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Abstract

Most theories of decision under uncertainty are based on the idea that in-

dividuals weight events by some (transformation of) subjective probabilities.

Elicitation of these subjective probabilities has thus became a major concern

for evaluating and applying these models. In order to do so, one needs (i) to be

sure that such subjective probabilities actually exist in individuals’ minds and

(ii) to be able to infer these subjective probabilities from behavioral data. It

is known from cognitive science that decisions in perceptive tasks are based on

probabilities encoded at the neuronal level. Moreover, Signal Detection The-

ory (SDT) provides a theoretical model, confirmed by experimental neuronal

data, that relates these probabilities to behavioral data. We use three different

elicitation rules to measure individuals’ confidence in a perceptive task, and

compare the results with the theoretical predictions based on SDT. We find

that subjective probabilities elicited by a specific rule, the Matching Probabil-

ities, fit very well the theoretical predictions. We also show that these results

are consistent with those obtained for the same subjects in a non-perceptive

task (knowledge and logic quiz). This paves the way for extending our findings

to non-perceptive tasks.
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1 Introduction

Most theories of decision under uncertainty are based on the idea that individuals

weight events by some (transformation of) subjective probabilities. Elicitation of

these subjective probabilities has thus became a major concern for evaluating and

applying decision models. This requires to identify procedures (known as elicitation

rules) which can be used to measure as accurately as possible subjective probabilities.

However, decision theory itself cannot help to assess how close elicited probabil-

ities are to subjective probabilities an agent has in mind, because it only provides

”as if” models. This essentially results from a methodological constraint. Indeed,

the assumption that one can only observe the results of choices, and not the de-

cision processes themselves, is a cornerstone of decision theory. For instance, the

celebrated Subjective Expected Utility model only says that people decide as if they

were maximizing an expected utility, and not that this is what they actually do. All

representation theorems, that form the core of mathematical decision theory, are to

be interpreted in that way. Decision theory cannot help to elicit subjective beliefs,

because it does not even assume that these subjective probabilities actually exist

in the first place. The only thing one can do in this framework is to identify the

subjective probabilities that would be compatible with individual choices if agents

were acting in conformity with a given theoretical model. In order to avoid this

circularity while respecting the methodological constraints of decision theory, one

needs (i) to be sure that subjective probabilities actually exist in decision makers’

mind, and (ii) to be able to infer these subjective probabilities from behavioral data.

This is precisely what we aim at in this paper.

It is known from cognitive sciences that decisions in perceptive tasks are based on

probabilities encoded at the neuronal level, which solves the first question. More-

over, Signal Detection Theory (SDT) provides a theoretical model, confirmed by

experimental neuronal data, that relates these probabilities to behavioral data. It

is thus possible, in this context, to compare these predicted subjective probabilities

to those obtained by using various elicitation procedures. The idea being that, if

we are able to find an elicitation procedure that delivers subjective probabilities

close to those predicted by SDT, it would be a good candidate to elicit subjective

probabilities in other contexts as well.

We choose to study three elicitation rules. Since the most widely used elicitation

rule in economics (and other fields, such as meteorology) is the Quadratic Scoring

Rule (QSR), it is natural to consider it. Since the common practice in psychology

is to use a simple ordinal scales without incentives, our second elicitation rule is the

Free Rule (FR) which simply requires the subject to report her confidence, without
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relating any monetary consequence to stated probabilities. The third elicitation rule

we consider is the Matching Probabilities (MP), which is a variant of the famous

Becker-DeGroot-Marshak mechanism (Becker, Degroot, and Marschak (1964)). It

consists in eliciting an objective probability equivalent to a subjective probability.

We compare the results obtained by these three rules to the subjective probabili-

ties predicted by SDT in a very simple perceptive task. We find that MP very nicely

fits the predictions of SDT. We also observed that although this rule might seem

complicated at first sight, there is no evidence that subjects had more difficulties

using it than the two other rules. Moreover, using a task based on a knowledge quiz

for the same subjects, we found evidence suggesting that these results might possi-

bly extend to other, non perceptive, tasks. MP thus appears as a good candidate if

one seeks for an incentive-compatible elicitation rule that is not affected by rewards,

and remains reasonably simple to use.

The remainder of the paper is organized as follows. In section 2, we show how

actual subjective probabilities can be predicted from behavior, using SDT. We also

provide a short account of the neurosciences literature supporting the idea that this

model is grounded at the neuronal level. In Section 3, we present the three elicitation

rules we will put under scrutiny. We will then describe the design of our experiment

in Section 4. Section 5 contains the main results of our experiment. We close the

article by a brief summary and some results concerning the elicitation rules from

the classical point of view of calibration and discrimination as measures of good

probability assessors.

2 Confidence and probabilities

Our analysis is based on Signal Detection Theory (SDT). In the first part of this

section, we briefly present how SDT is used in psychophysics for analyzing percep-

tive task, and how it can be extended to study confidence. We then describe some

evidence supporting the idea that SDT can in some circumstances provide an ac-

curate description of actual neuronal processes for perceptive task and confidence

assessment in these tasks. We conclude by describing empirical predictions regarding

elicited confidence that can be made on the basis of SDT.

2.1 Signal Detection Theory as behavioral model

2.1.1 SDT for perceptive tasks

Since Green and Swets (1966)’s classical book, SDT has been routinely and success-

fully used in experimental psychology to study individual decisions in perceptual
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tasks. The idea is the following. Consider a simple perceptual task, where subjects

have to compare the number of dots contained in two circles (see Figure 1). The

two circles are only displayed for a short fraction of time, about one second, so that

it is not possible to count the dots. However, the subject is aware that a circle can

only contain 54 or 50 dots, and that there is an equal probability for each circle to

be the one with the largest number of dots.

Figure 1: Perceptual task

One postulates that stimuli are perceived as noisy signals by the sensory system.

Here, we are interested in the numerosity of the circles, i.e., the number of dots

they contain. One assumes that, when presented with a circle that contains y dots,

the sensory system actually observes a realization of a random signal Sy that is

distributed according to a Gaussian law, with mean ln(y) and variance σ2
i , where

σi is a parameter describing the degree of precision of the internal representation of

numerosity in the brain.

When observing two circles with respectively yL and yR dots (where L and R

stand for left and right, respectively), the subject thus receives two noisy signals

SyR and SyL . Because the subject has to decide which circle contains the largest

number of dots, the relevant information is actually the difference between the two

signals. We thus assume that, when presented with the circles and asked which one

contains the largest number of dots, the subject’s decision is based on a noisy signal

SyR,yL = SyR − SyL .

On a given trial, the subject thus perceives a signal ỹ and has to decide whether

it comes from SyR,yL = S54,50 (i.e., there are 50 dots in the left circle, and 54 in the

right one), or from SyR,yL = S50,54 (i.e., there are 54 dots in the left circle, and 50

in the right one). Denote f(ỹ|SyR,yL) its density function. Since she is aware that

there is an equal chance for any circle to be the one containing the largest number

of dots, her optimal strategy based on maximum likelihood consists in answering

”Right” whenever ỹ ≥ 0, and ”Left” otherwise (see Figure 2).
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Figure 2: SDT in the two-alternatives forced choice

It has been shown that such a model accounts well for individual decisions, in

the sense that the proportion of correct answers as a function of the difficulty of

the task (i.e., the ratio yR/yL) predicted by the model is very close to that actually

observed (Pica, Lemer, Izard, and Dehaene (2004)).

2.1.2 SDT for confidence

The Bayesian reasoning can be pushed further (see Galvin, Podd, Drga, and Whit-

more (2003), Fleming and Dolan (2010), Rounis, Maniscalco, Rothwell, Passingham,

and Lau (2010), Maniscalco and Lau (2012)) to modelize how subjects make con-

fidence judgments in terms of probabilities on their decisions in a perceptive task.

Such judgments are known as ”type 2 tasks” (Clarke, Birdsall, and Tanner (1959),

Pollack (1959)), as opposed to ”type 1 tasks” consisting in discriminating between

perceptual stimuli.

Consider a trial where the subject perceives a positive signal ỹ, and therefore

answer ”Right”. Based on the SDT model presented above, one can easily deduce

the probability that she had given the correct answer. By Bayes rule it is equal to

P (S54,50|ỹ) = f(ỹ|54, 50)/(f(ỹ|54, 50) + f(ỹ|50, 54) (see Figure 3). This confidence

based on signal detection will be called SD-confidence (where ”SD” stands for ”Signal

Detection”) in the sequel.

Since we only collect behavioral data in our experiment, we cannot measure

the neuronal firing rate corresponding to the internal signal used by the subject to

perform the perceptive task. However, since we control for the difficulty levels of the

stimuli used in the perceptual task, we can use SDT to estimate subjects’ perceptive

sensibility from behavioral data (success rates). This leads to an estimation of

the distribution of the internal signal used by the subject when performing the

perceptual task. With this in hand, the SDT model provides precise predictions
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Figure 3: SD-confidence

about the SD-confidence levels of an ideal (i.e., optimal and bayesian) observer who

receives the same internal signals as the subject.

First we can compute the distribution of SD-confidence. Indeed, SDT predicts

the SD-confidence level associated to each level of the internal signal (Figure 3).

It also provides the probability to reach any confidence level. Given a probability

p, let ỹp be such that P (S54,50|ỹp) = p. The probability to observe a confidence

level above p is
∫
ỹp

(0.5f(ỹ|54, 50) + 0.5f(ỹ|50, 54))dỹ. In our experiment where the

confidence scale is discrete with 5% increments, we can thus deduce the probability

distribution of SD-confidence (Figure 4).

Figure 4: Distribution of SD-confidence

One drawback of the distribution of SD-confidence is that it does not keep tracks

of any relationship between SD-confidence and success in the perceptive task. This

link can be represented by a Receiver Operating Characteristic (ROC) curve (Green
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and Swets (1966)). Consider a given level of SD-confidence, say 70%. Assume

that one uses this confidence level to decide whether the answer was correct or not.

Thus, all trials for which the SD-confidence is higher than 70% will be classified

as correct, whereas the other will be classified as incorrect. This classification is

of course imperfect. But we can precisely compute the false alarm rate (i.e., the

proportion of trials that would be wrongly classified as correct) and the hit rate

(i.e., the proportion of trials that would be correctly classified as correct). Thus, to

each SD-confidence level we can associate a point on a graph with hit rates on the

vertical axis, and false alarm rates on the horizontal axis. The curve that relates all

the points obtained by varying the SD-confidence level is the type 2 ROC curve. To

measure how accurate confidence is predictive of success, one usually computes the

area under this ROC curve (AU2ROC) which has the following statistical meaning.

Consider a situation in which trials are already correctly classified into two groups

(success and failure) and pick randomly a pair of trials, one from each group. The

probability that the trial with the higher confidence is the one from the success

group is equal to the AU2ROC.

Figure 5: ROC curve

To illustrate, we computed the distribution of elicited confidence and predicted

SD-confidence (Figure 6) for a subject of our experiment. One observes that data

fit nicely SDT predictions. We also computed, for the same subject, the observed

and predicted type 2 ROC curve (Figure 7). The predicted AU2ROC is equal to

0.75, which is very close to the observed AU2ROC (equal to 0.72). Note that the

shape of confidence distribution for this subject differs from that shown in Figure

4. This is due to the fact that the difficulty level of the task is not constant in our

experiment.

In terms of behaviors, the main prediction of the SDT model described above is
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Figure 6: Observed and SDT confidence distribution for one specific subject.

Figure 7: Observed and SDT ROC curve for one specific subject.

a positive relationship between type 1 and type 2 performances. Studies in humans

(Maniscalco and Lau (2012)), rhesus monkeys (Kiani and Shadlen (2009)) and rats

(Kepecs, Uchida, Zariwala, and Mainen (2008)) indeed found such a relationship,

although it has also been shown that, in some circumstances (e.g., subliminal stimuli)

type 1 and type 2 performances might be disconnected (see, e.g., Kanai, Walsh, and

Tseng (2010)).
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2.2 Neuronal evidence

The mere fact that SDT accommodates observed behavior in many situations does

not imply that it provides an accurate description of the process that actually takes

place in the brain. There is, however, a substantial amount of evidence coming from

neurosciences that support this idea. We review briefly here some of this evidence.

2.2.1 Perceptual tasks

First, it has been shown that there exist single neurons tuned to numerosity in the

macaque monkey, that encode numerical quantities (Nieder, Freedman, and Miller

(2002), Nieder and Miller (2004)). Using neuroimaging and psychophysics Piazza,

Izard, Pinel, Le Bihan, and Dehaene (2004) established that a similar neural coding

scheme is likely to exist for human (see Nieder and Dehaene (2009) for a review).

The population of numerosity-selective neurons taken together encodes numerosity

into a log-Gaussian distribution, exactly as assumed by SDT (Nieder and Miller

(2003)).

Furthermore, neuroscientists have provided empirical and theoretical evidence

that populations of neurons in the lateral intraparietal cortex (LIP) can encode the

uncertainty about stimuli under the form of probability distributions, and combine

this information in a bayesian way (Gold and Shadlen (2002), Ma, Beck, Latham,

and Pouget (2006), Yang and Shadlen (2007), Beck, Ma, Kiani, Hanks, Church-

land, Roitman, Shadlen, Latham, and Pouget (2008)). In particular, populations

of neurons can encode the all posterior probability distribution associated with a

stimulus.

Thus, SDT should not simply be considered as an ”as if” model of decision

making in simple perceptive contexts, but as an elementary description of how de-

cisions are actually made. In particular, there is strong and converging evidence

that neurons in the LIP area encode a probabilistic information and use it to carry

out bayesian inference when performing simple perceptive tasks. This implies in

particular that probability distributions involved in such decision processes should

be considered as real mental representation used by the subject to make her choices,

and not simply as modeling tool of the observer.

2.2.2 SD-Confidence

Studies using neuronal recording in the rhesus monkey (Kiani and Shadlen (2009))

and the rat (Kepecs, Uchida, Zariwala, and Mainen (2008)) show that animals’

confidence in their decisions, measured by post-decision choices, can be explained

and predicted by SDT. Moreover, Kiani and Shadlen (2009) show that the same
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neurons are involved in type 1 and type 2 decisions, and thus support the hypothesis

that confidence is based on the same signals on which type 1 decisions are made,

which is the fundamental prediction of SDT.

However, it has also be shown that there is an heterogeneity across reported con-

fidence (measured by difference between AU2ROC), even when controlling for the

individual performance level in the perceptive task. This suggests that confidence

reports involve other cognitive processes than type 1 decisions. Confirming previous

studies (Rounis, Maniscalco, Rothwell, Passingham, and Lau (2010), Fleming, Weil,

Nagy, Dolan, and Rees (2010)), Fleming, Huijgen, and Dolan (2012) show, using

fMRI analysis, that a specific brain area (the right rostrolateral prefontal cortex,

rlPFC) is involved in confidence judgments. Moreover, they found an increase of

connectivity with visual cortex when subjects report their confidence in a visual

perceptive task. They conclude that it is likely that signals used for type 1 decisions

might be re-represented in specific brain area for confidence reports. Individual het-

erogeneity in the quality of type 2 ROC may thus be explained by neuro-anatomical

differences (Fleming, Weil, Nagy, Dolan, and Rees (2010)).

2.3 Empirical predictions from SDT

Assume that the elicitation rule yields individuals to report their SD-confidence.

Then, subjects should report confidence levels close to the one predicted by SDT.

Therefore, the distribution of elicited confidence and the elicited type 2 ROC should

be close to that predicted by SDT. Moreover, the elicited type 2 ROC could never

be better than the predicted one, i.e., elicited AU2ROC should not be greater than

predicted one. Furthermore, if a subject is a good (respectively, bad) assessor of

her SD-confidence, then both the distribution of elicited confidence and the type

2 ROC should be close to (respectively, distant from) the predicted ones. Thus,

distances to predicted distribution of confidence and predicted AU2ROC should be

positively correlated. Finally, because SD-confidence is based on the same signals

than those used for the perceptive task, one should observe a positive correlation

between performance in the perceptive task and elicited AU2ROC.

We summarize these predictions for future reference. A good elicitation rule of

SD-confidence should yield:

A1 elicited confidence close to predicted SD-confidence;

A2 elicited AU2ROC close to predicted one;

A3 elicited AU2ROC not greater than predicted one;
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A4 the closer is the elicited confidence distribution to the predicted SD-confidence

distribution, the closer is the elicited AU2ROC to predicted one;

A5 positive correlation between performance in perceptive task and elicited AU2ROC.

3 Elicitation Rules

The main objective of our experiment is to compare three elicitation rules: the

Quadratic Scoring Rule (QSR), the Matching Probabilities (MP) and the Free Rule

(FR). This section is devoted to the presentation of these rules, discussion of their

main theoretical properties, and the presentation of their experimental implementa-

tion.

3.1 Quadratic Scoring Rule

3.1.1 Definition and properties

In experimental economics, the most commonly used rule is the Quadratic Scoring

Rule.1 We consider here a very simple version of the QSR. Assume a subject reports

a confidence level equal to p. She will then win a − b ×
(
1− p2

)
if her answer is

accurate, and a−b×
(

1− (1− p)2
)

otherwise, where a and b being positive constants.

A scoring rule is said to be strictly proper if the unique best strategy of the

subject consists in reporting her true subjective probabilities, without any distortion.

The QSR is very popular among experimental economists because it is a relatively

simple strictly proper scoring rule for subjects who use subjective probabilities and

maximize their expected reward. It is well known, however, that elicited probabilities

through the QSR will be distorted for non-risk neutral subjects. For instance, elicited

probabilities for risk averse subjects are expected to be smaller than their subjective

probabilities.2

3.1.2 Implementation

In our experiment, QSR is implemented as follows. We ask subjects to choose among

different levels of remunerations that are presented to them in the Table 1.

Each letter corresponds to a payment scheme (x, y), that yields x if their answer

is correct and y if it is not. These payments are generated using a QSR with

parameters a = b = 10, and a 0.05 step (i.e., A corresponds to p = 1, B corresponds

1Nyarko and Schotter (2002), Offerman, Sonnemans, Van de Kuilen, and Wakker (2009), or
Palfrey and Wang (2009))

2Nevertheless, recent papers try to correct the QSR from risk attitudes (Offerman, Sonnemans,
Van de Kuilen, and Wakker (2009), Andersen, Fountain, Harrison, and Rutstrom (2010), Kothiyal,
Spinu, and Wakker (2011)).
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Choice A B C D E F G H I J

Correct 10 9.98 9.90 9.78 9.60 9.38 9.10 8.78 8.40 7.98

Incorrect 0 0.98 1.90 2.78 3.60 4.38 5.10 5.78 6.40 6.98

K L M N O P Q R S T U

7.5 6.98 6.40 5.78 5.10 4.38 3.60 2.78 1.90 0.98 0

7.5 7.98 8.40 8.78 9.10 9.38 9.60 9.78 9.90 9.98 10

Table 1: Quadratic Scoring Rule

to p = 0.95 and so on). If, for instance, the subject enters ’K’, she will obtain a sure

payment of 7.5, which is the optimal choice if she maximizes her expected income

and believes that she has an equal probability of being correct or not. The unit used

for payments depends on the task. We use cents of euros for the perceptual task,

and euros for the quiz.

Note that there is no explicit reference to probabilities in this procedure. Sub-

jects are not told that payment schemes are linked to confidence levels. Moreover,

subjective probabilities are not mentioned in the instructions and the QSR theoret-

ical principles are not explained. This is an unusual presentation but we feel it is

in line with a revealed preference approach, according to which individual choices

among lotteries are the only relevant information. It also avoids a possible drawback

of the traditional presentation of the QSR, where options are described in two dif-

ferent terms (payments and reported probabilities), which might induce confusion

for the subject. Some experimental evidence support this design. Armantier and

Treich (2010) show that using probabilities in the QSR may increase the distortion

of elicited probabilities, whereas Offerman, Sonnemans, Van de Kuilen, and Wakker

(2009) find no significant difference in probabilities elicited by a QSR with or without

explicit reference to probabilities. Finally, observe that three choices (A, K and U,

corresponding to probabilities equal to 0, 50 and 100%, respectively) are associated

to payments involving two digits numbers, while the other choices involve three dig-

its numbers. One can thus suspect that subjects will concentrate their answers on

these choices, because they are simpler. This is certainly true, but previous papers

have found a concentration of stated probabilities on 50 and 100%, even with the

same number of digits. It is therefore unlikely to be a major issue.

3.2 Matching Probabilities

3.2.1 Definition and properties

The second elicitation rule we consider is the Matching Probabilities, which is a

variant of the famous Becker-DeGroot-Marshak mechanism (Becker, Degroot, and
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Marschak (1964)). It consists in eliciting an objective probability equivalent to

a subjective probability. This principle is known for long (Arrow (1951), Raiffa

(1968), Winkler (1972), LaValle (1978) among others ...) but was rarely put in

practice until recently (Grether (1992), Abdellaoui, Vossmann, and Weber (2005),

Holt (2006), Holt and Smith (2009) are some notable exceptions3).

Assume one wants to elicit a subject’s subjective probability about an event E.

The subject is asked to provide the probability p that makes her indifferent between:

• a lottery L(E) that gives a positive reward x if E happens, and 0 otherwise;

• a lottery L(p) that gives a positive reward x with probability p, and 0 with

probability (1− p).

A random number q is then drawn in the interval [0, 1]. If q is smaller than p,

the subject is paid according to the lottery L(p). Otherwise, the subject is paid

according to a lottery L(q) that gives x with probability q and 0 with probability

(1− q).
This procedure provides incentives to truthfully reveal ones’ subjective proba-

bility. To make this clear, suppose that the subject thinks her probability of success

is p but reports a probability r 6= p. First consider the case where r < p. The

lotteries according to which the subject (given her subjective probabilities) is paid

are represented in the following table.

q < r < p r < q < p r < p < q

reports p L(p) L(p) L(q)

reports r < p L(p) L(q) L(q)

Similarly, assume that the subject reports r > p. Her payments (according her

subjective probabilities) are then described in the following table.

q < p < r p < q < r p < r < q

reports p L(p) L(q) L(q)

reports r > p L(p) L(p) L(q)

One observes that, in any case, the subject obtains a lottery that gives her a higher

or equal chance to win x if she reports p instead of r.

A major advantage of the Matching Probabilities is that it provides to the sub-

jects incentives to truthfully reveal her subjective probabilities, regardless her at-

titude towards risk.4 A drawback, pointed out by Kadane and Winkler (1988), is

3Its use has become more widespread in recent years: see among others Dimmock, Kouwen-
berg, and Wakker (2011), Baillon, Cabantous, and Wakker (2012), Baillon and Bleichrodt (2011),
Trautmann and Kuilen (2011), Mobius, Niederle, Niehaus, and Rosenblat (2011).

4More details and a formalization can be found in Karni (2009).

13



that this elicitation rule may not allow to disentangle subjective probabilities from

utilities if the agents’ wealth is correlated with the event. However, this difficulty

cannot arise for the task we consider in our experiment. One main problem is that

this rule might seem complicated and thus cognitively demanding. It is then of a

particular interest to test whether the complexity of the Matching Probabilities is

indeed a problem. As we will see, our data show that such is not the case. Finally,

we note that we cannot exclude that subjects might prefer, ceteris paribus, to be

paid according to their own performance rather than according to an external event.

In such a case, they will over-report their subjective probabilities.

3.2.2 Implementation

In practice the Matching Probabilities is implemented using a 0 to 100 scale, with

steps of 5 (see Figure 8). After having completed the perceptual task or the quiz,

subjects are told that they are entitled with a ticket for a lottery based on their

answers’ accuracy. In the quiz task, this lottery gives them e10 (e0.10 in the

perceptual task) if their answer is correct, and 0 otherwise.

Subjects have then to report on a 0 – 100 gauge the minimal percentage of chance

p they require to accept an exchange between their lottery ticket and a lottery ticket

that gives p chance of winning e10 (e0.10 in the perceptual task). A number l1

is drawn according to an uniform distribution between 40 and 100. If l1 is smaller

than p, subjects keep their initial lottery ticket. If l1 is higher than p, they are

paid according to a lottery that give them l1 chance of winning. In this case, a

random draw determines the payment: a number l2 is determined using an uniform

distribution between 0 and 100, the lottery is winning if l1 is higher than l2. For all

trials, the gauge was pre-filled with 75 in order to limit the number of times they

have to press the keyboard. The procedure is summarized in Figure 8.

3.3 Free Rule

3.3.1 Definition and properties

The Free Rule just requires the subject to report his confidence, without relating any

monetary consequence to stated probabilities. Nothing is done to provide incentives.

The main advantage of such a rule is of course its simplicity. It is the less cognitively

demanding one, especially comparing to the two previous ones.

The Free Rule is widely used in psychology and neurosciences. In particular,

experiments that involve scanning the subjects are very sensitive to response times,

as the duration of the experiment is limited and requires a high number of trials

to obtain statistically significant results. This makes the Free Rule particularly
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p

0

100

50

25

75

Confidence

Lottery 1

l1

l1

p

p

Keep their bet

p > l1

Get a lottery ticket

p < l1

Lottery 2

l1

l2

l1

l2

Lose
l2 > l1

Win
l2 < l1

Figure 8: Matching Probabilities

attractive, since probabilities can be elicited very quickly. More generally, there is

a trade-off between complexity and incentive compatibility. In contexts where one

suspects that incentive compatibility might not be a major issue, it is reasonable to

choose a simple rule as the Free Rule. Finally, this rule is also often used in surveys

where it is actually difficult to provide monetary incentives.

3.3.2 Implementation

We implement the Free Rule as follows. Subjects just have to choose a level of

confidence between 0 and 100 (with steps of 5) on a gauge (see Figure 9). They are

told they are free to use the gauge as they want, either by trying to express their

confidence level in terms of percentage of chance or simply by being consistent in

their report with small values for low confidence and high values for high confidence.

Payments are independent of elicited probabilities. A correct answer in the quiz

provides a payment of e10 (0 if incorrect) and e0.10 in the perceptual task. As for

the Matching Probabilities, the gauge was pre-filled with 75 for all trials.
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0 1005025 75

Confidence

Figure 9: Free Rule

4 Experimental design

4.1 Participants

The experiment took place in June and October 2009 at the Laboratory of Experi-

mental Economics in Paris (LEEP). Subjects were recruited using LEEP’s database.

They were students from all fields. The experiments last for about 90 minutes. Sub-

jects were paid e19 on average.

This computer-based experiment uses Matlab with the Psychophysics Toolbox

version 3 (Brainard (1997)) and has been achieved on computers with 1024×768

screens. We ran two sessions for each rule, that allowed to collect data for 35 to 40

subjects for each rule.

4.2 Stimuli

Our experiment is based on two kinds of task. One is a perceptual task, where

subjects are asked to identify which of two circles contains the higher number of dots.

The second task is a quiz with questions related to logic and general knowledge. We

provide below more details on these tasks.

4.2.1 Perceptual task

The perceptual task we use is a two-alternative forced choice (2AFC) which is known

to be a convenient paradigm for SDT analysis (see, e.g., Bogacz, Brown, Moehlis,

Holmes, and Cohen (2006)). Subjects have to compare the number of dots contained

in two circles (see Figure 1). The two circles are only displayed for a short fraction

of time, about one second, so that it is not possible to count the dots. Subjects have

to tell which circle contains the higher number of dots.

We allow the difficulty of the task to vary, by changing the spread of the number

of dots between the two circles. One of the two circles always contains 50 dots.

The position (to the left or the right of the screen) is randomly chosen for each

trial. The other one contains 50 ± αj dots, where αj is randomly chosen for each
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trial in the set {α0, α1, α2, α3, α4}. For all subjects, α0 = 0 and α4 = 25. The

intermediate difficulty levels are adapted to each participant, in order to control for

differences in individual abilities. During a training part of the experiment, α2 is

adjusted so that the subject succeed in 70% of the cases at that level of difficulty.

This calibration is done by using a psychophysics staircase (Levitt (1971)). The two

other parameters α1 and α3 are then given by α3 = 2α2 and α1 = α2/2 if α2 is even,

and α1 = (α2 + 1)/2 if α2 if odd.

4.2.2 Quiz task

We elaborated two questionnaires, each containing 30 questions of general knowl-

edge, and 6 logic puzzles. The questions and the puzzles are different in both

questionnaire but are similar in terms of difficulty. For instance, one questionnaire

contains the question ’Is the distance between London and Tokyo longer than 12000

km? ’, whereas the other contains the question ’Is the distance between Paris and

Dakar longer than 5000 km? ’. All general knowledge questions have to be answered

by ”yes” or ”no”.

4.3 Procedure

In a given experimental session, a single elicitation rule (the same for all subjects)

is used. Thus, our study will be based on a between–subjects analysis with a simple

3× 1 design.5

After the instructions (that include a detailed presentation of the elicitation rule)

and a short questionnaire, the experiment is divided in three parts.

In the first part of the experiment, subjects have to answer a randomly chosen

quiz by giving their choice and their confidence in this choice. They have no feedback

on their answers.

During the second part of the experiment, subjects have to perform the percep-

tual task. This part is divided in two phases. Subjects begin with a training phase

during which the difficulty of the task is calibrated. Confidence is not elicited during

this first phase, and they have a feedback on their success after each trial. In the

second phase, subjects perform 100 trials of the perceptual task, and provide their

confidence in their answer for each trial. They have a feedback on their success in

the task and the accuracy of their reported confidence. Furthermore, each 10 trials,

subjects receive a summary of their performance in the last ten trials in terms of

success rate and cumulated gains.

5Pilot experiments have shown that subjects get confused if one ask them to use different elici-
tation rules.
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The last part of the experiment is similar to the first one, except that subjects

have to answer the quiz that has not been selected in the first part. Observe that

this experimental design allows to investigate learning effects. For instance, we

can examine whether subjects’ metacognitive abilities are higher in the second quiz

compared to the first quiz.

4.4 Payment

The payment contains three parts. There is a show-up fee of e5. The quiz tasks

are paid as follows. One question is randomly selected at the end of the experiment,

and payments are based on the answer given to that question. Such a procedure

is standard, and allows to avoid edging strategies. For groups using the QSR or

the Matching Probabilities, payments are computed according to the elicitation rule

used for the selected question, with a maximum payment of e10 and a minimum

of e0. Subjects in the group using the Free Rule are paid e10 if their answer to

the selected question is correct, and e0 otherwise. For the perceptual task, subjects

are paid for each trials. For groups using the QSR or the Matching probabilities,

each 100 trials is rewarded according to the elicitation rule used, with a maximum

payment of 0.10 e and a minimum of 0 e. Subjects in the group using the Free

Rule are paid 0.10 e for each correct answer.

5 Results

We drop the results for 6 subjects out of 113 because their stated confidence did

not vary: 3 in the QSR group, 2 in the Free Rule group and 1 in the Matching

Probabilities group. The three groups are similar according to demographic data.

There is no significant statistical difference between groups in the mean success rate

for the perceptive and the quiz tasks.

The results are presented in three parts. First, as a preliminary step, we perform

some descriptive analysis to draw a general picture of elicited probabilities. Second,

we investigate how elicitation rules perform with respect to predictions related to

SD-confidence. We conclude our analysis with some further results concerning cross-

tasks comparisons.

5.1 Elicited confidence: descriptive analysis

We start by presenting some basic facts concerning elicited confidence. First, we

observe that while the cumulative distributions of elicited confidence obtained by

the FR and the MP are similar, the one corresponding to the QSR differs significantly

18



(see Figure 10). The difference is mainly due to the fact that the confidence levels

elicited by the QSR are strongly concentrated on two values, 50% and 100%. Almost

two third of elicited probabilities are either equal to 50% or 100% when one uses

the QSR, which is twice as much as for the two other rules. One can also observe

that the FR yields to a greater concentration on 75%. This is likely to be explained

by the fact that the gauge was pre-filled precisely at this value. However, we do not

observe such a result for the MP, that is also based on a jauge pre-filled at 75%. We

suspect that this is due to the fact that no incentive is provided in the FR, and that

this might lead subjects to simply not make the effort to change this value in many

cases.

Figure 10: Cumulative probability distribution of elicited confidence.

Let us next have a look at how subjects’ stated confidence is related to their

actual success rate (see Figure 11). A first observation is that, whatever the elicita-

tion rule used, subjects are globally overconfident. Moreover, the difference between

stated confidence and observed success rates increases with stated confidence. If we

consider all the trials (for both tasks) for which subjects reported a 100% probabil-

ity of success, we observe an actual success rate of about 84% only. On the other

hand, low confidence levels (around 50%) correspond to actual success rates slightly

higher than 50%. Finally, we note that none of the elicitation rules provides strictly

increasing relationship between stated confidence and actual success rate.

The QSR and the MP are cognitively demanding and we expect their perfor-

mances to increase with practice. Our experiment is designed so as to offer subjects

the opportunity of learning by using feedback. One may thus investigate whether

the results described above are robust to learning effects.

During the second part of the experiment, subjects used 100 times the elicitation

rule with feedback. They could thus have learn to use the elicitation rule during

this part. We can therefore measure learning effects by comparing (i) results for the

quiz in the first and last parts of the experiment, and (ii) results for the first half
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Figure 11: Stated confidence vs. accuracy
This figure represents the mean accuracy for each level of confidence between 50% and 100% with step of 5.

(first 50 trials) and the second half (50 last trials) of the perceptive task. Table 2

provides details about the learning effect for the three different rules.

Rule AU2ROC quiz AU2ROC perceptual task

MP Part1 0.6351 (.0788) 0.6677 (.0915)

MP Part2 0.6548 (.0981) 0.6792 (.0864)

MP (Part2 - Part1) 0.0197 (0.1715) 0.0114 (0.1918)

QSR Part1 0.6080 (.1046) 0.6647 (.0767)

QSR Part2 0.6272 (.0863) 0.6860 (.0873)

QSR (Part2 - Part1) 0.0193 (0.2251) 0.0212 (0.1011)

FR Part1 0.6382 (.1157) 0.6570 (.1005)

FR Part2 0.6092 (.1058) 0.6769 (.0929)

FR (Part2 - Part1) -0.0290 (0.1249) 0.0199 (0.1247)

AllRule (Part2 - Part1) 0.0036 (.3943) 0.0172 (.0263)**

Table 2: Learning effect: AU2ROC for quiz and perceptual task

We observe some evidence of learning effects for discrimination ability. This is

the case for the three rules in the perceptual task. Since the increase is similar

for the three rules, it is likely that this learning effect reflects more an increase in

metacognitive abilities than an increase in the understanding of the QSR and the

MP. A similar increase is observed in the quiz task for the MP and the QSR but

not for the FR. This lack of improvement of metacognitive ability might be due to

boredom to continue to report confidence level without incentive in a repetitive task.

Overall, we thus conclude that there is no difference in terms of learning between

the MP and the QSR.
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5.2 SD-confidence

We now consider whether elicitation rules yield individuals to report confidence levels

that are compatible with the predictions of SDT. In other words, we investigate

to what extent we could interpret the confidence levels reported by individuals as

related to the probabilities they use in order to perform the perceptive task.

The first thing we need is to compute predicted SD-confidence in the perceptive

task. The only difficulty here is that there are actually five difficulty levels. We

extend the bayesian analysis described in section 2 to this case, under the assumption

that subjects have correct priors on the distribution of difficulty levels. We can

examine now how good are the three rules into eliciting SD-confidence. We proceed

by examining in turn each of the predictions A1 to A5.

Let us start with prediction A1, which sates that elicited confidence should be

close to predicted SD-confidence. A first answer is given by comparing elicited

confidence and predicted SD-confidence distributions. We report in Figure 12 the

elicited confidence and predicted SD-confidence distributions for each elicitation rule

(date are pooled across all levels of difficulty and all subjects). It appears clearly

that the MP is the rule that yields to the best fit. The FR is plagued by the large

proportion of elicited confidence levels equal to 75%, which is the pre-filled value of

the gauge. Confidence levels elicited with the QSR are those that differ the most

from predicted SD-confidence. There is a peak at a 50% confidence level, which is

expected because of risk aversion. But we observe also a high peak at the 100%

value (with 38% of the answers), which cannot be explained by risk aversion, and

do not correspond to predictions of SDT (only 18% of the answer should take this

value according to SDT).

To confirm the visual feeling that MP yields to the best fit between elicited

confidence and predicted SD-confidence, we computed the Chi-Square distance be-

tween the elicited confidence and predicted SD-confidence distributions, and the

Kolmogorov-Smirnov distance between the elicited confidence and predicted SD-

confidence cumulative distributions. We report the two distances for the three rules

(with s.d in brackets) in Table 3. The results for t-tests (not displayed in the table)

show that the two distances are significantly lower (at a level of 1% for the Chi-

Square distance, and 5% for the Kolmogorov-Smirnov distance) for the MP data

than for the QSR and the FR data, while there are no significant difference between

QSR and FR data. We also found that the two distances are strongly correlated

(corr = 0.85).

The second prediction (Prediction A2) states that elicited AU2ROC should be

close to predicted ones. We display in Figure 13 the corresponding data for each

rule.

21



Figure 12: Elicited confidence and predicted SD-confidence distributions

Distance between predicted and
observed confidence distances MP (n = 39) QSR (n = 33) FR (n = 35)

χ2square distance 0.48(.31) 0.81(.37) 0.76(.49)

Kolmogorov-Smirnov distance 0.32(.14) 0.39(.16) 0.40(.22)

Table 3: Distances between elicited confidence and predicted SD-confidence distri-
butions

The correlation between observed and predicted AU2ROC is positive and statis-

tically significant for the MP (corr = 0.39) and for the FR (corr = 0.40) while it is

negative but not statistically significant for the QSR data (corr = - 0.11).

Our third prediction (A3) is that observed AU2ROC should not be greater than

the predicted one. This is actually the case for 33 out of 39 subjects (85%) in the

MP group, 26 out of 35 (74%) in the FR group and 24 out of 33 (73%) in the QSR

group.6

If elicited confidence corresponds to SD-confidence, then a good (respectively,

bad) elicitation rule should be good (respectively, bad), for both the distribution

of confidence and the type 2 ROC (in the sense of giving results close to those

predicted by SDT). This is our fourth prediction (Prediction A4). In other words,

6The difference between MP and QSR is statistically significant at 20%.
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Figure 13: Area under observed and predicted type 2 ROC

we should observe a positive correlation between the distance between observed and

predicted confidence distributions on one hand, and the distance between observed

and predicted AU2ROC on the other hand. As an indicator of distance between

observed and predicted AU2ROC we use:

ROC dist =
|Predicted AU2ROC−Observed AU2ROC|

Predicted AU2ROC− 0.5
.

We report the correlations in Table 4. We observe a positive and significant correla-

Corr. btw. ROC dist and... MP (39) QSR (33) FR (35)

... χ2square distance 0.42*** -0.08 0.50***

... Kolmogorov-Smirnov distance 0.47*** 0.30* 0.34**

Table 4: Correlations between χ2 distance or Kolmogorov-Smirnov distance and
ROC distance
*** (resp. **,*) means a level of significance at 1% (resp. 5%,10%).

tion for both the MP and the FR. On the other hand, the results are less conclusive
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for the QSR, for which we observe no correlation between distances measured by

the χ2 metric.

Our last prediction concerning SD-confidence is that we should observe a positive

correlation between the mean success rate in the type 1 task and the observed

AU2ROC (Prediction A5). We report these correlations in Table 5. We found that

performances in type 1 and type 2 tasks are strongly correlated when confidence is

elicited with MP. The correlation is still positive, but less significant for the FR. But

we found no correlation between performances in type 1 and type 2 tasks when the

QSR is used.

MP (39) QSR (33) FR (35)

0.41*** -0.10 0.32*

Table 5: Correlations between mean success rate and observed AU2ROC
*** (resp. *) means a level of significance at 1% (resp. 10%).

Taken together, our results suggest that elicitation rules strongly differ in the

kind of confidence they allow to report. Whereas confidence levels reported using MP

are globally compatible with predicted SD-confidence, those obtained through QSR

can hardly be explained by SDT. The results concerning the FR are less conclusive.

Our conclusion at this point should thus be that MP seems a good rule (compared

to the other ones) if one seeks to elicit SD-confidence.

5.3 Extension to non perceptive task

An important question is whether the models and results described above general-

ize to other tasks. We have no simple answer to that question. However, we note

that SDT has been routinely and successfully used in experimental psychology for

non-perceptive task, such as memory or recognition task. Moreover, it has been

recently shown that individual metacognitive performances in different perceptive

tasks are correlated, suggesting that there exist general processes related to metacog-

nition, and independent on the specific task considered (Song, Kanai, Fleming, Weil,

Schwarzkopf, and Rees (2011)). Of course, this evidence only applies to perceptive

tasks, and it is to the best of our knowledge an open question whether it also holds

for non-perceptive task.

This leads us to make here the assumption that our analysis also applies to

non-perceptive task. Because our subjects perform both a perceptive and a non-

perceptive task, a validation of this assumption (if any) would be found in our data.

We briefly look at how performances of elicitation rules are correlated across tasks.

The main correlations are reported in Table 6
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Correlation between MP (39) QSR (33) FR (35)

AU2ROC in quiz and perceptive task 0.44*** 0.10 0.49***

Table 6: Correlations between AU2ROC in quiz and perceptive task.
*** means a level of significance at 1%.

We observe a strong and positive correlation between AU2ROC in the quiz and

in the perceptive task for both the MP and the FR. As we have observed that MP

(and to a lesser extent, FR) are reasonably good in eliciting subjects’ SD-confidence

in the perceptive task, we take this result as a piece of evidence that our SDT

analysis can actually be extended to other, less simple, tasks, as the quiz task. It is

not surprising that we do not observe such a positive correlation for the QSR, as we

have shown that it does poorly in terms of elicitation of SD-confidence.

6 Conclusion

Signal Detection Theory provides a theoretical model for predicting individuals con-

fidence (expressed as probabilities) from the observation of their performances in

a simple perceptive task. This model is moreover consistent with behavioral and

neuronal evidence. A natural question is whether one can actually elicit subjective

probabilities that are close to those predicted by SDT.

We elicited individuals’ confidence in a simple perceptive task using three dif-

ferent rules: the Quadratic Scoring Rule, the Matching Probabilities, and the Free

Rule. We found that MP provided results remarkably close to those predicted by

SDT. We also observed that although this rule might seem complicated at first sight,

there is no evidence that subjects had more difficulties using MP than the two other

rules. Moreover, using a task based on a knowledge quiz for the same subjects,

we found evidence suggesting that these results might possibly extend to other, non

perceptive, tasks. MP thus appears as a good candidate if one seeks for an incentive-

compatible elicitation rule that is not affected by rewards, and remains reasonably

simple to use.

In this paper, we focused on the elicitation of probabilities actually used by

individuals in their decision processes. We should note that one could ask a different

question, and seek for a rule that leads subjects to provide a good evaluation of their

own performance in the perceptive or quiz task. The ability to be a good assessor of

one’s own performance is known as calibration and discrimination. A precise answer

to this question would require to be able to compare individuals performances for

different elicitation rules, i.e., to have intra-individual data. It is thus beyond the
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scope of this paper, since we do not have such data.7 While we keep this question for

future research, a first rough answer can be given by simply comparing AU2ROC

for the three rules. The results are reported below in Table 7. We only found a

statistically significant difference for the quiz task. The MP performs better than

the QSR. This result is not very conclusive, as we found no significant difference

between FR and MP, nor between QSR and FR.

Rule AU2ROC for quiz taske AU2ROC for perceptive task

MP (n=39) 0.6439 (.0623) 0.6702 (.0754)

QSR (n=33) 0.6148 (.0615) 0.6769 (.0664)

FR (n=35) 0.6233 (.0881) 0.6674 (.0812)

(MP - QSR) 0.0291 (0.0509)* -0.0067 (.6944)

(MP - FR) 0.0206 (0.2465) 0.0029 (.8751)

(QSR - FR) -0.0085 (0.6462) 0.0095 (.5991)

Table 7: Rules comparison: discrimination

This table provides the mean AU2ROC for the three rules (with s.d.). The rules are compared by
pairs with a test of difference (t-test with the p-value in parenthesis). * means a level of significance
at 10%.

We complete these results with another well-known measure of the quality of

elicitation rules, namely the calibration index. Consider a subject who stated sub-

jective probabilities about n events, pi being her stated probability for event Ei, ei

being the indicator variable that takes value 1 if she accurately predicts event Ei.

calibration index =
1

n

n∑
i=1

(pi − ei).

We reported calibration for quiz and perceptive task in Table 8.

We observe that the QSR performs better in terms of calibration for the quiz:

it displays a lower degree of overconfidence than the two other rules. However, the

result is not very conclusive, as it does not hold for the perceptive task.

Regressions of the calibration index on a set of explanatory variables that in-

cludes dummies for the elicitation rules, individual mean performances in the differ-

ent tasks (knowledge, logic, perception) and demographic variables yield to the same

result. Therefore, on the basis of the available evidence, we cannot conclude that

one rule clearly dominates the others in terms of calibration quality. Comparing

the rules in that respect will thus require additional data. We will investigate this

7In pilot experiments, we found that subjects got confused if one asks them to use different
elicitation rules during the same session. Obtaining intra-individual data thus requires to have the
same individuals attending several sessions, separated by a sufficient laps of time. It thus implies a
specific design.
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Rule Calibration index for quiz task Calibration index for perceptive task

MP (n=39) 0.1113 (.0886) 0.0423 (.0889)

QSR (n=33) 0.0612 (.1284) 0.0417 (.0932)

FR (n=35) 0.1372 (.1092) 0.0735 (.1104)

(MP - QSR) 0.0501 (0.0552)* 0.0006 (0.9785)

(MP - FR) -0.0259 (0.2647) -0.0312 (0.1822)

(QSR - FR) -0.0760 (0.0105)** -0.0317 (0.2063)

Table 8: Rules comparison: calibration

This table provides the mean calibration index for the three rules (with s.d.). The rules are compared
by pairs with a test of difference (t-test with the p-value in parenthesis). ** and * mean respectively
a level of significance at 5% and 10%.

question in future experiments.
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