding to the top c variables are selected.  

top.scores  With this method, the highest leverages scoring c columns are selected.  
highest.ranks 
 

With this method, ranks are assigned to the leverage scores and then the ones with the 
highest rank selected. 

ortho.top.scores  
 

With this method, columns and rows are selected, considering the combination of the 
leverage scores with the orthogonality of the subspace created by the columns and/or 
rows previously selected.  

 
Dynamic CUR Proposal 
 
In order to select columns and rows and to create their respective 𝐶 and 𝑅 matrixes, while also guaranteeing a 
minimization in the ‖𝐴 − 𝐶𝑈𝑅‖ difference, the following proposal has been developed. The proposal consists 
of the selection of the best columns and rows, according to the leverage scores probability distribution on the 
𝑘 components used for their calculation. Like Mahoney & Drineas (2009) point out, the leverage scores have 
a probability distribution over the 𝑛 columns, given that 𝜋! ≥ 0 and that 𝜋! = 1!

!!!  Our proposal 
corresponds to a new column and row selection criterion (keeping the leverage scores calculation method 
defined by Mahoney & Drineas (2009), which consists of selecting the best leverage scores according to a 
dynamic criterion that combines two aspects:  
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a) the definition of a probability or area under the curve (0.20, 0.10, 0.05, 0.01 or 0.005) in order to estimate 
the number of columns (variables) and/or rows (individuals) with statistical criteria and   
b) fitting the empirical distribution of the leverage scores to an existing theoretical distribution for each of the 
k components with which the leverage scores (𝑘 < 𝑁), can be calculated, choosing those columns and rows 
where that probability is accumulated.  
This dynamizes the calculation of ‖𝐴 − 𝐶𝑈𝑅‖ and allows the establishment of the better combination for a 
given probability. In most cases, it has been observed that the leverage score distribution follows a positive-
skew distribution with a long tail to the right, which indicates that very high scores exist and are associated 
with high leverage scores. Even though the empirical distributions of the leverage scores can take a particular 
distribution, it is also possible to find a known theoretical distribution to which they can be fitted. (Figure 1) 
In those situations, it is possible to utilize known distributions as extreme value distributions; also known as 
generalized extreme value distributions, among which the Fréchet, Gumbel, and Weibull distributions can be 
found. Our proposal is based on the extreme value theory, as evidence that the highest leverage scores are 
associated to the columns (variables) and rows (individuals) that take in more information from the data 
matrix.  

 
 

.
. 

Figure 1: Different probability distributions that the leverage scores can take

Image	taken	from:	EasyFit	Professional	V5.6	MathWare	Technologies.	http://www.mathwave.com	

rCUR versus DYNAMIC CUR 
 
The advantages presented by the Dynamic CUR proposal compared to the rCUR algorithm are: 

1. Dynamically calculates ‖𝐴 − 𝐶𝑈𝑅‖ and !!!"#
‖!‖ 

, which correspond to the absolute error and relative 
error, going through all the probability distributions of the leverage scores generated by each of the 𝑘 
components, finding the adequate combination between 𝑘, the number of columns (variables) and the number 
of rows (individuals) that minimizes error. This selection can be made through the use of the observed 
distribution or by fitting to a theoretical distribution.  
2. Allows the finding of the best columns and rows according to the calculation of the leverage scores, 
taking into consideration from 1 to 𝑘 principal components. The investigator can even go through all the 
possible principal components up until 𝑘 = 𝑛 − 1 to determine which 𝑘 which minimizes this error.  
3. Eases the visualization of variables that arise as relevant and their relative importance within the 
selected set and the way in which they alternate according to how the different distributions are calculated 
until the results are stabilized.  
4. Allows for the visualization of the relative error’s progression and the observed histograms of the 
leverage scores as the search for the parameters which minimize error goes on.  

CUR Dynamic Software 
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The CUR Dynamic software was implemented using C#.NET as the programming language and R. It is a 
two-tier client/server application. This architecture is key for the software’s proper functioning, as it allows 
for dynamism in the processing of CUR decompositions. The software (client) is programmed in C#.NET, 
which is tasked with sending the requests to R for the calculation of the SVD and CUR decompositions. The 
use of the statistical software R, which stands at the server side, is crucial for successfully completing said 
decompositions. For these calculations, the libraries “Matrix”, “rCUR” and “MASS” and the “svd” R 
function where used.  
Communication between C#.NET and R was possible with the use of the middleware R.NET, which was 
installed in the corresponding code project as a NuGet package. The data matrix is stored in files with the 
“txt” extension and is read from C#.NET code in execution time using R as an intermediary. This allowed for 
the reduction of processing time in relation to the data size, especially for large-sized matrixes. When the 
Dynamic CUR software is opened, a menu pops up. This menu includes: a) Load data, b) dCUR parameters, 
c) Execute Dynamic CUR, d) Error Estimation (Figure 2):  The procedure is initialized with the following 
steps: 

1. The data is loaded, indicating the number of rows/individuals (objects) and 
variables/columns. 
2. The variables of interest are selected and moved to selected variables. 
3. The SVD (Singular Value Decomposition) calculation is requested in order to obtain the 
accumulated variance percentage from the n possible PCA. The investigator has to choose a starting 𝑘 
of interest. They then have the option of selecting the variables for a unique 𝑘, from 1 to 𝑘 or from 1 to 
𝑘 = 𝑁 − 1.  
4. The area under the curve for the estimation of the number of variables (columns) and 
objects (rows) is determined. This value is set by the investigator.  
5. Finally, the type of fitness has to be indicated. The options are through the observed 
distribution (histogram) or through the theoretical distribution fitted to the data.  

The obtained results can be visualized as the program executes, making it a dynamic analysis.  

6. Relative error graph according to each 𝑘 
7. Observed distribution (histogram) and fitted distribution graph 
8. List of relevant variables from the data matrix 
9. Leverage scores according to selected variables 
10. Absolute and relative error 

Dynamic CUR as a Learning Analytics and Educational Data Mining (EDM) tool 
 
Learning analytics is the measurement, analysis, and reporting of data about learners and their contexts. Its 
focus is to understand and optimize the learning process and the environment which surrounds it. On the 
other hand, educational data mining (EDM) seeks to develop and improve methods for exploring this data, in 
order to discover new insights about how people learn in the context of such settings. 
An example is presented in which the relevant variables have to be selected from a set of 200 variables that 
have been investigated to explain academic performance of distance university students in Costa Rica. These 
variables are related with psychological factors, pedagogical factors, learning strategies, institution’s 
academic and administrative management, the way in which the student manages their studies, student’s 
health, tutor performance, family and class climate, student’s relationship with their peers, employment and 
economic situation. Table 1 shows the number of variables/dimensions that each factor includes.  
With the parameters set for 𝑘=50, (same number of components that accumulate 99%), superior area under 
the curve of 0.10 for rows (r=64) and columns (c=30), the best solution is reached with 𝑘 = 26 with an error 
of 1.15%. The selected variables according to their relative importance considering the leverage scores can 
be observed in Figure 2. 
According to the information provided by each of the variables to the global matrix, the four most important 
variables are: total physical activity done by the student, weekly worked hours, socioeconomic status and 
physical self-concept, followed by weekly study hours and graphical study techniques used during the 
learning process.  Subsequently, the Neuroticism dimension from the “Big Five personality traits”, group 
techniques, academic self-concept and academic conducts self-efficacy regarding communication. The active 
learning style from the CHAEA scale (Alonso, Gallego, & P Honey, 2018; Villegas, Sánchez, Sánchez-
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García, Galindo-Villardón, 2018), the number of students per classroom, the creativity in design and art 
dimension and tutor performance are next. Following these, with lesser importance, the empowerment 
climate dimension, the reflexive CHAEA and the deep approach from the ASSIST scale (Entwistle, McCune, 
& Tait, 2013; Brown, White, Wakeling, & Naiker, 2015) can be found. Lastly, the agreeableness dimension 
from the personality traits, the surface approach from the ASSIST scale and the theoretical learning style 
from the CHAEA scale are found.  

Table 1.	Number of variables included in the analysis according to factor	

Factor N. of variables 
Student’s psychological factor 67 
Student’s pedagogical factor 33 
Learning strategies factor 24 
Institution’s academic and administrative management factor 21 
Student’s academic management 15 
Learnings evaluation factor 10 
Health factor 9 
Teacher’s performance factor 5 
Family social climate factor 3 
Student's relationship 3 
Scholarship factor 3 
Student's academic achievement factor 3 
Administrative management factor 2 
Total 200 

Work factor and student's economic factor 2 
 
4. CONCLUSION 
 
The options offered by the rCUR algorithm ( Bodor, Csabai, Mahoney, & Solymosi, 2012) for individual 
and/or variable selection have some limitations. For example, the random method of the rCUR algorithm 
selects a different number of individuals and/or variables with each run and this selection may not include the 
best individuals and/or variables that minimize the approximation difference, while the Dynamic CUR sets in 
place the number of individuals and/or variables when setting the superior alpha probability of the 
established probability distribution. Once this probability is entered, the set number of individuals and/or 
variables of interest is estimated.  

	
Figure 2: Dynamic CUR parameter panel 
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Furthermore, even though the exact.num.random method selects the exact requested number of individuals 
and/or variables, it doesn’t necessarily select the best individuals and/or variables, given that it incorporates a 
random element in its configuration. Dynamic CUR selects the same number of set individuals and/or 
columns, albeit the best selection according to the highest leverage scores.  
The highest.ranks method, apart from being the most complex from a mathematical point of view, presents 
the inconvenient that it degrades the measurement level of the leverage score by assigning rank as selection 
criteria, and ultimately ends up comparing ranks between different options in order to select individuals 
and/or variables, instead of using the natural measurement value and unit of the leverage scores. Dynamic 
CUR utilizes the highest natural values among the leverage scores.  
The top.scores and ortho.top.scores are the methods that select the best individuals and/or variables because 
they restrict selection to the highest scores according to each case. Nevertheless, it has the limitation that they 
only assess leverage scores for a specific principal component, giving the perspective that it is a unique 
solution. Dynamic CUR has three search options for optimizing individuals and/or variable selection (for one 
𝑘, for values from 1 to 𝑘 and for values from 1 to 𝑘 = 𝑁 − 1):  
With this situation in mind, possibilities presented with the Dynamic CUR program are important because it 
offers several alternatives that dynamize the configuration of selection criteria which take into consideration 
different numbers of individuals and/or variables, several fitness criteria and the analysis of the 
approximation error until the lowest error according to the combination of specified options is achieved.   
There is a gap left in the rCUR algorithm since it does not take into consideration the probability distribution 
of the leverage scores as an alternative to selecting the best individuals and/or variables. This is addressed in 
our proposal due to the fact that the scores are fitted to their probability distribution in a dynamic way, in 
concordance with the desired 𝑘 components.  
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