TraMineR	A TraMineR preview	Other features	Getting started	References

An introduction to sequence analysis using the TraMineR R package

Matthias Studer, Alexis Gabadinho, Nicolas S. Müller, Gilbert Ritschard

Institute for Demographic and Life Course Studies, University of Geneva http://mephisto.unige.ch/traminer

Workshop on Trajectories, Paris, October 14th, 2011

Objectives				
TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References

- Presentation of the "TraMineR" software.
- Illustrate the main features using an example.
 - Descriptive approach and visualization.
 - Discrepancy analysis.
- Present the main resources available to learn and start using "TraMineR".

TraMineR 000000	A TraMineR preview 000000000000000000000	Other features	Getting started 00	References
Plan				

- 2 A TraMineR preview
- Other features
- Getting started

TraMineR ●00000	A TraMineR preview	Other features	Getting started 00	References
TraMineR				

- TraMineR is an R package for sequence analysis.
- Specially designed for the social sciences.
- TraMineR: Trajectory Miner in R (Not inspired by our liking for the Gewürztraminer wine)
- Freely available on the CRAN (Comprehensive R Archive Network) http://cran.r-project.org/web/packages/TraMineR/

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

• To install: install.packages("TraMineR")

- R is a environment for statistical computing and graphics.
- It is open source and multi-platform.
- Provides basic and advanced statistical methods.
- Since TraMineR is an R package, you may:
 - Use all data file format supported by R (SPSS, Stata, ...).
 - Analyze results produced by TraMineR using methods provided by other packages (optimized clustering procedure, MDS, multi-level models, ...).
 - Use results produced by other packages directly in TraMineR (build sequence of network properties, for instance).

TraMineR 00●000	A TraMineR preview	Other features	Getting started 00	References
The TraN	lineR project			

- TraMineR was launched as a FNS project:
- Mining event histories: Towards new insights on personal Swiss life courses.
- Project FN-113998 et FN-122230 de février 2007 à janvier 2011
- Development continues within the LIVES NCCR: "overcoming vulnerability: life course perspectives" (IP 14).

(日)

Scientific committee

- Gilbert Ritschard, professor of statistics
- Alexis Gabadinho, demography
- Nicolas S. Müller, sociology and information systems
- Matthias Studer, economy and sociology

Sequence Analysis in the Social Sciences

- TraMineR is designed to answer questions arising in the social sciences.
- Sequences describe life trajectories or more generally social processes.
 - Professional carriers.
 - Cohabitational life courses.
 - History of organizations.
- Sequence analysis provide an holistic view of the trajectories.
- Unlike "event-oriented" approach (Billari, 2001), states and transitions are analyzed in the context of the whole process.

TraMineR ○○○○●○	A TraMineR preview 000000000000000000000	Other features	Getting started 00	References
Common	questions			

Abbott (1990) identifies three common questions in sequence analysis.

- Are there typical (recurrent) patterns of trajectories? What are those patterns?
- How are the trajectories related to explanatory factors? Which factors influence the trajectory followed by an individual? Do we observe differences according to cohort, social origin or sex?
- How is a given outcome, such as health status or income, related to a previous trajectory?

TraMineR	A TraMineR preview	Other features	Getting started	References
○○○○○●	0000000000000000000000	00	00	
TraMineR	features			

- Description of states sequences
 - Visualization of a set of states sequences.
 - Compute descriptive statistics.
- Compute dissimilarities between states sequences.
- Build and visualize a typology of states sequences (using other R packages).

・ロト ・ 同ト ・ ヨト ・ ヨト

• Analyze the links between states sequences and explanatory covariates using discrepancy analysis (Studer et al., 2011).

TraMineR 000000	A TraMineR preview	Other features 00	Getting started	References
Dlan				

Plan

- 2 A TraMineR preview
- Other features

TraMineR	A TraMineR preview	Other features	Getting started	References
	••••••			

- Study from McVicar and Anyadike-Danes (2002) on transition from school to work in Northern Ireland.
- Aim: identify which young people are more at risk to experience unsuccessful transitions into the labour market.
- Use TraMineR to:
 - Visualize the sequences and descriptive methods.
 - Building a typology.
 - Discrepancy analysis.

Example: The mvad data set

- 712 individuals
- Follow-up starting at the end of the compulsory education (July 1993)
- Time series of 70 status variables: September 1993 to June 1999.
- The alphabet is made of the following statuses: EM (Employment), FE (Further Education), HE (Higher Education), JL (Joblessness), SC (School), TR (Training).
- Included in the TraMineR library.

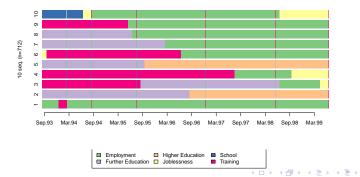
・ロト ・四ト ・ヨト ・ヨト

UNIVERSITÉ DE GENÈVE

æ

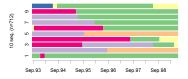
The mvad data set - Variable list

Table: List of Variables in the MVAD data set


id	unique individual identifier
weight	sample weights
sex	binary dummy for gender, 1=male
religion	protestant or catholic
region	location of school, one of five Education and Library Board areas in Northern Ireland
Grammar	binary dummy indicating type of secondary education, $1=$ grammar school
funemp	binary dummy indicating father's employment status at time of survey, 1=father unemployed
gcse5eq	binary dummy indicating qualifications gained by the end of compulsory education, $1=5+$ GCSEs at grades A-C, or equivalent
fmpr	binary dummy indicating SOC code of father's current or most recent job,1=SOC1 (profes- sional, managerial or related)
livboth	binary dummy indicating living arrangements at time of first sweep of survey (June 1995), $1=$ living with both parents
jul93	Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=employment, 4=training, 5=joblessness, 6=HE
:	"
jun99	"

Definition of a state sequences

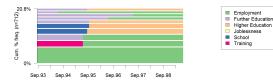
Definitions


- Alphabet A: finite set of possible states.
- Sequence of length k: ordered list of k elements taken from A.

R> mvad.seq <- seqdef(mvad, 17:86, labels = mvad.lab, xtstep = 6)
R> seqiplot(mvad.seq, border = NA, title = "Ten first sequences")

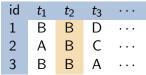
Ten first sequences

Visualization based on individual sequences



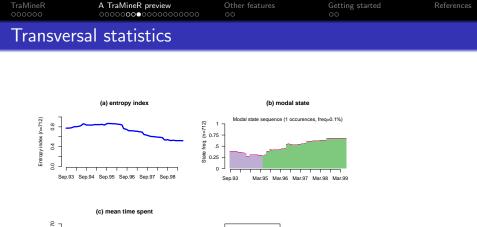
(a) first 10 sequences

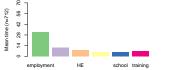
(b) all sequences (carpet)


(c) 10 most frequent sequences

TraMineR 000000	A TraMineR preview ○○○○○●○○○○○○○○○○○○○	Other features	Getting started 00	References
Transversa	al statistics			

• Summarize a set of sequences using a sequence of transversal statistics.


• On may use:


- The states distribution.
- The entropy index (Billari, 2001).
- The modal state.
- Use overall statistics: mean time spent in each state.

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Chronogra	m			
R> seqdplot (100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mvad.seq)	96 Sep.97 Sep.98		
	Employment Higher Educ Further Education Joblessness	ation School Training		

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

TraMineR 000000	A TraMineR preview	Other features	Getting started	References
Building	a typology			

- Compute dissimilarity between sequences.
- Regroup similar sequences using cluster analysis.
- Visualize the results.

- Most of advanced sequence analysis methods rely on a dissimilarity measure.
- A dissimilarity is a quantification of how far two objects are.
- For instance, consider two incomes x and y:

•
$$d(x,y) = |x-y|$$

•
$$d(x, y) = \log(1 + |x - y|)$$

•
$$d(x,y) = (x-y)^2$$

- How to do it with categorical sequences?
- Depending on the issue, we want our dissimilarity measure to account for:
 - Order of the states and transitions in each sequence.
 - Temporality of the transitions.
 - Duration of stay in each state.

- Most of advanced sequence analysis methods rely on a dissimilarity measure.
- A dissimilarity is a quantification of how far two objects are.
- For instance, consider two incomes x and y:

•
$$d(x, y) = |x - y|$$

•
$$d(x,y) = \log(1+|x-y|)$$

•
$$d(x,y) = (x-y)^2$$

- How to do it with categorical sequences?
- Depending on the issue, we want our dissimilarity measure to account for:
 - Order of the states and transitions in each sequence.
 - Temporality of the transitions.
 - Duration of stay in each state.

- Most of advanced sequence analysis methods rely on a dissimilarity measure.
- A dissimilarity is a quantification of how far two objects are.
- For instance, consider two incomes x and y:

•
$$d(x,y) = |x-y|$$

•
$$d(x, y) = \log(1 + |x - y|)$$

•
$$d(x,y) = (x-y)^2$$

- How to do it with categorical sequences?
- Depending on the issue, we want our dissimilarity measure to account for:

- Order of the states and transitions in each sequence.
- Temporality of the transitions.
- Duration of stay in each state.

- Most of advanced sequence analysis methods rely on a dissimilarity measure.
- A dissimilarity is a quantification of how far two objects are.
- For instance, consider two incomes x and y:

•
$$d(x,y) = |x-y|$$

•
$$d(x, y) = \log(1 + |x - y|)$$

•
$$d(x,y) = (x-y)^2$$

- How to do it with categorical sequences?
- Depending on the issue, we want our dissimilarity measure to account for:

- Order of the states and transitions in each sequence.
- Temporality of the transitions.
- Duration of stay in each state.

- Most of advanced sequence analysis methods rely on a dissimilarity measure.
- A dissimilarity is a quantification of how far two objects are.
- For instance, consider two incomes x and y:

•
$$d(x,y) = |x-y|$$

•
$$d(x, y) = \log(1 + |x - y|)$$

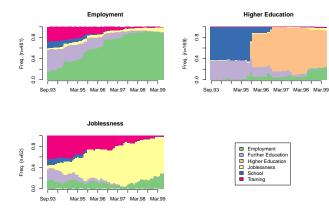
•
$$d(x,y) = (x-y)^2$$

- How to do it with categorical sequences?
- Depending on the issue, we want our dissimilarity measure to account for:

- Order of the states and transitions in each sequence.
- Temporality of the transitions.
- Duration of stay in each state.

Jissinnianty measures

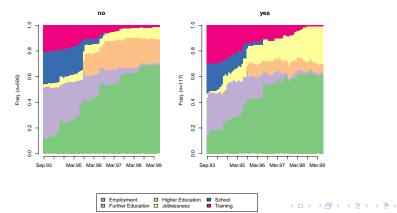
Dissimilarity measures provided by TraMineR:


- Optimal Matching (OM).
- Longest Common Prefix (LCP).
- Longest Common Suffix (RLCP).
- Longest Common Subsequence (LCS).
- Hamming distance (HAM).
- Dynamic Hamming Distance (DHD) (Lesnard, 2010).
- Other measures are planned.

- Keep three clusters (best silhouette width).
- Quality is poor and may be an artifact (average silhouette width=0.41) (Kaufman and Rousseeuw, 1990).

R> seqdplot(mvad.seq, group = pamclustfac, border = NA)

UNIVERSIT


(日)

Comparing groups of sequences

- Do the sequences differ according to father unemployment status?
- Are those differences *significant*? And what happens if we control for the region?

R> seqdplot(mvad.seq, group = mvad\$funemp, border = NA)

Discrepancy Analysis of State Sequences

Discrepancy analysis (Studer et al., 2011):

- Allow to study the links between state sequences and explanatory covariate.
- Measure the strength of the association using the share of the discrepancy of the sequences "explained" by a given explanatory covariate.

イロト 不得 トイヨト イヨト

э

• Attest the significance of the association by estimating the "p-value".

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Main prin	ciples			

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (y_{i} - y_{j})^{2}$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{ij}$$

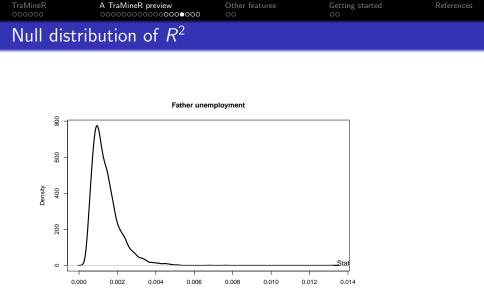
- Replacing *d_{ij}* with OM, LCP, LCS ... we define a discrepancy measure of a set of sequence.
- We may then use the ANOVA principles to compute the R^2 .
- *R*² is the share of the total discrepancy explained by a given covariate.
- Estimate significance using permutation tests.
- Permutation test provides an empirical estimation of the probability that a random partition of the sequences explains a biggest part of the discrepancy than our covariate.

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Main pri	nciples			

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (y_{i} - y_{j})^{2}$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{ij}$$

- Replacing *d_{ij}* with OM, LCP, LCS ... we define a discrepancy measure of a set of sequence.
- We may then use the ANOVA principles to compute the R^2 .
- *R*² is the share of the total discrepancy explained by a given covariate.
- Estimate significance using permutation tests.
- Permutation test provides an empirical estimation of the probability that a random partition of the sequences explains a biggest part of the discrepancy than our covariate.

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Main pri	nciples			


$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (y_{i} - y_{j})^{2}$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{ij}$$

- Replacing *d_{ij}* with OM, LCP, LCS ... we define a discrepancy measure of a set of sequence.
- We may then use the ANOVA principles to compute the R^2 .
- *R*² is the share of the total discrepancy explained by a given covariate.
- Estimate significance using permutation tests.
- Permutation test provides an empirical estimation of the probability that a random partition of the sequences explains a biggest part of the discrepancy than our covariate.

TraMineR 000000	A TraMineR preview	Other features	Getting started 00	References
Main prin	ciples			

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} (y_{i} - y_{j})^{2}$$
$$= \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=i+1}^{n} d_{ij}$$

- Replacing *d_{ij}* with OM, LCP, LCS ... we define a discrepancy measure of a set of sequence.
- We may then use the ANOVA principles to compute the R^2 .
- *R*² is the share of the total discrepancy explained by a given covariate.
- Estimate significance using permutation tests.
- Permutation test provides an empirical estimation of the probability that a random partition of the sequences explains a biggest part of the discrepancy than our covariate.

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Discrepar	icy Analysis			

• Bivariate association with each explanatory factor.

R> funemp_assoc <- dissassoc(mvad.dist, mvad\$funemp, R = 5000)

	F	R^2	<i>p</i> -value
gcse5eq	67.69	0.087	0.000
Grammar	23.16	0.032	0.000
funemp	9.51	0.013	0.000
fmpr	8.76	0.012	0.000
sex	6.84	0.010	0.000
region	5.50	0.030	0.000
religion	2.75	0.004	0.012
livboth	2.23	0.003	0.035

◆□→ ◆□→ ◆三→ ◆三→ 三三

TraMineR 000000	A TraMineR preview	Other features 00	Getting started 00	References
Multi-fa	ctors analysis			

- Allow to control for the influence of another covariate.
- For instance, controlling for the region.

```
R> dmfac <- dissmfacw(mvad.dist ~ funemp + region, data = mvad,
+ R = 5000, squared = FALSE)
```

	F	R^2	<i>p</i> -value
funemp	7.13	0.010	0.000
region	4.90	0.027	0.000
Total	5.87	0.040	0.000

- Recursively select the "best" explanatory covariate.
- Use only significant split.

```
R> st <- seqtree(mvad.seq ~ gcse5eq + Grammar + funemp + sex,
+ data = mvad, R = 5000, diss = mvad.dist)
R> seqtreedisplay(st, type = "d", border = NA)
```


UNIVERSITÉ DE GENÈVE

э

TraMineR 000000	A TraMineR preview	Other features	Getting started 00	References
Plan				

- 2 A TraMineR preview
- Other features

	A TraMineR preview 00000000000000000000	Other features ●○	Getting started 00	References
Other TraM	lineR features			

- Handling and conversions between various longitudinal data format.
- Support for weights and missing values.
- Extraction and visualization of representative sequences of a set of sequence.
- Other descriptives statistics (transition rates, ...).
- Compute longitudinal characteristic of individual sequence (Complexity index, longitudinal entropy, turbulence, time spent in each state, ...)

- Homogeneity of discrepancy
- Analysis of event sequences.
 - Extraction of frequent event subsequences.
 - Identification of discriminant subsequences.

TraMineR 000000	A TraMineR preview 000000000000000000000	Other features ○●	Getting started	References
Longitu	dinal data formate			

Longitud	•		
Longitud	unal (1ata 1	formate
LUIIEILUU		ιαια Ι	Unitats

Code	Exampl	e										
STS	<i>ld</i> 101	a18 S		20 S	а21 М	а22 М	а23 МС	<i>а</i> 24 МС	а25 МС	<i>а</i> 26 МС	a27 D	
	102	S		S	MC	MC	MC	MC	MC	MC	MC	
	ld	s1	s2 s		54							
DSS	101	S	M M	C	D							
	102	S	MC									
	Id	<i>s</i> 1	<i>s</i> 2		<i>s</i> 3	<i>s</i> 4						
SPS	101	(S,3)	(M,2)	(N	1C,4)	(D,1)						
	102	(S,3)	(MC,7)									
	Id	Index	From	То	State							
	101	1	18	20		le (S)						
	101	2	21	22		ried (M)						
SPELL	101	3	23	26		ied w Cł		(MC)				
	101	4	27	27		rced (D)						
	102	1	18	20		le (S)						
	102	2	21	27	Marr	ried w Cł	nildren ((MC)				
	ld	Time	Event									
	101	21	M (Ma									
	101	23	C (Chil									
TSE	101	26	C (Chil									
	101	27	D (Dive									
	102	21	M (Ma									
	102	21	C (Chil	dbirth)								

◆□→ ◆圖→ ◆国→ ◆国→ 三国

TraMineR 000000	A TraMineR preview	Other features	Getting started	References
Plan				

- 2 A TraMineR preview
- Other features

TraMineR 000000	A TraMineR preview	Other features	Getting started ●0	References
Getting st	arted: selected l	bibliography		

- Introduction to states sequences analysis using TraMineR:
 - Gabadinho, A., G. Ritschard, N. S. Müller and M. Studer (2011). Analyzing and Visualizing State Sequences in R with TraMineR. *Journal of Statistical Software 40*(4), 1–37.
- Discrepancy analysis:
 - Studer, M., G. Ritschard, A. Gabadinho and N. S. Müller (2011). Discrepancy Analysis of State Sequences. *Sociological Methods and Research* 40(3), 471–510.

TraMineR 000000	A TraMineR preview	Other features	Getting started ○●	References
Other imp	portant resources	5		

- TraMineR website: http://mephisto.unige.ch/traminer
 - latest news.
 - A TraMineR preview with all R command needed to reproduce this presentation.
 - Link to documetation resources.
 - A user guide (approx. 120 pages)
 - Tutorials and presentation.
 - A list of publication made by TraMineR users (preprints).

- Information about training in Sequence Analysis and TraMineR.
- A TraMineR user mailing list: http://mephisto.unige.ch/traminer/contrib.shtml
- Bug report and feature request: http://mephisto.unige.ch/traminer/contrib.shtml

TraMineR 000000	A TraMineR preview	Other features	Getting started 00	References
Reference	5			

- Abbott, A. (1990). A primer on sequence methods. *Organization Science* 1(4), 375–392.
- Billari, F. C. (2001). The analysis of early life courses: Complex description of the transition to adulthood. *Journal of Population Research 18*(2), 119–142.
- Kaufman, L. and P. J. Rousseeuw (1990). *Finding groups in data. an introduction to cluster analysis.* New York: Wiley.
- Lesnard, L. (2010). Setting cost in optimal matching to uncover contemporaneous socio-temporal patterns. *Sociological Methods and Research 38*, 389–419.
- McVicar, D. and M. Anyadike-Danes (2002). Predicting successful and unsuccessful transitions from school to work using sequence methods. *Journal of the Royal Statistical Society A 165*(2), 317–334.

TraMineR 000000	A TraMineR preview	Other features	Getting started 00	References
References	s II			

Studer, M., G. Ritschard, A. Gabadinho, and N. S. Müller (2011). Discrepancy analysis of state sequences. *Sociological Methods* and Research 40(3), 471–510.

TraMineR 000000	A TraMineR preview	Other features	Getting started	References
Appendix				

UNIVERSITÉ DE GENÈVE

<ロト <回ト < 注ト < 注ト

R> plot(cmdscale(mvad.dist, k = 2), col = pamclust, pch = pamclust)
R> legend("bottomright", legend = clust.labels, fill = 1:3)

TraMineR 000000	A TraMineR preview	Other features	Getting started 00	References
Homogé	néité des dispersio			

- Le test d'homogénéité des dispersions permet de tester l'égalité des dispersions intra-groupes.
- Est-ce que la dispersion diffère significativement d'un groupe à l'autre ?
- Deux versions du test dans TraMineR
 - Basé sur une généralisation du test de Bartlett
 - Basé sur une généralisation du test de Levene (à utiliser de préférence).
- La significativité est attestée à l'aide de tests de permutation.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

• Test d'homogénéité des dispersions selon la variable Grammar

R> catholic.assoc <- dissassoc(mvad.dist, group = mvad\$catholic, + R = 5000)

