A Multivariate Sequence Kernel

Trajectoires '11 Lecture

Sorbonne 1, Paris
October 14, 2011

Cees H. Elzinga

PARIS/SILC Research Group Vrije Universiteit Amsterdam
vrije Universiteit amsterdam

Purpose

- Create vector-representation of
- multivariate sequences
- with numeric and symbolic variables,
- that allows for

2 distances in Euclidean space,

- sequences of unequal length
- well defined similarity
- distances to centroid: characteristic sequence, K-means
- R_{V}-correlation

อ Fisher-discriminant

- Decompositions: testing factor-structure hypotheses
- and use kernel function for feasible calculations

Unfortunately, there is NO software yet!

No examples

OM vs Kernel

vrije Universiteit

In collaboration with

- Dr. Hui Wang
- Reader in Computer Science Computer Science Research Institute University of Ulster
- Dr. Zhiwei Lin
- Researcher SAP UK

Structure

- Data I
- The Challenge
- Preliminaries
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Structure

- Data I

- Example
- Structure
- The Challenge
- Preliminaries
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Multivariate Sequences

- simultaneous "timeseries" from the same objects
- numerical
- ECG: 12 signals
- stock commodity prices
- symbolical
- life course facets (job, family, residence)
- Gary Pollock 2007
- Gauthier et al 2010
- "mixed": symbolical \& numerical

MV Sequence: Example

- Consist of tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
- $x_{1} \leftarrow$ labor market status symbolic: $\{E, U, N, R, \ldots\}$
- $x_{2} \leftarrow$ monthly income numerical: [0, 10000]
- $x_{3} \leftarrow$ household type symbolic: $\{P, S, C, M, S C, \ldots\}$
- $x_{4} \leftarrow$ hours spend in housekeeping numerical: [0, 400]

MD Sequence: Structure

- Tuples of v variables vary over time

- n-long sequence consists of $n v$-tuples
- data consist of N sequences of $n_{i} v$-tuples
- $v=1$: sequence is ordinary time-series or string

Structure

- Datal
- Challenge \& Strategy
- Preliminaries
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

The Challenge

- Quantify the sequences
- such that linear (statistical) models apply
- to classify the sequences
- to use as dependent variable

The Strategy

- Quantify the sequences
- such that linear statistical models apply
- to classify the sequences
- to use as (in-)dependent variable
- Map the sequences onto vectors in \mathbb{R}^{n}
- and use the vectors to partition and model

HOW to CONSTRUCT the VECTORS??

Structure

- Data I
- Challenge \& Strategy
- Feature Vectors
- Principle
- Example 1: Beetles in Beetle-Space
- Example 2: Careers in Career-Space
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Fig Beetle

Cottonwood Stag Beetle

vrije Universiteit amsterdam

Feature Vectors: Principles

- select d features or properties $\left\{p_{1}, \ldots, p_{d}\right\}$
- map each object x to $\mathrm{a} d$-vector x
- $\mathrm{x} \mapsto \mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$
- determine the value of the x -coordinates x_{i}
- $x_{i}= \begin{cases}f\left(p_{i}\right) & \text { if object } \mathrm{x} \text { has property } p_{i} \\ 0 & \text { otherwise }\end{cases}$
- simple: $f\left(p_{i}\right)=1$, all i (feature "on")

4 Beetles in Beetle Space $\{0,1\}^{8}$

Features	a	b	c	d
crawls	1	0	1	1
flies	0	1	0	1
big eyes	1	1	0	0
long antennas	1	1	1	0
stripes	1	0	0	1
dots	1	0	0	0
eats marshmellows	0	0	0	0
intimidating	0	0	1	1

- inner product $\mathbf{a}^{\prime} \mathbf{b}=\sum_{i} a_{i} b_{i}=2$ counts common features
- inner product $\mathbf{a}^{\prime} \mathbf{a}=\sum_{i} a_{i}^{2}=5$ counts features
- discerns $2^{8}=256$ distinct beetles

Beetle Feature Vectors

- beetle feature space-matrix $\mathbf{X}=(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$
- Gram-matrix $\mathbf{X}^{\prime} \mathbf{X}=\left(\begin{array}{llll}5 & 2 & 2 & 2 \\ 2 & 3 & 1 & 1 \\ 2 & 1 & 3 & 2 \\ 2 & 1 & 2 & 4\end{array}\right)$, inner products
- beetle vectors have
- length: $\|\mathbf{a}\|=\sqrt{\mathbf{a}^{\prime} \mathbf{a}}=\sqrt{\sum_{i} a_{i}^{2}}=\sqrt{5}=2.24$ (st. dev.)
- distance: $d(a, b)=\mathbf{a}^{\prime} \mathbf{a}+\mathbf{b}^{\prime} \mathbf{b}-2 \mathbf{a}^{\prime} \mathbf{b}=4$
- angle: $\angle(a, b)=\frac{\mathbf{a}^{\prime} \mathbf{b}}{\|\mathbf{a}\| \cdot\|\mathbf{b}\|}=\frac{2}{\sqrt{5 \cdot 3}}=0.52$ (correlation ${ }^{(5)}$

Careers in Career-Space

- Alphabet $\mathcal{A}=\{a, b, c\}$ (labor market states)
- all strings \mathcal{A}^{*} : set of all possible careers
- career $\mathrm{x}=a b b c a a c c b b a a a a b$...
- careers are concatenations of symbols from \mathcal{A}
- career features: all sub-careers
- $a, a c, a b a c b, \ldots$
- map careers onto career-feature vectors

2 Careers in Career-Space

careers: $\mathrm{x}=a b a c \mapsto \mathbf{x}, \mathrm{y}=b a c b \mapsto \mathbf{y}$

subcareers	\mathbf{x}	\mathbf{y}
a	1	1
\vdots	\vdots	\vdots
$a a$	1	0
$a b$	1	1
\vdots	\vdots	\vdots
$a b a$	1	0
\vdots	\vdots	\vdots
$a c b$	0	1
\vdots	\vdots	\vdots

Feature Vectors: Problems

- feature selection: relevance?
- no beetles eat marshmellows (irrelevant)
- some beetles have horns (not selected)
- all beetles have 6 legs (non-discriminating)
- feature selection: how many are necessary/acceptable?
- $\{0,1\}^{d}$-vectors generate at most 2^{d} classes
- dimensionality of subsequence-space is colossal: countably infinite
- numerical problems: how to evaluate Gram-matax - use a KERNEL

Structure

- Datal
- Challenge \& Strategy
- Preliminaries
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Kernel Function: Fast Trick

- careers x and y of length m and n
- with feature vectors x and y
- naively calculating $x^{\prime} y$ takes 2^{m+n} operations: not feasible
- kernel function ${ }^{\circledR}$ takes $m \cdot n$ operations: feasible
- kernel function: evaluates $\kappa(\mathrm{x}, \mathrm{y})=\mathrm{x}^{\prime} \mathrm{y}$ without constructing x and y explicitly
- problem: no method or recipe for kernel-design

Structure

- Data I
- Challenge \& Strategy
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

MV Sequence: Structure

- Tuples of v variables vary over time

- n-long sequence consists of $n v$-tuples
- data consist of N sequences of $n_{i} v$-tuples
- $v=1$: sequence is ordinary time-series or string

Domains and Data-Space

- Domains of variables are finite
- Symbolic variable $x_{j}: x_{j} \in D_{j}=\{P, S, \ldots\}$ Domain size: $\left|D_{j}\right|$
- Numeric variable $x_{j}: x_{j} \in D_{j}=[\min , M a x]$

Domain size: $\left|D_{j}\right|=M a x-\min$

- Data Space: $\Omega=X_{j=1}^{v} D_{j}, \quad|\Omega|=\prod_{j}\left|D_{j}\right|$
- Ω consists of all possible v-tuples
- MV-sequences arise by catenating tuples from
- Ω is our "alphabet"

Structure

- Data I
- Challenge \& Strategy
- Feature Vectors
- Kernel
e Data II

- Neighborhoods

- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Neigborhoods

vrije Universiteit amsterdam

General Idea: A Neighborhood Space

- Objects live in neighborhoods
- Objects share neighborhoods
- the more neighborhoods shared, the more alike, the less distant
- Map objects to neighborhood space using neighborhood vectors
- neighborhoods as features
- Count (common) neighborhoods through products of neighborhood vectors

Neighborhood

- you live in a neighborhood
- you share properties, features with your neighbors
- income
- education
$-$
- Neighborhood: a set of objects sharing a property P
- $N(P)=\{x: x \vdash P\}$
- Your neighborhood: a neighborhood where you live
- $N(P, x)=N(P) \Leftrightarrow x \in N(P)$
- common neighborhood: $N(P, x, y)=N(P) \Leftrightarrow x, y \in N(P)$
- What about neighborhoods of measurements??

Neighborhood of Symbolic Measurements

- Let $D_{i}=\{a, b, c\} ;$ a symbolic domain.
- Neighborhood: a set $N(P)=\{x: x \vdash P\}$
- Interpret P as: "is a subset of a domain D"
- D generates $2^{|D|}$ neighborhoods
- Neighborhoods of a : $\{a\},\{a, b\},\{a, c\},\{a, b, c\}$
- Number of v-neighborhoods of $a: \phi_{v}(a)=2^{\left|D_{i}\right|-1}$
- Common v-neighborhoods of $a, b: \phi_{v}(a, b)=2^{\left|D_{i}\right|-2}$

Neighborhood of Numeric Measurements

- Let $D_{i}=[m, M]$, an ordered set
- Interpret P as: "is an ordered subset of a domain D "
- D generates $(\underset{2}{M-m+1})$ neighborhoods
- Neighborhoods of $x \in D_{i}:\binom{M-x+1}{1} \cdot\binom{x-m+1}{1}$
- Number of v-neighborhoods of x :
$\phi_{v}(x)=(M-x+1)(x-m+1)$
- Common v-neighborhoods of x, y :
$\phi_{v}(x, y)=(M-\max (x, y)+1)(\min (x, y)-m+1)$

Neighborhoods of v-tuples: Hypertuples

- a v-tuple of measurements: $\mathrm{x}_{i}=\left(\mathrm{x}_{i 1}, \ldots, \mathrm{x}_{i v}\right)$
- a v-tuple of neighborhoods: $h_{i}=\left(d_{1}, \ldots, d_{v}\right)$
- if $x_{i j}$ "covered" by d_{j} for $j=1, \ldots, v$:
- h_{i} is a t-neighborhood of x_{i}
- h_{i} is called a "hypertuple": consists of sets
- many distinct h_{i} "cover" $\mathrm{x}_{i}: \phi_{t}\left(\mathrm{x}_{i}\right)$
- how many??

Counting hypertuples

- hypertuples covering a tuple x_{i}

$$
\phi_{t}\left(\mathrm{x}_{i}\right)=\prod_{k=1}^{v} \phi_{v}\left(\mathrm{x}_{i j}\right)
$$

- hypertuples common to $\mathrm{x}_{i}, \mathrm{y}_{j}$:

$$
\phi_{t}\left(\mathrm{x}_{i}, \mathrm{y}_{j}\right)=\prod_{k=1}^{v} \phi_{v}\left(\mathrm{x}_{i k}, \mathrm{y}_{j k}\right)
$$

Hypersequences in hyperspace

- an n-sequence of v-tuples of measurements:
$x=x_{1} \ldots x_{n}$
- an m-sequence of v-tuples of t-neighborhoods: $h=h_{1} \ldots h_{m}, m \leq n$
- if each x_{i} is covered by some h_{i}
- h is an $m d$-neighborhood of x
- h is called "hypersequence"
- many distinct h "cover" the same $x: \phi_{m d}(x)$
- many distinct h cover both x and $y: \phi_{m d}(x, y)$

Hypersequences: an example

i	x	h
1	$x_{1}=\langle 2,6, b, p\rangle$	$h_{1}=\langle\{[1,3]\},\{[5,8]\},\{a, b\},\{p, r\}\rangle$
2	$x_{2}=\langle 3,6, b, r\rangle$	$h_{2}=\langle\{[2,4]\},\{[6,7]\},\{a, b, c\},\{q, r\}\rangle$
3	$x_{3}=\langle 4,8, a, q\rangle$	$h_{3}=\langle\{[3,4]\},\{[8,8]\},\{a\},\{p, q, r\}\rangle$

- h_{i} are arbitrary within constraint that the x_{i} must be properly covered

Structure

- Data I
- Challenge \& Strategy
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

Dataspace \& Hyperspace

- Ω : the set of all possible v-tuples
- the "multidimensional alphabet"
- Ω^{*} : the set of all sequences of v-tuples - Dataspace
- \mathcal{H} : the set of all distinct hypertuples: t-neighborhoods
- the "hyperalphabet" consists of tuples of sets
- \mathcal{H}^{*} : the set of all sequences of hypertuples Hyperspace
- $\Omega^{*} \subset \mathcal{H}^{*}, \mathcal{H}^{*}$ is finite since the domains are finite

Vectors in hyperspace

- Order the hypersequences in \mathcal{H}^{*}
- i.e. assign a unique integer $r(h)$ to each $h \in \mathcal{H}^{*}$
- construct a vector $\mathrm{x}=\left(x_{1}, x_{2}, \ldots\right)$ for each $\mathrm{x} \in \Omega^{*}$:

$$
x_{r(h)}= \begin{cases}1 & h \in \mathcal{H}^{*} \text { covers } \mathrm{x} \in \Omega^{*} \\ 0 & \text { otherwise }\end{cases}
$$

- $\mathrm{x}^{\prime} \mathrm{x}$ counts the number of covers of x
- $x^{\prime} y$ counts the number of common covers of x and y
- constructing x and y and directly evaluating $x^{\prime} y$ is not feasible

Structure

- Data I
- Challenge \& Strategy
- Feature Vectors
- Kernel
- Data II
- Neighborhoods
- Hypertuples
- Hyperspace as Featurespace
- Kernel in Hyperspace

An Efficient Kernel

- x and y are MD-sequences of lengths k and n
- x^{m} denotes the first $m v$-tuples of x

$$
\begin{aligned}
\phi\left(\mathrm{x}^{k}, \mathrm{y}^{n}\right) & =\phi\left(\mathrm{x}^{k}, \mathrm{y}^{n-1}\right)+\phi\left(\mathrm{x}^{k-1}, \mathrm{y}^{n}\right) \\
& -\phi\left(\mathrm{x}^{k-1}, \mathrm{y}^{n-1}\right) \cdot\left(2-\phi_{t}\left(\mathrm{x}_{k}, \mathrm{y}_{n}\right)\right)
\end{aligned}
$$

- initialize $\phi\left(\mathrm{x}^{0}, \mathrm{y}^{j}\right)=1=\phi\left(\mathrm{x}^{j}, \mathrm{y}^{0}\right)$
- $\phi\left(\mathrm{x}^{k}, \mathrm{y}^{n}\right)=\mathrm{x}^{\prime} \mathrm{y}$ takes time proportional to $k \cdot n$

An Efficient Kernel?

- $\phi_{t}\left(\mathrm{x}_{k}, \mathrm{y}_{n}\right)=\prod_{i=1}^{v} \phi_{v}\left(\mathrm{x}_{k i}, \mathrm{y}_{n i}\right)$
- for longer sequences,
- for large domains,
- for many variables,
- this generates very big numbers: special big-number arithmetic required
- $x^{\prime} x$ and $y^{\prime} y$ very big compared to $x^{\prime} y$
- the columns of the Gram-matrix "almost orthogonal"
- big distances, small angles

Questions?

vrije Universiteit amsterdam

