A Multivariate Sequence Kernel Trajectoires '11 Lecture Sorbonne 1, Paris October 14, 2011

Cees H. Elzinga

PARIS/SILC Research Group Vrije Universiteit Amsterdam

A Multivariate Sequence Kernel – p. 1/43

Purpose

Create vector-representation of

- multivariate sequences
- with numeric and symbolic variables,
- that allows for
 - distances in Euclidean space,
 - sequences of unequal length
 - well defined similarity
 - distances to centroid: characteristic sequence, K-means
 - \square R_V -correlation
 - Fisher-discriminant
 - Decompositions: testing factor-structure hypotheses
- and use kernel function for feasible calculations

Unfortunately, there is NO software yet!

No examples

OM vs Kernel

A Multivariate Sequence Kernel – p. 3/43

In collaboration with

- Dr. Hui Wang
 - Reader in Computer Science
 Computer Science Research Institute
 University of Ulster
- Dr. Zhiwei Lin
 - Researcher
 SAP UK

- Data I
- The Challenge
- Preliminaries
 - Feature Vectors
 - Kernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

- Data I
 - Example
 - Structure
- The Challenge
- Preliminaries
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Multivariate Sequences

- simultaneous "timeseries" from the same objects
 - numerical
 - ECG: 12 signals
 - stock commodity prices
 - symbolical
 - life course facets (job, family, residence)
 - Gary Pollock 2007
 - · Gauthier et al 2010
 - "mixed": symbolical & numerical

MV Sequence: Example

- Consist of tuples (x_1, x_2, x_3, x_4)
 - $x_1 \leftarrow \text{labor market status}$ symbolic: $\{E, U, N, R, \ldots\}$
 - $x_2 \leftarrow$ monthly income numerical: [0, 10000]
 - $x_3 \leftarrow$ household type symbolic: $\{P, S, C, M, SC, \ldots\}$
 - $x_4 \leftarrow$ hours spend in housekeeping numerical: [0, 400]

MD Sequence: Structure

• Tuples of v variables vary over time

• $x = \begin{pmatrix} (x_{11}, \dots, x_{1v}) \\ \vdots \\ (x_{t1}, \dots, x_{tv}) \\ \vdots \\ (x_{n1}, \dots, x_{nv}) \end{pmatrix}$

- \bullet *n*-long sequence consists of *n v*-tuples
- data consist of N sequences of n_i v-tuples
- v = 1: sequence is ordinary time-series or string

- Challenge & Strategy
- Preliminaries
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

The Challenge

- Quantify the sequences
- such that linear (statistical) models apply
 - to classify the sequences
 - to use as dependent variable

The Strategy

Quantify the sequences

- such that linear statistical models apply
 - to classify the sequences
 - to use as (in-)dependent variable
- Map the sequences onto vectors in \mathbb{R}^n
- and use the vectors to partition and model

HOW to CONSTRUCT the VECTORS??

Data I

Challenge & Strategy

- Feature Vectors
 - Principle
 - Example 1: Beetles in Beetle-Space
 - Example 2: Careers in Career-Space
- Sernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Fig Beetle

A Multivariate Sequence Kernel - p. 14/43

Cottonwood Stag Beetle

Feature Vectors: Principles

- **select** *d* features or properties $\{p_1, \ldots, p_d\}$
- \bullet map each object x to a *d*-vector x

•
$$\mathbf{x} \mapsto \mathbf{x} = (x_1, \dots, x_d)$$

 \checkmark determine the value of the x-coordinates x_i

•
$$x_i = \begin{cases} f(p_i) & \text{if object } x \text{ has property } p_i \\ 0 & \text{otherwise} \end{cases}$$

• simple:
$$f(p_i) = 1$$
, all *i* (feature "on")

4 Beetles in Beetle Space $\{0, 1\}^8$

Features	a	b	С	d
crawls	1	0	1	1
flies	0	1	0	1
big eyes	1	1	0	0
long antennas	1	1	1	0
stripes	1	0	0	1
dots	1	0	0	0
eats marshmellows	0	0	0	0
intimidating	0	0	1	1

• inner product $\mathbf{a'b} = \sum_i a_i b_i = 2$ counts common features

• inner product $\mathbf{a'a} = \sum_i a_i^2 = 5$ counts features

• discerns
$$2^8 = 256$$
 distinct beetles

Beetle Feature Vectors

beetle feature space-matrix $\mathbf{X} = (\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$

• Gram-matrix
$$\mathbf{X'X} = \begin{pmatrix} 5 & 2 & 2 & 2 \\ 2 & 3 & 1 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 1 & 2 & 4 \end{pmatrix}$$
, inner products

beetle vectors have

• length:
$$\|\mathbf{a}\| = \sqrt{\mathbf{a'a}} = \sqrt{\sum_i a_i^2} = \sqrt{5} = 2.24$$
 (st. dev.)

• distance: d(a, b) = a'a + b'b - 2a'b = 4

• angle:
$$\angle(a, b) = \frac{\mathbf{a'b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|} = \frac{2}{\sqrt{5 \cdot 3}} = 0.52$$
 (correlation)

Careers in Career-Space

- Alphabet $\mathcal{A} = \{a, b, c\}$ (labor market states)
- all strings \mathcal{A}^* : set of all possible careers
 - career x = abbcaaccbbaaaab...
- career features: all sub-careers
 - a, ac, abacb, ...
- map careers onto career-feature vectors

2 Careers in Career-Space

careers: $x = abac \mapsto x$, $y = bacb \mapsto y$

subcareers	x	У
a	1	1
÷	:	÷
aa	1	0
ab	1	1
÷	•	÷
aba	1	0
÷	•	÷
acb	0	1
÷	•	÷

A Multivariate Sequence Kernel - p. 20/43

Feature Vectors: Problems

- feature selection: relevance?
 - no beetles eat marshmellows (irrelevant)
 - some beetles have horns (not selected)
 - all beetles have 6 legs (non-discriminating)
- feature selection: how many are necessary/acceptable?
 - $\{0,1\}^d$ -vectors generate at most 2^d classes
 - dimensionality of subsequence-space is colossal: countably infinite
 - numerical problems: how to evaluate Gram-matrix
 use a KERNEL

vrije Universiteit *am<u>sterdam</u>*

👂 Data I

- Challenge & Strategy
- Preliminaries
 - Feature Vectors
 - Kernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Sernel in Hyperspace

Kernel Function: Fast Trick

- careers x and y of length m and n
- \checkmark with feature vectors ${\bf x}$ and ${\bf y}$
- naively calculating $\mathbf{x'y}$ takes 2^{m+n} operations: not feasible
- kernel function^a takes $m \cdot n$ operations: feasible
- ✓ kernel function: evaluates $\kappa(x, y) = x'y$ without constructing x and y explicitly
- problem: no method or recipe for kernel-design

^ae.g. Elzinga, Rahmann & Wang, TCS 2008

Data I

- Challenge & Strategy
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Sernel in Hyperspace

MV Sequence: Structure

• Tuples of v variables vary over time

• $x = \begin{pmatrix} (x_{11}, \dots, x_{1v}) \\ \vdots \\ (x_{t1}, \dots, x_{tv}) \\ \vdots \\ (x_{n1}, \dots, x_{nv}) \end{pmatrix}$

- \bullet *n*-long sequence consists of *n v*-tuples
- data consist of N sequences of n_i v-tuples
- v = 1: sequence is ordinary time-series or string

Domains and Data-Space

Domains of variables are finite

- Symbolic variable x_j : $x_j \in D_j = \{P, S, ...\}$ Domain size: $|D_j|$
- Numeric variable x_j : $x_j \in D_j = [min, Max]$ Domain size: $|D_j| = Max - min$

• Data Space:
$$\Omega = X_{j=1}^{v} D_{j}$$
, $|\Omega| = \prod_{j} |D_{j}|$

- Ω consists of all possible *v*-tuples
- MV-sequences arise by catenating tuples from §
- Ω is our "alphabet"

Data I

- Challenge & Strategy
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Neigborhoods

vrije Universiteit am<u>sterdam</u>

General Idea: A Neighborhood Space

- Objects live in neighborhoods
- Objects share neighborhoods
 - the more neighborhoods shared, the more alike, the less distant
- Map objects to neighborhood space using neighborhood vectors
 - neighborhoods as features
- Count (common) neighborhoods through products of neighborhood vectors

Neighborhood

- you live in a neighborhood
- you share properties, features with your neighbors
 - income
 - education
 - **_**
- Neighborhood: a set of objects sharing a property P
- Your neighborhood: a neighborhood where you live

 - common neighborhood: $N(P, x, y) = N(P) \Leftrightarrow x, y \in N(P)$
- What about neighborhoods of measurements??

Neighborhood of Symbolic Measurements

• Let
$$D_i = \{a, b, c\}$$
; a symbolic domain

- Neighborhood: a set $N(P) = \{x : x \vdash P\}$
- Interpret P as: "is a subset of a domain D"
 - **9** D generates $2^{|D|}$ neighborhoods
- Neighborhoods of a: $\{a\}$, $\{a,b\}$, $\{a,c\}$, $\{a,b,c\}$
- Number of v-neighborhoods of a: $\phi_v(a) = 2^{|D_i|-1}$

• Common v-neighborhoods of a, b: $\phi_v(a, b) = 2^{|D_i|-2}$

A Multivariate Sequence Kernel – p. 31/43

vrije Universiteit amsterdam

Neighborhood of Numeric Measurements

• Let
$$D_i = [m, M]$$
, an ordered set

Interpret P as: "is an ordered subset of a domain D"

● D generates $\binom{M-m+1}{2}$ neighborhoods

- Neighborhoods of $x \in D_i$: $\binom{M-x+1}{1} \cdot \binom{x-m+1}{1}$
- Number of *v*-neighborhoods of *x*: $\phi_v(x) = (M - x + 1)(x - m + 1)$
- Common *v*-neighborhoods of x, y: $\phi_v(x, y) = (M - \max(x, y) + 1)(\min(x, y) - m + 1)$

Neighborhoods of *v***-tuples: Hypertuples**

- **a** *v*-tuple of measurements: $x_i = (x_{i1}, ..., x_{iv})$
- a *v*-tuple of neighborhoods: $h_i = (d_1, \ldots, d_v)$
- If x_{ij} "covered" by d_j for $j = 1, \ldots, v$:
 - h_i is a *t*-neighborhood of x_i
 - h_i is called a "hypertuple": consists of sets
 - many distinct h_i "cover" x_i : $\phi_t(x_i)$
 - how many??

Counting hypertuples

 \checkmark hypertuples covering a tuple x_i

$$\phi_t(\mathbf{x}_i) = \prod_{k=1}^v \phi_v(\mathbf{x}_{ij})$$

• hypertuples common to x_i, y_j :

$$\phi_t(\mathbf{x}_i, \mathbf{y}_j) = \prod_{k=1}^v \phi_v(\mathbf{x}_{ik}, \mathbf{y}_{jk})$$

Hypersequences in hyperspace

- an *n*-sequence of *v*-tuples of measurements: $x = x_1 \dots x_n$
- an *m*-sequence of *v*-tuples of *t*-neighborhoods: $h = h_1 \dots h_m, m \le n$
- if each x_i is covered by some h_i
 - h is an md-neighborhood of x
 - h is called "hypersequence"
 - many distinct h "cover" the same x: $\phi_{md}(x)$

• many distinct h cover both x and y: $\phi_{md}(x, y)$

A Multivariate Sequence Kernel – p. 35/43

Hypersequences: an example

$$i \quad x \qquad h$$

$$1 \quad x_1 = \langle 2, 6, b, p \rangle \quad h_1 = \langle \{[1, 3]\}, \{[5, 8]\}, \{a, b\}, \{p, r\} \rangle$$

$$2 \quad x_2 = \langle 3, 6, b, r \rangle \quad h_2 = \langle \{[2, 4]\}, \{[6, 7]\}, \{a, b, c\}, \{q, r\} \rangle$$

$$3 \quad x_3 = \langle 4, 8, a, q \rangle \quad h_3 = \langle \{[3, 4]\}, \{[8, 8]\}, \{a\}, \{p, q, r\} \rangle$$

 h_i are arbitrary within constraint that the x_i must be properly covered

A Multivariate Sequence Kernel – p. 36/43

Data I

- Challenge & Strategy
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

A Multivariate Sequence Kernel - p. 37/43

Dataspace & Hyperspace

- \square Ω : the set of all possible *v*-tuples
 - the "multidimensional alphabet"
- Ω^* : the set of all sequences of *v*-tuples Dataspace
- *H*: the set of all distinct hypertuples: *t*-neighborhoods
 the "hyperalphabet" consists of tuples of sets
- *H*^{*}: the set of all sequences of hypertuples -Hyperspace
- $\Omega^* \subset \mathcal{H}^*$, \mathcal{H}^* is finite since the domains are finite

Vectors in hyperspace

- Order the hypersequences in H^{*}
 i.e. assign a unique integer r(h) to each h ∈ H^{*}
- construct a vector $\mathbf{x} = (x_1, x_2, \ldots)$ for each $\mathbf{x} \in \Omega^*$:

$$x_{r(h)} = \begin{cases} 1 & h \in \mathcal{H}^* \text{ covers } \mathbf{x} \in \Omega^* \\ 0 & \text{otherwise} \end{cases}$$

- **\mathbf{x}'\mathbf{x}** counts the number of covers of x
- **9** $\mathbf{x}'\mathbf{y}$ counts the number of common covers of \mathbf{x} and \mathbf{y}
- constructing x and y and directly evaluating x'y is not feasible

Data I

- Challenge & Strategy
 - Feature Vectors
 - Sernel
 - Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

An Efficient Kernel

- \checkmark x and y are MD-sequences of lengths k and n
- x^m denotes the first m v-tuples of x

$$\phi(\mathbf{x}^k,\mathbf{y}^n) = \phi(\mathbf{x}^k,\mathbf{y}^{n-1}) + \phi(\mathbf{x}^{k-1},\mathbf{y}^n)$$

$$-\phi(\mathbf{x}^{k-1},\mathbf{y}^{n-1})\cdot(2-\phi_t(\mathbf{x}_k,\mathbf{y}_n))$$

- initialize $\phi(\mathbf{x}^0, \mathbf{y}^j) = 1 = \phi(\mathbf{x}^j, \mathbf{y}^0)$
- $\phi(\mathbf{x}^k, \mathbf{y}^n) = \mathbf{x}' \mathbf{y}$ takes time proportional to $k \cdot n$

An Efficient Kernel?

- $\phi_t(\mathbf{x}_k, \mathbf{y}_n) = \prod_{i=1}^v \phi_v(\mathbf{x}_{ki}, \mathbf{y}_{ni})$
 - for longer sequences,
 - for large domains,
 - for many variables,
 - this generates very big numbers: special big-number arithmetic required
- $\checkmark \mathbf{x'x}$ and $\mathbf{y'y}$ very big compared to $\mathbf{x'y}$
 - the columns of the Gram-matrix "almost orthogonal"
 - big distances, small angles

Questions?

vrije Universiteit am<u>sterdam</u>