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Abstract

The failure of groups to make optimal decisions is an important topic in

human sciences. Recently this issue has been studied in perceptual settings

where the problem could be reduced to the question of an optimal integration

of multiple signals. The main result of these studies asserts that inefficiencies

in group decisions increase with the heterogeneity of its members in terms of

performances. In this paper we assume that the ability of agents to appropri-

ately combine their private information depends on how well they evaluate the

relative reliability of their information. We run a perceptual experiment with

dyadic interaction and confidence elicitation. It gives evidence that predicting

the performance of a group is improved by taking into account its members’

confidence in their own reliability. Doing so allows us to revisit previous results

on the relation between the performance of a group and the heterogeneity of its

members’ abilities.
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”For difficult problems, it is good to have 10 experts in the same room, but

it is far better to have 10 experts in the same head.” John Von Neumann.

Groups are often trusted to make decisions because they gather the informa-

tion of their members. However, the extent to which groups are able to combine

information coming from different sources remain an open question.

Recently, the question has been carried to the field of psychophysics by studying

group decision making in signal detection experiments (1), (2), (3), and (4). Signal

detection experiments consist in asking subjects to make a binary decision based on

noisy perceptive information (5). A typical signal detection experiment in groups

consists in asking subjects individually and then as a group to tell which one of two

visual stimuli was the strongest.

A long standing literature has shown that people’s decisions in this type of sit-

uations could be considered as being made by a Bayesian decision maker equipped

with some (perceptive) information structure (6) and (7). The modeling of percep-

tive information makes it possible to determine what would be the performance of

a group if it perfectly combined its members’ information (4). Comparing actual

group performance to this benchmark, (1) and (2) find that groups whose members

are heterogeneous in terms of perceptive abilities (that is one of them has a higher

probability of finding the strongest stimulus) tend to perform poorly.

The failure of heterogeneous groups suggests that the reliability of individual

information is not well accounted for in the way it is aggregated. (1) propose, as

explained by (8), that groups use a suboptimal decision rule that overweights the

recommendations of the least able member. The resulting efficiency loss is increasing

in the difference in group members’ information reliabilities. This model therefore

postulates the existence of a systematic failure in the way private information is

aggregated.

On the contrary, we propose to relate those results to biases in subjects’ confi-

dence calibrations. We assume that subjects’ beliefs about their perceptive abilities

are initially not related to their actual perceptive abilities. If everyone holds similar

beliefs about his performances, the most able subjects tend to be relatively under-

confident as compared to the least able subjects (9). Consequently, a group will

put too much weight on the least able member, so that heterogeneity induce greater

collective inefficiencies. Therefore our explanation of collective inefficiencies does

not rely on the incapacity of humans to aggregate heterogeneous information. We

rather see them as an inevitable consequence of the lack of information subjects have

access to.

Since our aim is to show that inefficiencies are related to subjects’ beliefs about

their perceptive abilities, we conduct a signal detection experiment with group deci-
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sions in which we elicit subjects’ confidence at each trial. A confidence is defined as

the subject’s belief that he chose the right stimulus. The results support our hypoth-

esis. They are in line with new results that explore the links between metacognitive

abilities and group decision (2), (3), and (10).

1 Hypotheses

It is well established in Signal Detection Theory that the perceptive information

subjects receive can be fruitfully modeled as a Bayesian information structure (6).

A subject draws at each trial a perceptive signal x ∈ (−∞,+∞). Signals are drawn

from a normal distribution whose mean, θ, depends on the actual contrast difference

between the two stimuli. The variance σ2i captures the precision of subject i’s

perception. We will often talk about a subject’s precision parameter as the inverse

of his variance, τi = 1/σ2i . As we use only one level of difficult, the contrast difference

θ can take two values, µ (right stimulus stronger) and −µ (left stimulus stronger),

which are equally likely to occur. Subjects are asked to tell whether θ is positive

or negative. Individually, their decision rule is to follow the sign of the signal they

receive. The probability that subject i makes the right decision corresponds to the

probability that he receives a positive signal conditional on θ = µ. It is thus given

by Φ(µ
√
τi) where Φ(·) is the standard normal cumulative distribution function.

As a group, if subjects perfectly combine their private informations, they make

decisions based on the sign of the sum of their signals weighted by the precision of

their informations: xG = τ1x1 + τ2x2. Note that this statistics is positive if and

only if the likelihood of (x1, x2) given µ is greater than the likelihood given −µ.

The probability of a (optimal) group making a correct choice is thus given by the

probability that xG is positive conditional on µ. xG is normally distributed with

mean (τ1+τ2)µ and precision 1/(τ1+τ2+2ρ
√
τ1τ2), where ρ is the correlation coeffi-

cient between group members’ signals.1 It follows that the ideal group’s information

precision is given by

τ∗G =
(τ1 + τ2)

2

τ1 + τ2 + 2ρ
√
τ1τ2

.

According to the findings of (1), the comparison of observed group success rate

and its ideal success rate τ∗G reveals that inefficiencies are positively related to the

heterogeneity of the group with respect to the precisions of its members. (1) then

propose an alternative model which is based on a suboptimal decision rule (named

1Other models do not take into account this correlation but as our data show a correlation
between signals we integrate it in our model and the alternative ones. See the SI for the computation
of the coefficient.
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thereafter the suboptimal model). Groups make decisions based on the sign of the

statistics xsubG =
√
τ1x1+

√
τ2x2. Weighting each member’s signal by the square root

of its precision instead of the precision induces group to follow the individual with

the lowest precision too often (8). The group precision as a function of its members’

precisions is

τ subG =
(
√
τ1 +

√
τ2)

2

2(1 + ρ)

which corresponds to the optimal case when τ1 = τ2 but gets lower as τ1 and τ2

become different, i.e. in case of group heterogeneity.

We propose an alternative model, the belief model, in which the failures of het-

erogeneous groups comes from a lack of information about their members’ precisions.

Assume that subject i holds some beliefs about his precision parameter whose expec-

tation is noted τi,e. We make the approximation that a group decision rule is based

on the expected values of precision parameters of its members, i.e. a group chooses

right when τ1,ex1 + τ2,ex2 is positive.2 In other words, the group behaves as if it

were sure that these expected precisions are true. Given that xi, i = 1, 2, is actually

distributed with precision τi, the group statistics is normally distributed with mean

(τ1,e + τ2,e)µ and precision τ1τ2/(τ
2
1,eτ2 + τ22,eτ1 +2ρτ1,eτ2,e

√
τ1τ2). It follows that the

precision of such a belief-based group is given by

τ belG =
τ1τ2(τ1,e + τ2,e)

2

τ21,eτ2 + τ22,eτ1 + 2ρ
√
τ1τ2τ1,eτ2,e

.

If subjects’ expectations are well calibrated, i.e. τi,e = τi for i = 1, 2, the belief-based

group reaches its optimal precision level, i.e. τ belG = τ∗G. Actually, subjects may have

biased expectations and still reach their optimal collective precision: group decisions

are optimal as long as τ1,e/τ2,e = τ1/τ2. These expectations could be estimated by

eliciting the level of confidence of subjects in their choices. This belief model predicts

that the heterogeneity of a group with respect to the precision parameters of its

members has no direct impact on the group performance. However, since subjects do

not initially know their precision, subjects’ expected precisions should be (at least)

initially unrelated to actual precisions. This assumption is supported by recent

evidence showing that metacognitive ability is dissociable from task performance

and varies across individuals (11), (12), and (13). To see this, suppose that for

every subject i, τi,e is drawn from some distribution that is independent of τi. It

follows, that whatever the value of τ1/τ2, the expected value of τ1,e/τ2,e is 1. As

a result, all groups treat their members equally which induce more heterogeneous

2The optimal decision rule is a much more complex object to study as it must take into account
the whole beliefs about subjects’ precisions. The description of the true rule is given in the SI.
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groups to experience greater inefficiencies.

2 Protocol

In order to evaluate our model and test our hypotheses we perform a signal detection

task in which we elicit subjects’ confidence at each trial (see Figure 1 for the details of

the experimental design). This experiment involves a perceptual task of numerosity:

subjects observe during a short time interval two visual stimuli and are asked to tell

which stimulus was stronger and the level of confidence they have in this decision.

Each subject of a dyad answers individually, and then the two group members must

reach an agreement (on choice and confidence). After the group decision is made,

subjects answer anew to check if they agree with group decision. Finally they observe

whether they were right or wrong. This sequence, that we will refer to as a trial, is

repeated 150 times.

3 Data Treatment

We present results based on 33 groups.3 We have presented the models in terms

of precision parameters. We will present our results using directly success rates,

s, which is equivalent since the precision parameter completely determines success

rate. Indeed our experiment features only one level of contrast difference between

the two stimuli so that a subject’s success rate fully characterizes his perceptive

information precision.

We start by checking the assumption that subjects’ expected success rates are

not related to their actual success rates (i.e. τe is not related to τ). Subject i’s

expected success rate, noted si,e, is assumed to be equal to the mean of his reported

confidences (recall that we fix the stimulus and thus that confidence is only driven

by precision). By regressing the actual success rates s on se we do not obtain any

correlation between these two variables (see Figure 2A). As expected this implies

that subjects that perform well tend to be relatively underconfident as compared to

those performing poorly. The linear regression of individual miscalibration, defined

as si,e − si, on individual success rate indeed shows that those two variables are

significantly positively related (see Figure 2B).

Then we examine whether the main result of previous experiments, namely that

heterogeneity in group members’ success rates impairs group performance, holds in

our experiment. Based on the observed success rates of the group members’, s1 and

3Methods, descriptive statistics and additional results supporting our conclusion can be found
in the SI.
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Figure 1: Design of the experiment. (A) Experimental paradigm. The experiment
is organized as follow: subjects perform a numerosity task in which they observe two
circles containing a certain number of dots during a short interval of time, so that
it is impossible to count the dots (B). They first tell which one of the two circles
is the most likely to contain more dots. Since we are interested in measuring the
source of collective loss due to confidence calibration, we elicit confidences at each
trial through a matching probability rule (C). The basic principle of this elicitation
rule is to elicit an objective probability equivalent to a subjective one. Specifically,
confidence takes values between 0 and 100 (by steps of 5) and represents subjects’
estimated probability of success at each trial. Note that the reported confidence has
a cardinal value. Thus we assume that subjects could report real probabilities as
subjective beliefs and not only some ordinal values of feeling. That is why a sub-
ject’s remuneration during the experiment depends upon the consistency of reported
confidence with actual performance. After each trial, subjects observe whether or
not they chose the right circle. Subjects make a sequence of 50 trials in isolation.
In order to guaranty enough heterogeneity in the groups, half of subjects observe
the circle during a shorter time interval than the other half of subjects. Groups of
two subjects (with different observation times) are then formed and make 150 trials
again. For each trial, subjects independently observe the same two circles and make
individual decisions (choice and confidence). The group members are then asked to
reach an agreement on each of the two decisions by free communication. After the
group decisions are made, each group member reports individual decisions again so
that we can check whether group members agreed with the group decisions.
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Figure 2: Tests of the main assumptions. (A) No relation between expected success
rate and actual success rate. We check our first assumption that confidence is
not related to real success rate. The graph represents the link between individual
success rate and individual confidence. We do not obtain any relation between
these two variables. An OLS regression of confidence on success provides a slope
of 0.09 with a p-value of 0.302 (n = 66). (B) Positive relation between perceptive
ability and miscalibration. As we have proved that confidence is disconnected to
success rate, it follows that subjects with a higher precision parameter tend to
be more underconfident than subjects with lower abilities. The graph represents
the relationship individual success rate and individual miscalibration. This links is
confirmed by an OLS regression of success rate on miscalibration: the coefficient
takes a value of -0.85 with a p-value of 0.000 (n = 66).
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s2, and on the estimated correlation coefficient ρ̂, we compute the optimal group

success rate, s∗G. We define collective losses as the difference between s∗G and the

actual group success rate sG. Heterogeneity in members’ precisions is defined as the

absolute value of the difference between members’ success rates: |s1 − s2|. An OLS

regression of collective losses on group heterogeneity provides a positive coefficient

of 0.32 that is statistically significant (t = 1.75, p-value = 0.089 - cf. the regression

1 in Table 1).

Table 1: Impact of group heterogeneity and belief-based losses on collective losses.

Collective Losses (n=33) Regression 1 Regression 2

Group Heterogeneity 0.32** 0.13

Difference in Miscalibration . 0.25**

Constant -0.01 -0.01

We now present evidence that the relation between heterogeneity of a group

and its collective losses runs through belief miscalibration. Regressing the collective

losses on the difference of miscalibration between members and group heterogene-

ity provides the following results: an effect of miscalibration statistically significant

(coefficient of 0.25 with t = 2.18, p-value = 0.037) and a removal of the previous

link between group heterogeneity and collective losses (cf. the regression 2 in Ta-

ble 1). Therefore, the relation between group heterogeneity and collective losses

disappears when we control for miscalibration. We conclude that heterogeneity in

group members’ information precisions only impairs group performance if beliefs are

miscalibrated.

We now test our model against the optimal model and the suboptimal model.

All three models make a prediction about the group success rate so we can compare

the explanatory power of the three models on the observed success rate sG. We

perform separate OLS regressions of sG on s∗G, ssubG and sbelG (regressions (a), (b) and

(c), respectively, in Table 2).

Table 2: OLS regressions of the actual group success rate on each model’s predic-
tions.

Actual Success sG (n=33) (a) (b) (c)

Optimal Model s∗G 0.83*** . .

Suboptimal Model ssubG . 0.51*** .

Belief Model sbelG . . 0.94***

Constant 0.11 0.36*** 0.05

We compare the resulting R2: the belief model provides a R2
bel = 0.6266 while

the suboptimal model and the optimal model yield R2
sub = 0.4745 and R2

∗ = 0.5610
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respectively. We perform a Vuong test of R2 (14) and our model has a statistically

significant higher explanatory power than the suboptimal one (Vuong z-statistic =

−2.3033, p-value = 0.0213) and closed to significant against the optimal one (Vuong

z-statistic = −1.4204, p-value = 0.1555).

4 Conclusion

We propose a model of (approximately) optimal group decision incorporating group

members’ miscalibration. We are only interested in problems of miscalibration but

we can expect that discrimination abilities play a role in group decisions. Dis-

crimination refers to the ability of an agent to distinguish between two signals of

different values. Limited discrimination abilities suggest that perceptive signals are

filtered before being accessible to the individual so that the assumption that signals

are perfectly observed should be weakened. An optimal model of group decision

based on confidence should incorporate these two aspects. (3) proposes a model in

which group decision is lead by the more confident member. This type II optimal

model leads on our data to an underestimation of the group performances. It would

therefore be worth investigating the relation between group members’ metacognitive

abilities (calibration and discrimination) and group performance.
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Supplementary Information

Method

Participants This experiment was conducted in May and June 2012 at the Lab-

oratory of Experimental Economics in Paris (LEEP) of the University of Paris 1.

Participants were recruited by standard procedure in the LEEP’s database. 35 dyads

i.e. 70 subjects (most of them were undergraduate students from University of Paris

1) participated in the experiment for pay. We have lost the data of two groups due

to a problem with a computer during the experiment. As we choose to exclude any

outlayers the data analysis is based on 33 groups of 2 subjects. The experiment last

around 2 hours and subjects were paid on average 17 euros.

Materials This computer-based experiment uses Matlab with the Psychophysics

Toolbox version 3 (1 ) and has been achieved on computers with 1024x768 screens.

Task, stimuli and procedure The experimental design is summarized by the

Figure 1. The perceptual task is a two-alternative forced choice (2AFC) which is

known to be a convenient paradigm for SDT analysis (2 ). In our task, subjects have

to compare the number of dots contained in two circles. We use such numerosity task

in reason of neuronal evidence that the brain performs as assumed by SDT facing

numerosity problems (see (3 ) for a review). The two circles are only displayed for

a short fraction of time, about one second, so that it is not possible to count the

dots. Subjects have to tell which circle contains the higher number of dots and then,

their confidence in the choice made is elicited. The time line of the experiment is

the following: participants are randomly assigned by dyad, they first make 50 trials

in isolation reporting their choice and confidence. Then they face the same stimuli

in each dyad for 150 trials. To ensure enough heterogeneity in each group we add

a difference in the time presentation of the stimuli: one member had the stimuli

during 850 ms while the other member had it during 550 ms. After observing the

stimuli they give individually their choice and their level of confidence, then they

have to discuss with the member of the dyad to reach an agreement (they have to

reveal their choice and confidence but they are free to discuss as long as they want

with their partner), they report group’s choice and confidence, and finally they give

again their individual choice and confidence in order to check if they agree with the

group choice. At the end of each trial, feedback on accuracy is given.

To answer to the choice they have to press one key (F or J) depending on the

answer (left or right) and then give their confidence on a scale with value between 0

and 100 with steps of 5. Subjects are paid according to the accuracy of the stated
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confidence. We use a probability matching rule (Figure 2) (see (4 ) and references

therein for its properties and implementation) and subjects accumulate some points

at each trial (+1 for a correct answer and -1 for a wrong one). The final payment

comprises 5 euros of flat payment, the total number of points accumulated during

the trials in isolation more the total of points accumulated during the group period

(we randomly chose one of the three decisions). All points are converted to the

exchange rate: 1 point equal 10 cents.

Model and Analysis

Modelization The coefficient of correlation between the members stimuli that we

add in the three models is computed as follows: we observe the probability of the two

group members to make the right decision simultaneously. According to the model,

this probability should be equal to the probability of both individual signals being

positive given µ = 1. Conditional on µ = 1, the distribution of the pair of signal is a

bivariate normal with mean (1, 1) and covariance matrix

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
. ρ takes

the value that equalizes the theoretical and observed probabilities of group members

being simultaneously right. Note that Sorkin et al. (5 ) propose also to take into

account the correlation into their modelization.

In our model we make the approximation that a group decision rule is based on

the expected values of precision parameters of its members, i.e. a group chooses

right when τ1,ex1 + τ2,ex2 is positive. The exact optimal decision rule must take into

account the whole beliefs about subjects’ precisions. Noting subject’s beliefs about

τi by Γi, the optimal decision rule depends on whether the group posterior about

θ = µ

P (x1, x2) =

∫ ∞
0

∫ ∞
0

P (x1, x2; τ1, τ2)dΓ(τ1;α1, β1)dΓ(τ2;α2, β2)

is higher or lower than .5.

Learning Effect The results presented in the paper show that if subjects perfectly

knew their relative abilities, collective inefficiencies would be statistically indepen-

dent of collective inefficiencies. The reason why we observe a relation is that subjects

have initially no information about their abilities in the task so that on average well

performing subjects tend to be relatively underconfident as compared to poorly per-

forming subjects. As subjects repeat the task, they should be able to learn about

their ability. The pace at which learning occurs depends upon the feedbacks they

receive, but eventually they should be able to combine informations of different re-

liabilities. In our experiment, subjects observe whether they made the right choice
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after each trial. But we will show that the 150 trials were no enough to observe

significant improvement in calibration.

We compute each subject’s expected success rate over the first (period 1) and

last 75 trials (period 2). Let us note these two expected success rates s1e and s2e

respectively. We compute subjects’ success rates s1 and s2 over the same periods.

Subjects’ expected success rate is not closer on average to their actual success rate:

the average miscalibration in period 1, |s1e− s1| is 0.0679 while it is 0.0752 in second

period. A t-test of difference shows that this difference is not statistically significant

(t = −0.8216, p-value = 0.2072).

As a result, the fact that well performing agents are relatively underconfident

remains true throughout the experiment. Table 1 presents the results of the regres-

sions of subjects’ miscalibration in period 1 and 2 over their actual success rate in

that period. The relation is significantly negative in both cases.

Actual Success (n=66) Period 1 Period 2

Miscalibration -0.44*** -0.48***
Constant 0.66*** 0.68***

Table 1: Relations between miscalibration and actual success rate in periods 1 and
2.

Therefore we find no evidence of trends in subjects’ calibration. This is the reason

why the analysis of this paper is performed using a single calibration estimation for

each individual.

Data analysis The Table 2 summarizes the main statistics about the different

decisions in the experiment.

Decision Individual Collective Individual
in Isolation Decision 1 Decision Decision 2

Success Rate 65.5% 66.3% 69.9% 71.3%
Confidence 70.5% 66.7% 71.1% 73.1%
Calibration +5.2% +1.4% +1.2% +1.9%

ROC 0.581 0.597 0.649 0.653
Agreement in Choice . 62.6% . 85.7%

Agreement in Confidence . 19.5% . 33.9%

Table 2: Mean levels of accuracy, confidence, metacognitive abilities and rate of
agreement during the different stages of the experiment.

The Figure 3 shows the mean values of the actual succes rate of groups com-

pared to the predictions of the different models. The optimal, the suboptimal and
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the optimal belief (i.e. choice is lead by the more confident member) models have

statistically significant differences with the actual rate. Only our belief model has a

non significant difference with actual success.

As Barhrami et al. (6 ) present their model without taking into account the

correlation between group members signals, we check if our main result is robust to

analysis with a coefficient ρ equal to zero. Table 3 presents the OLS regressions of

group heterogeneity and belief-based collective losses on collective losses. We find

the same pattern of results as observed with correlation in the paper (cf. Table 1 of

the paper).

Collective Losses (n=33) Regression 1bis Regression 2bis

Group Heterogeneity 0.31* 0.10
Difference in Miscalibration . 0.28**

Constant 0.00 0.01

Table 3: Impact of group heterogeneity and belief-based losses on collective losses
without correlation.

To test the explanatory power of our model against the optimal and the subop-

timal ones we can perform a test of correlations (7 ) in addition to the test of R2.

The correlations between the actual success group s and the three predictions s∗G,

ssubG and sbelG give support to our model. This correlation is statistically significant

higher for our model than the suboptimal one (z = −1.7596, p-value = 0.0392) and

closed to significantly higher than the optimal one (z = −0.8747, p-value = 0.1909).

In order to see that our belief model captures the impact of miscalibration on

collective losses, we can run similar regressions to Table 1 of the paper with ineffi-

ciencies explained by our model rather than difference of miscalbration. We compute

the belief-based success rate of each group, noted sbelG . This predicted success rate al-

lows us to make predictions on the amount of collective losses a group should exhibit

due to the biases of its members’ beliefs. Let us call s∗G− sbelG the belief-based collec-

tive losses. Regressing the collective losses on the belief-based collective losses and

group heterogeneity provides the following results: an effect of belief-based collective

losses statistically significant (coefficient of 0.64 with t = 2.75, p-value = 0.010) and

a removal of the previous link between group heterogeneity and collective losses (cf.

Table 4). Therefore, our model controls for miscalibration and confirms the result

of the paper (namely that heterogeneity in group members’ information precisions

only impairs group performance if beliefs are miscalibrated).
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Collective Losses (n=33) Regression 1 Regression 2

Group Heterogeneity 0.32** 0.08
Belief-Based Collective Losses . 0.64***

Constant -0.01 0.01

Table 4: Impact of group heterogeneity and belief-based losses on collective losses.
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Figures

Fig. S1. Experimental design. A group trial in the experiment is defined as
follow: subjects see a target an press a key when they are ready; a stimuli of a
numerosity task appears during 550 or 850 ms; they make individual decision with
choice (right or left) and confidence (on a gauge between 0 and 100); a screen
resumes their decision and they have to find an agreement with their partner by
free communication; they enter the group decision (choice and confidence) and after
that give anew their individual decision (choice and confidence); finally feedback on
the accuracy of their answer is provided. Subjects perform overall 150 trials defined
as above. In addition they first do 50 trials of only individual decisions.
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Fig. S2. Confidence elicitation mechanism using probability matching. The
principle is to elicit an objective probability equivalent to a subjective one. In
our design, subjects have to report on a gauge the probability p that makes them
indifferent between a lottery which gives a positive reward in case of a correct answer
and a lottery with a probability p of winning the same reward. After the subject
has reported a probability p, a random number q is drawn. If q is smaller than p,
the subject keeps his initial lottery based on his answer, if q is greater than p, the
subject is paid according to a lottery that provides the same reward with probability
q. In practice this scoring rule is implemented using a 0 to 100 scale, with steps of
5. Subjects are told that an answer make them hold a lottery ticket based on their
answers’ accuracy : it gives 1 point if the answer is correct and -1 otherwise. Then on
the 0 to 100 gauge, subjects have to report the minimal percentage of chance p they
require to accept an exchange between their lottery ticket and a lottery ticket that
gives p chance of winning. A number l1 is determined using a uniform distribution
between 0 and 100. If l1 is smaller than p, subjects keep their initial lottery ticket,
if l1 is higher than p, then the exchange is made with a lottery ticket which gives l1
chance of winning. In this case, a random draw determines the payment: a number l2
is determined using a uniform distribution between 0 and 100, the lottery is winning
if l1 is higher than l2. Note that for all trials, the gauge was pre-filled with 50.
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Fig. S3. Predicted Success. Comparison between mean actual success of
groups (69.9%) and prediction of the different models: optimal (71.1%), subop-
timal (66.4%), belief (69.0%) and optimal belief (67.8%). The p-values show that
only the belief model is not statistically singnificant from the actual success.
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