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ABSTRACT 
 
Poverty is a very serious problem and often faced by the countries in the world, especially developing 
countries. The percentage of poor people in Indonesia reached 11.47 percent in 2013. The seven provinces 
with the highest poverty in Indonesia are Papua, West Papua, East Nusa Tenggara, Maluku, Gorontalo, 
Bengkulu and Aceh. This problem is modeled using mixed nonparametric regression of Kernel and Fourier 
Series. The response variable of this model is percentage of poor people (y), the predictor variables that follow 
Kernel regression curve are Mean of Years Schooling or MYS (v1) and Literacy Rate or LR (v2), whereas the 
predictor variable that follow the Fourier Series regression curve are Unemployment Rate or UR (t1). This 
modeling produces R2 = 62.78%. 
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1. INTRODUCTION  
 
Nonparametric regression is one of the regression analysis that has high flexibility. In this method, data is 
expected to find its own form of regression curve estimation without being influenced by the subjectivity of 
the researcher [1]. There are many types of estimators in nonparametric regression models such as Kernel, 
Spline, Local Polynomial, Wavelet and Fourier Series. Studies on Kernel estimator have been carried out by 
researchers such as Okumura and Naito [2], Yao [3], Kayri and Zirhlioglu [4], Cheng, Paige, Sun and Yan 
[5], and Fernandes, Budiantara, Otok and Suhartono, [6]. Research on Spline estimators have been applied by 
other researchers such as Eubank [1], Merdekawati and Budiantara [7], Darmawi and Otok [8] and Fernandes, 
Budiantara, Otok, and Suhartono [9]. Research on Local Polynomial estimators is developed by Su and Ullah 
[10], He and Huang [11], Filho and Yao [12] and Qingguo [13]. Research on the Wavelet estimator is 
developed by Antoniadis, Bigot and Sapatinas [14], Amato and De Canditiis [15], and Taylor [16]. Fourier 
Series estimators has been applied by researchers such as Bilodeau [17], Galtchouk and Pergamenshchikov 
[18], Ratnasari, Budiantara, Zain, Ratna and Mariati [19],  Pane, Budiantara, Zain and Otok [20] and Asrini 
and Budiantara [21]. Beside the above studies, there are studies about mixed nonparametric regression too, 
that are combination of Spline and Kernel by Budiantara, Ratnasari, Ratna and Zain [22] and mixed 
nonparametric regression of Kernel and Fourier Series by Afifah, Budiantara and Latra [23]. 
Nonparametric regression model can be applied in various fields of science, one of them is social field. In this 
field, nonparametric regression models can be applied to analyze poverty issues. In 2013, the percentage of 
poor people in Indonesia reached 11.47 percent. There are seven provinces with the highest percentage of 
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poor people in Indonesia, that are Papua, West Papua, East Nusa Tenggara, Maluku, Gorontalo, Bengkulu and 
Aceh [24]. This issue is interesting to discuss further when we observe the scatter plots of variables that affect 
the percentage of poverty in the seven provinces. It found that some of these variables form Kernel regression 
patterns and some others form the pattern of Fourier Series. Thus the problem of the percentage of poor 
people in Indonesia can be investigated using mixed nonparametric regression of Kernel and Fourier Series 
which have been developed previously by Afifah, et al [23]. 

 
2. MATERIALS AND METHODS 
 
2.1.1 Data Source   
 
This study uses secondary data in 2013 from publications by the Statistics of Indonesia (BPS) with 
observation units as many as 102 regency/city in 7 province that are Papua, West Papua, East Nusa Tenggara, 
Maluku, Gorontalo, Bengkulu, and Aceh. The respon variable in this study is percentage of poor people in 
102 regency/city in 2013 (Y). The predictor variables are Mean of Years Schooling or MYS (X1), 
Unemployment Rate or UR (X2) and Literacy Rate or LR (X3). 

 
2.2. Analysis Stage 

The steps to solve the problems and achieve the aim of this study are as follows:  
1) Conducting descriptive data analysis to know the general description of poverty data in Indonesia. 
2) Create a scatter plot of data between response variables with each predictor variables. 
3) Determining predictor variables which are nonparametric component approximated by Kernel 

function and approximated by Fourier Series function. 
4) Modeling poverty in Indonesia using mixed nonparametric of Kernel and Fourier Series. 
5) Determine optimal bandwidth, oscillation parameters, and smoothing parameter using Generalized 

Cross Validation (GCV) method. 
6) Obtain the estimation of the mixed nonparametric regression curve. 
7) Calculating the value of MSE and R2. 
8) Drawing conclusions. 

 
2.3.   Fourier Series Function   
 
Fourier series function are widely used in various fields of science. In the field of statistics the Fourier Series 
function is used to modeling data behavior that follows periodic pattern or seasonal. Let (0, )h C π∈ is any 
function where 

{ }(0, ) ; continousfunction in 0 .C h h tπ π= < <  
Thus according to Bilodeau [17], Ratnasari, Budiantara, Zain, Ratna and Mariati [19], Pane, Budiantara, Zain 
and Otok [20], and Asrini and Budiantara [21],  the function  of  h can be presented in the form  : 

( ) 0
1

1
cos

2

M

k
k

t b a a kth t
=

= + +∑
 

with b, ao , 1 2, ,..., Ma a a  are real number, and  { }1,2,3,...M Z +∈ = is oscillation parameter. The value of b 
shows the trend of the Fourier Series function. If the value of b = 0, then it will be obtained the non trend 
Fourier Series function. Otherwise if the value  of b > 0, it will be obtained up-trend of  Fourier Series 
function. Whereas , if the value of b < 0, it will be obtained  down-trend of  Fourier Series function. Figure 1, 
Figure 2, and Figure 3 respectively present the Fourier Series function with oscillation parameter are  M=1,  
M=5 and M=10, for b < 0 (down-trend).  
It can be seen visually from Figure 1, Figure 2 and Figure 3, the form of Fourier Series function exceptionally 
depend on the value of oscillation parameter M.  If the  value of  the oscillation parameter M is larger than the 
form of Fourier Series function, it will have higher oscillation. Conversely, if the value of  the oscillation 
parameter M is smaller than the form of Fourier Series function, it has no oscillation 
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Figure 1. Fourier Series Function with  M=1   Figure 2. Fourier Series Function with M=5 
 
 

                                  
Figure 3. Fourier Series Function with M=10. 

 
2.4 .  Nonparametric Regression of Mixed Kernel and Deret Fourier 
 
Afifah, et al. [23] have written about the mixed estimation of Kernel and Fourier Series in nonparametric 
regression. Given paired data ( )1 1,..., , ,..., , ,i pi i qi iv v t t y  1, 2,..., ,i n= following the mixed regression model i.e. 

( )1 1  ,..., , ,...,i i pi i qi iy v v t tµ ε= +  ( )   ,i i iµ ε= +v t  (1) 

where 1( ,..., )i i piv v ʹ=v and 1 2( , , ).i i i qit t t=t K The form of  regression curve ( , )i iµ = v t  in the Equation (1) 

is assumed to be unknown and the curve is smooth in the continuous and differentiable. Random error
iε  is a 

normal distribution with mean 0 and variance 2σ . The regression curve ( ),i iµ v t  is assumed to be additive, 
so it can be written as: 

( ) ( ) ( )
1 1

,
p q

i i j ji s si
j s

g v h tµ
= =

= +∑ ∑v t                         (2) 

The component: 
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is Nadaraya Watson Kernel regression curve as follows: 
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which ( )ĝ vφ   is Kernel regression estimation function and φ  is the bandwidth. Function ( )iW vφ  is a 
weighted function: 

( )
( )

( )1
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n
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i n
i ii
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φ
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where ( )iK v vφ −  is kernel function with 

( ) 1 i
i

v v
K v v Kφ φ φ

⎛ − ⎞
− = ⎜ ⎟

⎝ ⎠
. 

In this research, K is Gaussian kernel function: 

( ) 21 1
exp ,  

22
K z z z

π
= − − ∞ < < ∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

While the component: 

( )
1

q

s si
s

h t
=
∑  

is Fourier series component. It approximated by the function ( )s siT t  i.e. 
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M
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T t b t a a kt
=

= + +∑   (4) 

The mixed estimator of kernel and fourier series in nonparametric regression (1) are given by Theorem 1 as 
follows: 

Theorem 1. If in the Equation (1) the kernel regression component estimator is ( )
1

ˆ
j
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j j
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∑g  and Fourier  

series estimator is ( )
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( ) ( )ˆ ,, ,C Mλ λ=a yΦ ( ) ( )( ) ( )( )1, , nC Mλ −ʹ ʹ+ −= XX D λ X I V ΦΦ . So Equation (1) can be written as follows: 

( ) ( ), ,ˆ , , , .M i i M=Φ λµ v t Z Φ λ y  
 
Proof. 
If component of kernel function in the Equation (2) is estimated by the estimator component in the Equation 
(3), then 
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vector ( )ˆ
jj jvφg  is n×1, vector y is n×1, and matrix ( )V Φ  is n×n. 

If Fourier series component in the Equation (2) is approximated by Equation (4) then 

( )
1

q

s s
s

t
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=∑ XaT )                                          (6) 

Where 
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The matrix X  is ( )( )2n p M× + , the vector a is ( )2 1,p M + × the matrix sX is ( )2 ,n M× + the vector sa  is 

( )2 1M + × , and M is the oscillation parameter. 
If the regression model is given by Equation (1), the kernel function is given by Equation (5) and the Fourier 
series function is given by Equation (6), then goodness of fit function is 
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where I is n n×  identity matrix. 
If the Fourier series function is given by Equation (6), then penalty function and smoothing  parameter for the 
Penalized Least Square (PLS) method are 

( )( ) ( )
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q

s s si
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J T tλ
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= ʹ∑ a D aλ                        (8) 

where sλ  is smoothing parameter, ( ) ( ) ( ) ( )( )1 2 ,pdiag=D λ D λ D λ D λL
 
and

( ) ( )4 4 4 . 0 0 1 2s s s sdiag Mλ λ λ=D λ L  The matrix ( )D λ  is ( )( ) ( )( )2 2p M p M× + × +× and the 

matrix ( )sD λ  is ( ) ( )2 2M M+ +× . 
If the goodness of fit function is given by Equation (7) while penalty function and smoothing parameter are 
given by Equation (8), then estimation for parameter a is  [25]: 
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Therefore estimator for a is 
( ) ( )ˆ , , .C Mλ λ=a Φ y                         (9) 

Based on Equation (9), we obtained estimator for fourier series, that is: 
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=∑h Xa λ                             (10)  

Based on Equation (10), we obtained 



 
 
 

543 

( ) ( )
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M t Mλ
=
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where ( ) ( )( ) ( )( )1
, , .M n

−
ʹ ʹ= + −S Φ λ X XX D λ X I V Φ  

 
Using Equation (9) and Equation (5) the mixed estimator for nonparametric regression is 

( ) ( ) ( ), ,
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,
ˆˆˆ ,

j s

p q

M i i j j s
j s

Mv tφ λ

= =

= +∑ ∑Φ λµ v t g h            (12)  

Equation (12) can be written: 
( ) ( ), ,ˆ , , ,  M i i M=Φ λµ v t Z Φ λ y                 (13)  

with ( ) ( ) ( )( ), , , ,M M= +Z Φ λ V Φ S Φ λ . 
Furthermore, in this section we deal with the properties of estimator by fourier series  component, kernel 
component  and mixed of  fourier series and kernel in nonparametric regression. The properties of those 
estimator are given by Lemma 1. 

Lemma 1. If the estimator of fourier series component is  ( )
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∑h , estimator of kernel component is: 

( )
1

ˆ
j

p

j j
j

vφ

=

∑g

 
and mixed estimator of kernel and Fourier series is ( ), ,ˆ ,M i iΦ λµ v t  as given by Theorem 1, then 

each of the estimator are biased estimator, but still are classified as linear estimator in  y observation. 
Proof 
Expectation of Fourier Series component estimator can be written as: 
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Moreover, the estimator of Fourier series component  could be presented as follows: 
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ˆ , , .
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=

=∑h X Φ y  

thus, the form shows that the estimator of the Fourier series component is linearity in y observation. 
Furthermore, the expectation value of estimator kernel component can be written as: 
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The estimator of the kernel component could also be presented as: 

( ) ( )
1

ˆ .
j
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j j
j

vφ

=

=∑g V Φ y                          (14) 

Based on form estimator of kernel component in Equation (14) it shown that the estimator of kernel 
component is a linear estimator in y observation.  
Finally,  the mixed estimator of  Fourier series and kernel can be presented in the form of

( ) ( ), ,ˆ , , ,  M M=Φ λµ v t Z Φ λ y  
it shown that the mixed estimator of  fourier series and kernel is a linear estimator in y observation. 
Otherwise, expectation of the mixed estimator of fourier series and kernel can be written as follows:  
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thus, the estimator of the Fourier series component, the estimator of the kernel component and the mixed 
estimator of the Fourier series and the kernel are biased estimator, and the linear estimator in y the 
observation. 
Mixed estimators ( ), ,ˆ ,M i iΦ λµ v t dependent on bandwidth ( )1 2, , , ,pφ φ φ ʹ=Φ K oscillation parameters M, and 

smoothing parameters ( )1 2, , , qλ λ λ ʹ=λ K . If the bandwidth parameter and the smoothing  parameter are very 

small 0, 1,2,.., ,j j pφ → =  0, 1,2,..,s s qλ → =  
and the oscillation parameter M are very large ( )M →∞  

then the mixed estimator of the Fourier Series and kernel will be very roughness. Conversely if the bandwidth 
parameter and the smoothing parameter are very large ,jφ →∞  1,2,.., ,j p=  ,sλ →∞ 1,2,..,s q=  and the 
oscillation parameter M is very small, then the mixed estimator of Fourier series and kernel  will be very 
smooth.  The best of mixed estimator of the Fourier series and the kernel is the estimator that contains the optimal 
bandwidth, the smoothing parameters and the oscillation parameter. To obtain optimal bandwidth, smoothing 
parameter and oscillation parameter, we can use various methods, such as Cross Validation (CV) method, 
Unbiased Risk (UBR) method, Generalized Cross Validation (GCV) method or Generalized Maximum 
Likelihood (GML) method. 
In this study the choosing of the optimal bandwidth, smoothing parameter and oscillation parameter, done by 
using generalization of GCV method, this methods are given by Wahba [26], Budiantara [27], Ratnasari, et. al 
[28] and Budiantara, et al [22]. 

Mixed estimators ( ), ,ˆ ,M i iΦ λµ v t  dependent on bandwidth ( )1 2, , , ,pφ φ φ ʹ=Φ K  oscillation parameters M, and 

smoothing  parameters ( )1 2, , , qλ λ λ ʹ=λ K . GCV method can provide the optimal bandwidth, smoothing 
parameter  and oscillation parameter, that is: 

( )
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( )( )( )21
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M
M

n M−
=

−

Φ λ
Φ λ

I Z Φ λ
        (15)  

where ( ) ( )( ) ( )( )1MSE , , , , , , .M n M M− ʹʹ= − −Φ λ y I Z Φ λ I Z Φ λ y The optimal bandwidth, smoothing parameter  and 
oscillation parameter are obtained from the smallest GCV values. The other word, the optimal bandwidth, 
smoothing parameter and oscillation parameter can be obtained by optimization: 
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According to Wahba [26],  the GCV method has an 

advantage. The advantage of the GCV method is GCV method has asymptotically optimal properties that it is 
not be possessed by other method 
 
3. RESULT AND DISCUSSION 
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In 2013, there were 7 provinces with highest percentage of poorer people compared to other provinces in 
Indonesia, which are Papua (31.53 percent), West Papua (27.14 percent), East Nusa Tenggara (20.24 percent), 
Maluku (19.27 percent), Gorontalo (18.01 percent), Bengkulu (17.75 percent) and Aceh (17.72 percent). 
Relationship pattern between the response variable with each predictor variable can be seen from the scatter 
plot chart. The scatter plot results for each response variable and predictor variable as shown in Figure 4, 
Figure 5 and Figure 6. 

 

 
Figure 4. Scatter Plot Percentage of Poor People (Y)  vs  Mean of Years Schooling (X1 ) 

  

 
Figure 5. Scatter Plot Percentage of Poor People (Y) vs Unemployment Rate (X2) 

 

 
Figure 6. Scatter Plot Percentage of Poor People (Y) vs Literacy Rate (X3). 

 
Figure 4 and Figure 6 show that the pattern of relationships between response variables and predictor 
variables that have no particular pattern. Therefore, Mean of Years Schooling (MYR) (X1) and Literacy Rate 
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(LR) (X3) variables can be approached by nonparametric kernel estimator. Figure 5 shows that the pattern of 
relationship between response variable and predictor variable tends to be repetive at 0.44; 3.20; 6.22; 7.70; 
12.89; 12.79 and 17.97 then 0.50; 1.15; 3.34; 5.97; 7.35; 10.40 and 15.46 with a downward trend. Thus 
theoretically, Unemployment Rate (UR) (X2) variable can be approached by Fourier series. 
In addition, we can use GCV to determine which variables are approached by the kernel or the Fourier series. 
GCV values can be obtained from Equation (15). Based on the calculation results obtained GCV values, for 
all possible mixed models of kernels and Fourier series as shown in Table 1 and Table 2. 

 
Table 1. GCV of Models with 2 Kernels and 1 Fourier Series 

No. Variable GCV Kernel Deret Fourier 
1 X2, X3 X1 46.332 
2 X1, X3 X2 44.166 
3 X1, X2 X3 48.261 

Table 2. GCV of Models with 1 Kernel and 2 Fourier Series 

No. Variable GCV Kernel Deret Fourier 
1 X1 X2, X3  51.017 
2 X2 X1, X3 50.714 
3 X3 X1, X2 46.788 

 
Based on Table 1, if the kernel component consists of 2 variables and Fourier series component consists of 1 
variable. The minimum GCV is 44.166 which kernel component are X1 dan X3 while fourier series 
component is X2. Based on Table 2, if kernel component consists of 1 variable and the fourier series 
component consists of 2 variables. The minimum GCV is 46.788 which kernel component is X3 while fourier 
series component are X1 and X2. Based on Table 1 and Table 2, among all possibilities obtained the smallest 
GCV value is 44.166. Thus, the percentage of poor population is approached with nonparametric regression 
of kernel mix and Fourier series, which predictor variables MYS (X1) and LR (X3) are approached kernel 
function while predictor variable UR (X2) is approached with Fourier series function. Therefore, predictor 
variable MYS is symbolized by v1 and LR is symbolized by v2, while variable predictor UR is symbolized by 
t1. 
Determination of bandwidth values, smoothing parameters and oscillation parameters use GCV values too. 
Comparison of GCV values for each model in Table 3. 

Table 3. Comparison of GCV value for Model Selection 
No. ϕ1 ϕ2 λ M GCV 
1 0.047 4.146 10-3 1 42.888 
2 0.047 4.146 10-3 2 43.439 
3 0.047 4.146 1 3 43.617 
4 0.047 4.146 10-3 4 43.063 
5 0.047 4.146 10-3 5 43.419 

Based on Table 3, the minimum GCV is 42.888, therefore ϕ1 = 0.047; ϕ2 = 4.146; M = 1 and λ =10-3. The 
estimates of the Fourier series component are presented in Table 4. 

Table 4. Fourier Series Component Parameter estimation 
Parameter ( )b λ  ( )0a λ  ( )1a λ  λ  
Estimation -0.148 2.140 1.799 0.001 

 
So the mixed nonparametric regression model of kernel and Fourier series is as follows: 
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This modeling resulted in R2 of 62.78 percent and MSE of 23.370. R2 value is higher than using only the 
kernel estimator or only Fourier series or multiple linear regression. Table with comparisons of  R2 value are 
in Table 5. 

Table 5. Comparison of R2  values 
Modeling R2 
Multiple Linear Regression 37.76% 
Kernel 49.36% 
Fourier Series 42.48% 
Mixed of Kernel and Fourier Series 62.78% 

Table 5 show that the R2 value of the model with mixed nonparametric component of kernel Fourier series is 
62,78%. It means MYR, LR and UR variable is able to explain the response variable (percentage of poor 
people) equal to 62,78 percent. 
From the model above, we obtain the scatter plot between y and ŷ  value as shown in Figure 7. Based on 
Figure 7, there are 15 regency/city that have considerable differences between y and ŷ  that are Yapen 
Waropen Regency, Waropen Regency, Supiori Regency, Teluk Wondama Regency, Teluk Bintuni Regency, 
Manokwari Regency, Sorong Regency, Belu Regency, East Flores Regency, Ngada Regency, Nagekeo 
Regency, Southwest Maluku Regency, Gorontalo City, Lebong Regency and Central Bengkulu Regency. 
Thus there is the possibility of existing factors other than MYR, LR and UR that affect the prediction of the 
percentage of poor people in 15 regency/city. This is can be the reason for the large difference between the 
prediction of  poor people percentage to the actual value. 

 

 
 

Figure 7. Scatter Plot y vs 𝑦 
 

4. CONCLUSION 
 
If given paired data ( )1 1,..., , ,..., , ,i pi i qi iv v t t y  1, 2,..., ,i n= following the mixed regression model i.e. 

iy = ( ),i i iµ ε+v t  
where 1( ,..., )i i piv v ʹ=v and 1 2( , , ).i i i qit t t=t K  

The regression curve ( ),i iµ v t is assumed to be additive, so it can be written as: 
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The component  
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is the kernel component, and the component : 

( )
1

q

s si
s

h t
=
∑

 
is the Fourier series component. Then the mixed estimator ( ),i iµ v t is given by 
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The estimator of the kernel component is ( )
1
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j j
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=

∑g , the estimator of the Fourier series component is 

( )
1

,
ˆ

s

q

s
s

M tλ
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∑h  and the estimator of the mixed kernel and the Fourier series is ( ), ,ˆ , .M i iΦ λµ v t  It can be seen that 

each of  these estimators are biased estimators, but keep are classified as linear estimators in y the 
observation. 
Estimator of the mixed kernel and the Fourier series  in the nonparametric regression are strongly influenced 
by the bandwidth parameter, the oscillation parameter and the smoothing parameter. The best of the mixed 
estimator of kernel and Fourier series are obtained from the optimal values of the bandwidth parameter, the 
oscillation parameter and the smoothing parameter. The optimal value of the bandwidth parameter, the 
oscillation parameter and the smoothing parameter can be obtained from the smallest GCV value. 
Mixed Nonparametric regression model of kernel and Fourier series applied to percentage of poor people in 
Indonesiain 2013. In this research, the variable response is the percentage of poor people (y), while the 
predictor variables are Mean Years Schooling or MYS (v1), Literacy Rate or LR (v2) and Unemployment Rate 
or UR (t1). This modeling uses ϕ1 = 0.047; ϕ2 = 4.146; M = 1 and λ = 10-3. It produces R2 of 62.78 percent and 
MSE of 23.370. Therefore, variables MYS, LR and UR can explain the percentage of poor peole as many as 
62.78 percent. Mixed nonparametric model isbetter than kernel modeling, Fourier series model and multiple 
linear regression. From the modeling, there are 15 regency/city that have a considerable difference between y 
and 𝑦. This is due to the possibility of existing other factors  in addition to MYS, LR and UR that affect the 
prediction of the percentage of the poor people in 15 regency/city. 
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