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ABSTRACT 
This research is based on the Derivative/Integration of the Power Spectrum for the reduction of noise in a periodic signal. The 
performed procedure, joined to a convolution process, results in the detection of the original values of amplitude, phase and 
frequency of the spectral components of the periodic signal. In this paper, second-order statistics foundations are presented and 
the validation of the proposed algorithm is exposed in both theoretical and practical sense. 
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RESUMEN 
El trabajo que se propone se basa en la aplicación de un proceso de Derivación/Integración a la Densidad Espectral de Potencia, 
con el objetivo de reducir el ruido de una señal periódica. El procedimiento realizado, en conjunto con una operación de 
convolución, permite la detección de los valores originales de amplitud, frecuencia y fase de las componentes espectrales de una 
señal periódica contaminada por ruido. En este artículo se exponen los fundamentos estadísticos de segundo orden utilizados, así 
como la validación del algoritmo propuesto, tanto desde el punto de vista teórico, como práctico. 
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1. INTRODUCTION 

 
Detection of periodic signals lying in noise with impulsive autocorrelation function (NIAC) is a significant 
problem that arises in many applications such as, radar, communication, biomedicine, fault diagnosis and 
others (Randall, Sawalhi and Coats (2011), Martin and Mailhes (2010)). Several methods have been 
developed for the estimation of the main parameters (amplitude, frequency and phase) of the spectral 
components of a periodic signal corrupted by Gaussian noise, a type of NIAC. These methods are based upon 
the analysis of the kth-order spectrum (Bartelt, Lohmann and Wirnitzer (1984), Geng, Liang and Wang 
(2011), Holambe, Ray and Basu (1996), Le, Clediere, Serviere and Lacoume (2007), Matsuoka and Ulrych 
(1984), Pan and Nikias (1987), Petropulu and Nikias (1992), Swami and Mendel (1991), Zhang and Wang 
(1998)).  
Other methods addressing Polyspectrum Slice computations (Kachenoura, Albera, Bellanger and Senhadji 
(2008)) have also been reported. These are based on the use of some part of the polyspectrum information 
such as one or two fixed one-dimensional (1-D) polyspectrum slices (Dianat and Raghuveer (1990), Pozidis 
and Petropulu (1998), Petropulu and Pozidis (1998)). However, the estimated higher-order spectral 
parameters are result of multidimensional function calculations that make them no suitable for practical 
implementation and cannot be directly or simply applied on the problem of detection of periodic signals 
corrupted by Gaussian noise (Iglesias and Hernández (2013)). 
The main limitations of the previous algorithms are related to the fact that they do not take into consideration 
the estimation of amplitude, frequency and phase (all at the same time) of the periodic signal spectral 
components. As some of them are focused on recovering only the phase information, the rest of them are used 
just for amplitude and frequency estimation. The computational cost of these applied amplitude, frequency or 
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phase estimation procedures is very high due to the computation of higher-order statistics. In order to 
overcome the limitations of such algorithms, a signal detection method, based on fourth-order statistics 
(fourth-order cumulants calculation), is proposed by Iglesias and Hernández (2013). However, this method 
does not reach to cancel NIAC in general, it is only valid for Gaussian noise reduction.  
Several works based on the principles of Welch-based denoising technique and its limitations have also been 
reported by Santoso (2008). Another method, proposed by Rainer (2001), uses the derivative of power 
spectral density (PSD) for cancellation of noise in speech signal based on an optimal signal PSD smoothing 
method and minimum statistics. In the work proposed by Othman and Qian (2006), a noise reduction 
algorithm based on the spectral derivative domain is introduced and applied on the problem of denoising 
hyperspectral imagery using 2D-Wavelet Transform. Although these algorithms implement a complete noise 
reduction procedure, its computational complexity is still high. 
In order to obtain a method for the estimation of a signal corrupted by NIAC, exhibiting a computational 
complexity lower than that achieved in previous methods, a new algorithm based on the derivative of power 
spectrum and a convolution process is proposed in this work. 

 
2. REMOVING NOISE WITH IMPULSIVE AUTOCORRELATION FUNCTION FROM A 
PERIODIC SIGNAL FROM SECOND-ORDER STATISTICS 

 
2.1 Second-Order Statistics Calculation  
 
Let’s denote y(t) a real value periodic signal corrupted by NIC as follows:  
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where )(tx  is the desired periodic signal (signal to be detected) and )(tn  is additive zero mean stationary 

noise with impulsive autocorrelation function. Furthermore, kA , kf  and kφ  are the amplitude, frequency and 
phase of the signal spectral components, respectively, and N is the number of harmonics of the periodic 
signal. 
It’s not hard to find out that the autocovariance function of y(t), )(2 τ

yc  yields: 
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where 2
nσ  is equal to the noise power spectral density. 

In order to remove the impulsive term in Equation (2), the derivative and subsequent integration of the 
spectrum of )(2 τ

yc is proposed. Then, the noise can be completely removed due to its flat nature in the 
spectral domain. 
If the power spectral density of the signal given by Equation (1) is as follows:  
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then the derivative/integration of Equation (3) results in the following expression: 
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The inverse Fourier transform of Equation (4) yields only, and conveniently, the desired periodic signal, 
however, the phase of the spectral components of the achieved signal are all zero: 
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2.2 Phase Recovery  
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In order to recover the phase information of the spectral components in the original signal, a convolution 
procedure, similar to that proposed by Iglesias and Hernández (2013), is proposed. This convolution 
procedure involves both the original signal corrupted by noise, given by Equation (1), and the signal resulting 
from de noise cancellation procedure, given by Equation (5). Since Equations (1) and (5) describe functions in 
time domain and the current procedure is carried out after obtaining id

yc /2 )(τ , the variable τ in Equation (5) 
is set to be equal to t. The convolution procedure performs as follows: 

⎥
⎦

⎤
⎢
⎣

⎡
∗⎥
⎦

⎤
⎢
⎣

⎡
++=∗ ∑∑

==

N

k
k

k
N

k
kkkid

y twAtntwAtcty
1

2

1
/2 )cos(

2
)()cos()()( φ  

[ ] ')'cos(
2

)'()'cos(1lim
2/

2/

2

1
dttwtwAtntwA

T

T

T
kk

k
N

k
kkkT ∫ ∑

− =
∞→ ⎥

⎦

⎤
⎢
⎣

⎡
−⋅++= φ  

⎢
⎣

⎡
+−+= ∫ ∑

− =
∞→

2/

2/ 1

3

')'cos()'cos(
2

1lim
T

T

N

k
kkkk

k

T
dttwtwtwA

T
φ ⎥

⎦

⎤
−∫ ∑

−
=

')'()'cos(
2

2/

2/
1

2

dttntwtwAT

T

N

k kk
k  

∑
=

+=
N

k
kk

k twA
1

3

)cos(
4

φ ∑
=

+=
N

k
kkk twA

c
1

)cos( φ                           (6) 

where 
4

3
k

k
AA

c
= . 

Equation (6) reveals that an equivalent of the original periodic signal, preserving the original phase of the 
spectral components, is achieved. However, the original magnitude of the spectral components is not 
achieved, but a cubic version of it. That is why a restoration to the original magnitude of the spectral 
components must be performed by operating on the resulting spectral component amplitudes as follows: 

3 )(4)( cfAfA ⋅=                                (7) 

where cfA )(  is the amplitude spectrum of signal resulting from the convolution procedure. The amplitude 
restoration is carried out along the whole frequency axis. This way, the amplitude of spectral components 
corresponding to the periodic signal, the frequency of which can be unknown, is restored to the original value. 
Furthermore, since this amplitude restoration is performed in the frequency domain, when the Inverse Fourier 
transform is applied in order to obtain the original waveform, the resulting signal exhibits an envelope 
distortion that must be corrected. Then, an envelope detector can be used in order to overcome such an 
envelope distortion (see the work by Iglesias and Hernández (2013) for further details). A diagram of the 
entire procedure is shown in Figure 1. This way, the noise with impulsive autocorrelation function can be in 
theory completely cancelled from a periodic signal. The noise cancellation is performed over the full effective 
frequency domain.  
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Figure 1. Block Diagram of the Proposed Algorithm 

The objective comparison of the computational cost of the proposed algorithm with other algorithms is very 
difficult to be done. A proper comparison can be achieved if the other algorithms perform the cancellation 
process over the full effective frequency domain, provided only that the noise autocorrelation is impulsive. 
For example, filter-based noise reduction procedures do not reduce the noise along the full effective 
frequency domain, and the wavelet transform-based noise reduction algorithms, on the other hand, require 
information about the noise power. Comparing the proposed algorithm with such techniques does not provide 
useful information about the achieved performance, since indeed they have different application domains. 
Since the comparison must be performed between techniques with the same application requirements, one 
could compare the proposed algorithm with those based on higher-order statistics, for example, those 
mentioned in        Section 1. The main problem in this case is that these techniques do not achieve the 
detection of every parameters of the periodic signal spectral components. Only the technique proposed by 
Iglesias and Hernández (2013) performs the detection of the periodic signal spectral components with the 
original amplitude, phase and frequency, however, this technique requires that corrupting noise be Gaussian. 
This technique is based on a higher-order statistical signal processing thus the incurred computational cost is 
higher than that achieved by the algorithm proposed in this paper. 

 
2. EXPERIMENTAL RESULTS 

 
In order to verify the effectiveness of the algorithm proposed in this paper, an experiment using a multitone 
signal was performed. In this case, the sum of nine tones with different amplitudes (0.1, 0.2, 0.3, 0.5, 1.0, 0.8, 
0.6, 0.4, 0.9), frequencies (50 Hz, 200 Hz,  300 Hz,  100 Hz, 500 Hz, 150 Hz, 600 Hz, 350 Hz  and 250 Hz) 
and phases (π/4 rad,   π/3 rad, π/6 rad, π/8 rad, π rad, π/2 rad, π/5 rad, 3π/4 rad and 2π/3 rad), respectively, 
corrupted by zero-mean white noise with a Gaussian distribution, was generated (500 noise realizations were 
used in order to validate the algorithm). The work was performed using Matlab. The signal-to-noise rate 
(SNR) of the signal corrupted by noise was – 17.74 dB and the correlation between the corrupted signal and 
the desired signal was 0.37. The sampling frequency was 10 kHz.  

 

 

 

a)	

c)	

b)	
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Figure 2. Sketch of a) the original signal (multitone signal) corrupted by noise (time domain), b) its 
spectrum and c) both the original signal (without noise) and the signal resulting from the noise reduction 

procedure. 
In this work, the Welch’s method was applied in order to estimate the power spectrum and the derivation and 
integration procedures were implemented by using the functions diff and cumtrapz.   
The correlation index between the desired periodic signal and the signal resulting from de noise reduction 
procedure was used in order to measure the effectiveness of the proposed algorithm. The SNR of these two 
signals was also calculated and used in order to validate the proposed algorithm.  
Figure 2a and Figure 2b show a sample of the corrupted signal and its spectrum, respectively. A comparison 
between the signal resulting from the noise reduction procedure and the original signal (without noise) is 
shown in Figure 2c.  

The mean and statistical deviation of the SNR estimated at the proposed algorithm output was 31.12 dB and             
0.02 dB, respectively. The mean and statistical deviation of the correlation between multitone signal without 
noise and the signal at the noise canceller output was 0.83 and 0.072, respectively. 
 
3.1. Working with True Communication Signals 
 
This noise reduction procedure was applied on real communication signals, in this case, a QPSK modulation 
signal (symbol frequency equal to 250 Hz), down converted to a carrier frequency of 880 Hz and sampled at 
44100 kHz. The only consideration to be taken into account for the noise cancellation procedure is that the 
noise can be assumed as white and the desired signal is periodic in consecutive times of duration 1/250 s; 
there is not information about the carrier frequency, nor the modulation bandwidth, nor the noise power, etc. 
It is obvious that in order to apply the algorithm proposed in this paper, an accurate synchronization with the 
symbol period must be attained. Then, the noise reduction procedure is set to run over each single symbol 
signal in order to deliver a version of the original desired signal. 
Here, the SNR of the signal at the algorithm input, and the correlation between the QPSK signal without noise 
and the signal at the algorithm input are unknown. Thus, these parameters will not be used in this experiment. 
The signal achieved at the algorithm output, compared with the QPSK modulation signal given at the 
algorithm input, is shown in Figure 3. A comparison between the spectrum of the signal at the noise reduction 
algorithm output and the spectrum of the signal at the algorithm input is shown in Figure 4. The noise has 
been clearly reduced.  

 

 
Figure 3. Sketch of the comparison between corrupted QPSK signal and signal at the algorithm output. 
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Figure 4. Sketch of the spectrum of the signal at the algorithm output, compared with the QPSK signal with 

noise. 
 

4. CONCLUSIONS 
 

This research confirmed the convenience of the application of the power spectrum combined with a 
convolution process and spectral amplitude estimation for detection of periodic signals in noise with 
impulsive autocorrelation function.  
In this work, the use of the derivative of the power spectrum for reducing the noise component was proposed 
and argued. Proposed algorithm, based on second-order statistics, represents a computational cost lower than 
those incurred by techniques based on higher-order statistics. 
Experimental results performed in Matlab were presented using a periodic signal corrupted by Gaussian noise 
and a real communication signal corrupted by white noise. Results revealed the effectiveness of the proposed 
algorithm application. 
The application of the proposed algorithm on the reduction of noise in periodic signal does not require any 
specific information about the noise or the periodic signal. The only information required is that the noise 
autocorrelation function be impulsive. 
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