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ABsTrACT. The statistical properties of the likelihood ratio test statistic (LRTS)
for autoregressive regime-switching models are addressed in this paper. This
question is particularly important for estimating the number of regimes in the
model. Our purpose is to extend the existing results for mixtures (Liu and
Shao, 2003) and hidden Markov chains (Gassiat, 2002). First, we study the
case of mixtures of autoregressive models (i.e. independent regime switches).
In this framework, we give sufficient conditions to keep the LRTS tight and
compute its the asymptotic distribution. Second, we consider the extension
of the ideas in Gassiat (2002) to autoregressive models with regimes switches
according to a Markov chain. In this case, it is shown that the marginal
likelihood is no longer a contrast function and cannot be used to select the
number of regimes. Some numerical examples illustrate the results and their
convergence properties.

1. INTRODUCTION

Autoregressive regime-switching models are being widely used in modelling financial
and economic time series such as business cycles (Hamilton, 1989; Lam, 1990),
exchange rates (Engle and Hamilton, 1990), financial panics (Schwert, 1989) or
stock prices (Wong and Li, 2000).

When the number of regimes is fixed, the statistical inference is relatively straight-
forward (Hamilton, 1990) and the asymptotic properties of the estimates have al-
ready been established (Francq and Roussignol, 1998; Krishnamurthy and Ryden,
1998; Douc R., Moulines E. and Rydén T., 2004). However, the problem of select-
ing the number of regimes is far less obvious and hasn’t been completely answered
yet. When the number of regimes is unknown, identifiability problems arise and
the likelihood ratio test statistic (LRTS hereafter) is no longer convergent to a x>-
distribution. Some partial answers were proposed by Hansen (1992,1996a, 1996b)
and Garcia (1998). Hansen derived an asymptotic bound for the distribution of
the LRTS based on empirical processes techniques, while Garcia obtained the as-
ymptotic distribution of the LRTS, but under some very restrictive hypothesis. Let
us also mention that the consistency of the estimate of the number of regimes was
proven recently in a Bayesian framework (Rios, 2008).

In the particular case of mixture models, several ideas and methods were pro-
posed to estimate the number of components: non-parametric techniques as in
Henna (1985), Roeder (1994) or Izenman and Sommer (1998), moment techniques
in Lindsay (1983) or Dacunha-Castelle and Gassiat (1997) and penalized maximum-
likelihood in Leroux(1992a), Keribin (2000) and Liu and Shao (2003). Furthermore,
Gassiat (2002) proved that in the case of hidden Markov models, the number of
regimes can be estimated using a marginal penalized-likelihood estimate. The aim
1
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of this paper is to extend the existing results for mixtures and hidden Markov mod-
els to the case where the mean of the observed process is replaced by a regression
function.

In Section 2, the results on the LRTS for mixture models are extended to au-
toregressive regime-switching models with independent regime switches. We give
sufficient conditions for the tightness of the LRTS and compute its asymptotic dis-
tribution. Section 3 is devoted to verifying the result of the previous section in the
case where the noise is Gaussian and the regression functions are linear. The last
section handles the case where regime switches are Markovian. Once the result in
the independent case was established, it seemed natural to generalize it by using a
cost function close to the marginal likelihood, as defined in Gassiat (2002). Yet, it
can be seen right away that this is no longer a contrast function and the conver-
gence is achieved only in the particular cases of constant autoregressive functions
(hidden Markov models) or independent regime switches (autoregressive mixture
models).

2. LRTS FOR AUTOREGRESSIVE MIXTURE MODELS

2.1. The observations. Let us briefly recall the definition of strong mixing pro-
cesses which will be needed hereafter. For a more detailed review, refer to Doukhan
(1995) and Bradley (2005).

Let (Yi),cz be a strictly stationary sequence of random variables defined on a
probability space (€2, IC,P). For every n > 1, define the S-mixing coefficients

Bn =B (Flo: F)
where F° _ =0 (Y, k <0), F° =0 (Yy, k> n), as

B (A B) = sup > [P(A4iNB;) —P(A)P(B;)|

(Ai)ier(Bi)jes (i,9)eIxJ

DN | =

where (A;);o; (vesp. (Bj)
tions.

jes) ranges over the set of A(resp. B) measurable parti-

The sequence (Yy) rez is called S-mixing if lim,, o B, = 0.

Throughout the rest of the paper, we will assume that the observations are a re-
alization of a stationnary process (Yj). Moreover, (Y}) will be assumed to be geo-
metrically S-mixing. This assumption may seem strong, but actually it is fulfilled
by a wide class of processes.

Finally, let us denote by u the stationnary measure of the vector (Y11, Y%).

2.2. The model. Let P = {gp,0 € O} be a set of densities with respect to some
positive measure v, where © is a compact finite-dimensional set.

Let us consider an observed sample {yi,...,y,} of the series Y. For every yi, the
true density conditionally to yi_1 is

Po
9° (| yk—1) = > 7090 (i | Y1),
=1

where ggo € P, ) >0 and Y 70, 70 = 1.
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This model is a generalization of mixture models. Several regression models can
be written in this way, for example mixtures of linear regressions with Gaussian
noise, which are particularly important in econometrics (see Hansen 1996) and will
be studied in Section 3 :

(1) Y, = a%, Y1 + 6%, +o%,e
where
e X,isanii.d. sequence of random variables valued in a finite space {1, ..., po }
and with probability distribution 7° = (7??, e ,wgo)
o (af,---,a0 ,b9,--- b9 ) are real numbers
. (0(1), e ,020) are strictly positive real numbers

g¢ is an i.i.d. noise N(0,1), independent of (Yi—x);> -

Let us remark that if (a(l), e ,ago) are all zero, the model is a simple Gaussian
mixture.

2.3. Approximation of the LRTS. Let G be the set of possible conditional den-
sities:

p p
G= {g(yk | yk—1) =Y _mige, (y | 1), mi € [0;1],> i =1,g0, €P,p € N*}

i=1 i=1

If p < po, there are no identification issues. Therefore, we will assume that p > pg
in the sequel.

Let
I (9) =Y 10 g(yk | ys—1)
k=2
be the log-likelihood function of (y1,- - ,yn), conditionally to y;.
The LRTS is defined as:

Db 2oy Tiges (Y | yr—1)
(2) 2\, =2 (Sup In(g) — ln(go)) = 2sup k=2 L= i
9€9 9€G D pp Doy W?Qeg (Y& | Ye—1)

We establish a theorem giving an approximation of the LRTS. Some notations and
definitions are needed first:

e For an n > 0, denote

(3) Gy=1{9€G.llg— 9"z <n}-

The extended set of score-functions S, is defined as:

2 1

,gegn
% -1

L2 ()

(4) S, = v
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e Let us define the limit-set of scores D
0

gn — 9
D= {d€ L200) 130.) € 6.1 % 5 gy o 01 = s, oy b O}

By putting g = g, for t € [0,1] and n < 1 < n+ 1, we obtain that, for all
d € D, there exists a parametric path (g;)o<¢<1 such that V¢t € [0,1], g; € G,
—a° . . _ 0

t— ||gtgog l|lL2(,) is continuous, ||gtgog L2 ) —>t%0 0and ||[d—sg, [lL2(p) —>tﬂ0
0.

o We recall the definition of the L, 5 (P)-space and the notion of bracketing
entropy. Consider Zj a strictly stationary sequence, S-mixing and such
that >, -, B, < 0. The Lo 5 (P)-space is defined as

20 \//o B (w) [Qy ()]’ du
where

— B (u) is the cadlag extension of 3, by considering §(u) = f},) and
fo=1
— ¢ Y (u) =inf {t € R, ¢ (t) < u}, if ¢ is a non-increasing function
— @y is the quantile function of |f (Zy)|, that is the inverse of
£ B(f (Zo)] > 1
Consider the extended set of score-functions &, endowed with the norm
||l 5- For every e > 0, we define an e-bracket by [, u] = {f € F, I < f <u}
such that |lu — ||, 5 <e. The e-bracketing entropy is

M (573m ||||2ﬁ) =1n (J\/h (5,37;7 ||H25>> )

where N (5,Sn, II1l5 B) is the minimum number of e-brackets necessary

L25(®) = {f, 1l < o0}, IIf

to cover S,,.

With the previous notations, we introduce the following assumption (B): Assume
that G is Glivenko-Cantelli and that there exists > 0 such that

1
/ \/’HH (g,sn, |H|w)de < o0.
0

Then, according to Doukhan (1995), the set S,, is Donsker under (B).

Now, let us state the following theorem which generalizes the result of Gassiat
(2002). The proof is given in the Appendix.

Theorem 1:
Under the assumption (B),

2\, = sup (max{%id(ﬁ-,ﬁﬂﬂ}) +op(1)
i=2

deD

Although this result may be applied to more general models, this paper is restricted
to autoregressive mixture models.

2.4. Asymptotic law of the LRTS. This section is a direct application of The-
orem 1.

We give sufficient conditions for which the Donsker assumption (B) holds in the
case of autoregressive mixture models.
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Usually, for parametric models, a Lipschitz condition on 6 is sufficient to show
that S is Donsker. However, if g depends on the parameter 6, the score-function
21
0 54 = q"oi may not be continuous, thus not Lipschitz, in 6.
||§T_l||L2(M)
The following theorem shows that assumption (B) holds for autoregressive mixture
models under some general hypothesis. Furthermore, we prove that the limit set of

scores D is complete and has continuous parametric paths. Hence, the asymptotic
behavior of the LRTS may be completely described.

Assumptions for the tightness of LRTS.

H-1: The set G is Glivenko-Cantelli and the set of possible parameters:
{71—17"' » Tp € [071]7917"' 70p € @}
contains a neighborhood of the parameters defining the true conditional
density ¢°.
H-2: There exists 7 > 0 such that for all g € G with |lg — ¢°[|r2() < m,

-1
q° ‘

L2 (p)
H-3: By denoting ly, := gg % and, with a slight abuse of notation, a‘% the
J

derivative of order ¢ with respect to all components of §;, we assume the
existence of a square-integrable function h and of a neighborhood N of
(9, ,920) such that, for all (61,---,0,0) € N,

By, 9?1y, %y,
20, 2(0,;)| < h and 2 (0,
‘86]( J) — ' 89? ( J) — an 89? ( J) —
H-4: With the following notations:
Oly. 0?1y,
= ——2(09), 1" == —5 (69
J 8‘93‘ ( ]) 86)]2 ( ])

we assume that for distinct (6;),,,

{001 cicp+ iz - Wr1ci )

are linearly independent in the Hilbert space L?(1u).

Let us define Q : L?(P) — L%(u) by Q(g) = %, for g # 0.

Now, we can state the following theorem, which generalizes theorem 4.1 of Liu and
Shao (2003) :

Theorem 2:

Let d be the parametric dimension of the regression functions. Under the assump-
tions H-1, H-2, H-3 and H-/, there exists a centered Gaussian process {Wg, S € F}
with continuous sample path and covariance kernel P (Wg, Ws,) = P (5152) such

that

lim 2\, = sup (max(Wg,0))>.

n—oo SeF

The index set F is defined as F = UF;, with the union running over
t=(to, stpy) €E NPOTL with 0 =tg < t1 < -+ < tp, <p and

Fy = {0 (202 Gilog + 0y Glo, + 02 XU+ 620 X0 0T 8)
)\17"' 7)\1707717"' » Vipg ERd ;Cla"' an ER? Htp0+17"' 79}7 €0 - {9(1)7 761030}}
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where 6 = 1 if there exists a vector q such that:

ti t; - .
q; <0, Zj:ti—1+1 q; = 1, Zj:ti—lJrl \/quy; =0 fO’F i=1,--,po;
and 6§ = 0 otherwise.

Note that the asymptotic law of the LRTS depends on the true parameters of the
model. The next two sections illustrate important consequences of this theorem.

2.5. Penalized-likelihood estimate for the number of regimes. For p € N*,
let us denote

p P
Gp = {g(yk lyk—1) = > migo, (g | ys—1),mi € [0;1], > mi = 1,90, € 7’}
i=1 =1

For some fixed P € N* sufficiently large, we shall consider the following class of
functions

P
Gr=1JG
p=1

For every g € Gp we define the number of regimes as

With this definition, pg = p (go) is the number of regimes of the true model.

The estimate of the number of regimes p can now be defined as p € {1,..., P}
maximizing the penalized criterion:

(5) T, (p) = gsggp In (9) — an (p)

where

I (9)=> I g(yk | yr—1)
k=2

is the conditional log-likelihood with respect to y1 and a,, (p) is a penalty term.
With the previous definitions, the following result can be stated:

Corollary 1
Suppose the following assumptions are true:

o Assumptions H-1, H-2, H-3 and H-4 are true.
e (A) ay, () is an increasing function of p, a, (p1) — ayn (p2) —— o0 for
n—oo

every p1 > p2 and ) for every p.

n n—o0
Then, p mazimizing the penalized criterion defined by (5) converges in probability,
p % Po-
Proof
The result and its proof are inspired by Gassiat (2002) and Keribin (2000).

First, let us show that p does not overestimate pq.
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P(p>po) < Sppyst P(Tn(p) > Tn(po))
= et P (5wyeg, b (9) = an () > 1 (9°) = an (10))
S B > an (p) — an (p0))

IN

Since A, is tight (Theorem 1) and according to assumption (A),
P (A, > an (p) — an (po)) = 0
Thus, P (p > py) — 0.

Let us now prove that p does not underestimate pq :

P(p<p) < 335 P(Tu(p) > T (po)
= 5P (rsupgeg, (1n(0) = (67)) > )

For all p < pg, we shall prove that ﬁ SUPyeg, (ln (9) =l (go)) converges in prob-
ability to a strictly negative value. Then, according to the hypothesis (A), the
proof will be complete.

Hypothesis (H-1) ensures that E, (Ing) < oo for all g € G,.
Let us define

0 3 0
K(g 7gp)7gl€ngpr(g ag)v

where K (¢°,g) =E,, (ln (%))

Since the set of parameters is compact and K (go, g) is continuous with respect to
the parameters, K (go, gp) attains its infimum for some g € G, and, according to
the hypothesis (H-4), K (go,g) > 0.

By the definition of the maximum likelihood,

sup (1 (9) = 1 (6°)) 2 25 (1 )~ 1 ()

n—1

Since (Y, Yi—1) is strictly stationary and geometrically ergodic,

L @ -0 (o") o B (1 (2)) =K (")

Thus,

limniggo — gbélgpp (ln (9) = 1n (¢°)) > —K (4°,)

It remains to prove that

lim sup sup (ln (9) —ln (go)) <-K (goj)
n—oo 1 — 1 geg,
Since the set of parameters is compact, for all n > 0, it may be covered by a finite
number of balls N, centered in ¢; = (m;, 91-)1)7 i=1,..., N, and with radius Z. Let
us now define

may ((y1,2) ,Gp) = sup lln (9(r1.00) W1,42)) = Lo (9(ma.02) (91,92)) |
d((71,01),,(72,02),)<n
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Now, we can write

77 SUPgeg, In (9) = In (9°) =

=Sup,cg, o (I (9 (Ye, Y1) = In (¢° (Y, Yio1)))

< SuP;=1,...,N,, (ln (9e,) — ln (90)) + ﬁ Z=2 my ((Ye, Yi—1) 7gp)
Lo SUpP;=1,...,N, (_K (goaQCi>) +E, (mn (Ye, Yi1) ,gp))

n
On the one hand,

sup (=K (¢°,90,)) == inf K (¢°9c) <K (9°9)

i=1,...,N, i=1,..,N,

on the other hand, if n — 0, m, ((y1,y2),Gp) = 0 and
By (may (Ye, Yie—1),Gp)) = 0

Thus

lim sup sup (In (9) —1n (9°)) < =K (¢°.9)

n—oo 1 — 9€G,

3. APPLICATION TO LINEAR AUTOREGRESSIVE MODELS WITH (GAUSSIAN NOISE

In this section we are interested in checking whether the assumptions (H1)-(H4) in
subsection 2.4 hold in the case of a very popular autoregressive regime-switching
model. We shall consider that the process (X, Y;) follows the true model

(4) Y, = a%, Y1 + %, + 0% e

where

e X;isanii.d. sequence of random variables valued in a finite space {1, ..., po}
and with probability distribution 7° := (71'(1), e ,71'20)

o foreveryi € {1,...,po}, a?,b?, 0¥ are real numbers with }a?| <lando? >0

® (&¢),en is a sequence of i.i.d. standard Gaussian variables, independent of

(Yifk)kzl'

This model is obviously a special case of the more general model in section 2.2.

The following result which ensures strict stationarity and ergodicity can be stated.
The proof may be found in the Appendix.

Proposition 1:
If }a?| < 1 for every i € {1,....,p0}, (X¢,Y:) is strictly stationary, geometrically
ergodic and, in particular, geometrically f-mixing. Moreover, there exists 6 > 0

such that E, (653/3) < o0.

The set of possible conditional densities is the following :

— 51y (y2—(aiy1+b:))?
g:{gg(y2|y1)22f_17ri126 20? 5p:17"'7Pa

270}

(a;,b;,02) €@ CRxRx RA,m; €[0,1],30 7 =1},

with © a compact set.
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Within this framework, G is Glivenko-Cantelli and the assumption H-1 is true.
Moreover, in a neighborhood of the true parameter 62, the second and third deriva-
tives of

2
2mo; e*ﬁ(yzf(aiy1+bi))2+ o7 (y2—(adyr+87))
2

lo, (y1,12) =
2mo;

exist and are dominated by a square integrable function, hence the assumption H-3
also holds.

Next, we check whether the generalized score functions are well defined (assumption
H-2):

‘ < 00, Vg such that ||g — ¢°|| < n.
L2(p)

Conditions for the existence of the extended score functions

9
gO

-1

Consider the true conditional distribution

Po
9° (y2 [ ) = Zﬁgfag (y2 — Fyo (yl))
=1

and let the possible conditional distributions be

92 [y1) = meoi (y2 — Fo, (y1)) -

=1

One can prove by direct computations that

Proposition 2 (the proof is available in the Appendix)
‘ - < oo if for every i € {1,...,p}, there exists k € {1,...,po}such that
L2 (p

02 <2 (02)2 and |a; — a)| < /0 (2 (02)2 - 01-2) for § > 0 verifying E (ezsyf) < 00.

g9

% -1

This sufficient condition states that the possible models should not be too different
from the real one so that the convergence holds.

The consequences of this condition will be discussed later. For the moment, we will
assume it is fulfilled.

Finally, let us check the assumption H-4:
Lemma 1 (the proof is straightforward and will be omitted)

The functions

. Dggo Oggo 1 Oggo  0%ggo Ogeo
=41 ,D, 17 1a7 . 17 17
g: da; Ob; " 0¥ do; | OB ° Oa?

32995 32993 32902 5299? 1
30'1»2 ’ 6&180’17 8ai3b,-’ 6bi30'i7l = e lo

are linearly independent.

Hence, the assumptions H-1, H-2, H-3 and H-4 are fulfilled if the possible param-
eters of the regression function are not too far from the true ones. Since the true
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regression function is not known, it seems very difficult to assume such hypothesis.
If the parameter set is not restricted, we will see in the next section that the LRTS
will be divergent.

3.1. Simple regression mixture example. Let G be the set of possible condi-
tional densities:

G={grlye-1) =790 (k| yh—1) + (L = 7)g° (g | Yn—1) , 7 € [0;1], 99 € P}

with P = {gg(yk\yk_l) = f e~ 2 (e —0yi—1) 9 €0 C R} the set of conditional

densities and ¢° (yx | yx_1) \/176 2V, This model is clearly a particular case
of the general mixture of expert model and is a simple example of mixture of
regressions with Gaussian noise. Let

ln(9) = > h—on g (yx | yu—1)

be the conditional log-likelihood function of (y1,- -+ ,yn). We want to know whether
the true model is really a mixture regression model (i.e. § # 0 and 7 # 0) or the
observations are independent (§ = 0 or Va, 7 = 0). The LRTS is defined as:

(6)

- _ 1—7)g° -
2N, =2 (sup In(g) — ln(g0)> = QSupZ In 79° (e | 13 + (1= )9 (e [ ye-1)
e 9€6 1= 9° (x| yr—1)

In order to derive the behaviour of the LRTS, two cases have to be analyzed. The
first one is if © can be close to 0. The second one is when 3§ > 0 such that © > §.

Divergence of LRTS. The LRTS can be divergent if 7 is not constraint. Indeed,
for such sequence we can have E, (In(g) —In(¢°)) — 0 with 6 # 0. The score

functions are well defined if the quantity

99(Y2|Y1) _ _ _ﬁ 9 . A .
‘ 9O (V2V1) 1‘ 2 HGXP( 7 Y1 +9Y2Y1) 1HL2(M) is finite. So,

o (53¢ o)

2
o (exp (‘%y% + 91/21/1) - 1) exp (—3yf) exp (—193) dyrdys =
o 1 (050 (-0 +200m0n) —2exp (537 + 00 ) +1)
exp (—3y1) exp (—513) dyidy>

The integral of the dominant term (the first) is

1(6) = g5 [ exp
= & ew

(—¢
(=
= 5 ) e ( (\/ +3 - 92+%y2) - (% - 93%) y%) dy1dys

2
= S o (- (3 55), ) e

<0<

6%y 9y2y1) exp (—3

Finally for —

7 et

exp _&y2 +60YsY;) -1 < +o00
271 (1)
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and the score function is well defined.

Note that the distribution of the LRTS 2\, for a finite number of possible pa-
rameters 61, - - - , 0, will always converge to the square of a m-dimensional normal
distribution with covariance (E (v, (Y1,Y2) ve, (Y1,Y2))), < j<m- Suppose that an
arbitrary number of“almost” uncorrelated random variables can be found, then A,
can take an arbitrarily large value since the maximum of m independent samples
from standard normal distribution is approximately \/2logm. Hence, Fukumizu
(2003) has shown that if a sequence 01, -+ ,6,,, - exists so that

limy, 00 Vg, (Y1,Y2) o
then the likelihood ratio T, diverges to infinite. Here, we get

= 400

‘exp (_7y1 +0Y2Y1) - 1‘

limy , 1 g1
60— \/5,0< 75 L2 ()

So, for each sphere B of R?, centered on the origin, if (Y7, Ys) € B:

exp(7§Y12+0Y2Y1) —1

cxp( Y12+0Y2Y1)71H =0

limg_, 1 g1 ”
L2(u)

exp(f%Yf#»@YQYl —1

. a1 L L
and ||8Xp(*ﬁy2+0Y2Y1)71HL2( ) converges to 0 in probability for 6 — \/5,9 <%
With the choice 6,, = 7 %, we get lim,, 00 vo,, (Y1,Y2) £ 0 and the LRTS is
divergent.

Convergence of LRTS. If 7 is greater or equal than a 6 > 0 then, necessary,
the maximum likelihood estimator 6 converges to 6y = 0, otherwise lim,, o, Ay, =
Supyeg B . (In(g) —In(¢°)) can not be close to 0. Thus, the model is identifiable

in # and unldentlﬁable in 7. Since %gg (y2 | ¥1) = y1 (y2 — Oy1) g, we have the
following Taylor expansion around 6y = 0:

g—g—l
Hj%—l\lbz
(0—00) 5 26 (00)+0(10—00])
1(6—060) 2 7 & (80)+o(16—60)l .2
Y1Y2+0(1)
[Y1Y2+o(1)]l 2

Sg

Hence, the LRTS converges to the square of the maximum of a Gaussian process
which convariance function is identically equal to 1 i.e. the classical x? law.

In conclusion, if the mixture weights can be as small as possible, the likelihood ratio
tends to infinity and in order to avoid this divergence, it is required to constraint
the parameters in a neighborhood of the true walue, which does not make much
sense if the model is unknown. But if the mixture weights are bounded by below,
then all parameters of regression density gg converge to some true one. It is thus
possible, in the analysis of the asymptotics of the criterion, to restrict the set of
scores as in proposition 2 and then apply theorem 2 with restricted set of score
functions as well as corollary 1.
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4. GENERALIZATION TO AUTOREGRESSIVE MARKOV-SWITCHING MODELS?

The aims of the section is to study the generalization of the previous results to
Markov switching models.

Let us consider the more general case where the process (X;,Y;) follows the true
model

(5) Y= Fyp (Yio1) +egq ()
where

e X; is a homogeneous Markov chain, irreducible and aperiodic, with fi-
nite state-space {1,...,po} and stationary probability distribution 70 :=
(79, ..., m0))

o forevery i € {1,....,po}, Fyo (y) € F, where
F = {F@, 6 € ©, © C R?compact set} is the family of possible regres-
sion functions. We suppose throughout the rest of this section that Fpo

are sublinear, that is they are continuous and 3 (a?,b?) € R% such that
[Fo ()] < a@lyl +8, (V) y € R ;

o for every i € {1,...,po}, (€0, (t)), is an iid. noise so that ey, (¢) is in-
dependent of (Y;_j);~,. Moreover, qo (t) has density g) € P, where
P = {g9,0 € ©,0 CR'} is a family of strictly positive densities with re-
spect to the Lebesgue measure.

According to Yao and Attali (2000), a unique strictly-stationary and geometrically-
ergodic solution (X, Y;) exists under the hypothesis

(HS) (3) s > 1 so that Vi € {1,---,po}, E|eqe °
p(Qs) < 1, with

< oo and the spectral radius

(a‘tl))s W?l T (ago)s 7T?;Do
Qs = . .
(a?)s 7T201 e (a’go)s ’/Tgopo

where af are the leading coefficients in the linear functions dominating Fyo and 7y
are the entries of the transition matrix of X, i,7 € {1,...,po}. The hypothesis (HS)
is clearly verified whenever a? < 1, for all i € {1,...,po}.

Considering an observed n-sample of Y;, one would naturally attempt to extend
the methods in the previous sections to the case where the invariant measure of
the hidden Markov chain is lower bounded by a strictly positive constant. Several
problems arise: on the one hand, the non-identifiability issue and on the other hand,
the dependence structure of X;. This dependence will not allow an explicit form
for the conditional density, marginally in X;:

Po
9° Wk | Yr—1, - %0) = ZP(Xk =14 | Ye-1, -, Y0) goo (yk — Fyo (%—1))
=1

since P (X =14 | yg—1,---,y0) has to be computed recursively. However, since X;
is stationary and following the same idea as Gassiat (2002), a cost function which
involves the invariant probability measure of the hidden Markov chain can be de-
fined.
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The class of possible mixture densities is:

P

g = {g | g(ylva) = Zﬂ—igei (y2 - Fei (yl))vgl € 9}
i=1

where © is a compact set.

The cost function is defined as

Zln 9 Uk | Yr—1) 72111 (nge Y2 — Fp, (y1))> :

One may notice that C,, (g) is similar to the conditional likelihood marginal in X,
and may expect it to be maximized by g = ¢°, where “the true conditional density”
is now written as

Po
9° (e | ye—1) =Y mlgg0 (yk — Fyo (yk71)) :
=1

where 7 is the expectation of the hidden state i under the true invariant distribu-
tion.

Let us check if C), (g) is a contrast function with the maximum reached at g°. Let
(X,Y5,Y1) be a generic variable having the stationary measure of the extended
Markov-chain (Xp, Yy, Yir—1) as distribution. Since C), (g) is an additive function
of the Markov chain (X, Yk, Ye—1);<p<, and > 5% 1yx—; (X) = 1, we have

Cn(9) = Zk 2 In (Z] 175965 ( Yx — Fo, (ykfl))) =%
E{In (Z§:1 g0, (Y2 — Fp, (5/1)))) =
E (0 Lix—iy () In (S0 w0, (Y = Fo, (1)) ) =
2T Jpe In ( Y mige; (Y2 — Fo, (y ))) oo (yz — Fyo (yl)) Ai (y1) dyrdys
where A; (y1) is the stationary measure of Y; conditionally to X = i.

Then,
E[In(g) —In(¢°)] = 72 P(X =4) E [In % \X_z}:

S _imige; (v2—Fo, (v1)) (
=P 79 (1 =17 i - F ))\i dy,d
2y n( 0, wtas, (v g () 9o0 (Y2 — Fyo (y1) ) Ai (y1) dyrdyz

and, by Fubini’s theorem,

E[In(g) - In(¢%)] =
S _imifo; (v2—Fo, (y1))
=1 J j
f n 501 Jfg <y2—Fé)j(y1))

) 1 foo <y2 — Fyo (yl)) Ai (1) dyrdy:

The last term can be proven immediately to be negative in either of the following
cases:

e )\ (y1) = X(y1) for all ¢ € {1, ..., po} which leads to autoregressive mixture
models already considered in Section 2.
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o Fy, (y1) and Fyo (y1) are constant functions for j € {1,...,p}, i € {1,...,po},
but this corresponds to hidden Markov chains already studied in Gassiat
(2002). Note that Theorem 2 applies in this case and it gives the probability
distribution of the marginal likelihood ratio which is exactly the same as
for mixture models (see Liu and Shao, 2003).

In the general case, however, there is no reason for the last integral to be negative.
Some simulation results are presented for illustrating this last assertion.

Simulation results

Several two-regime models were considered, with transition matrices:
0.5 0.5 0.9 0.1 0.9 0.5

My = < 05 05 ) M = ( 0.1 0.9 ) and Mj = ( 0.1 05 > The first tran-

sition matrix corresponds to independent regime switches. The regression functions

are either linear, or constant. The latter cases correspond to hidden Markov chains.

The noise was considered normally distributed N (O, (0.5)2) and the likelihood was

penalized according to the BIC criterion. For every model, several sample sizes
were considered (from 200 up to 2000 input values) and for each model and sample
size, twenty different samples were simulated. In each case, Tables 1 and 2 contain
the estimated number of regimes (the maximum was fixed at three).

Simulation results prove that the penalized estimate p diverges when the true model
is, for instance, a two-regime autoregressive Markov-switching model. This means
that the cost function that was considered as a generalization of the “marginal
likelihood” does not have the right properties to be a contrast function and the
problem of estimating py remains open in the general case of autoregressive Markov
switching models.

M, My M3
n |p=1 p=2 p=3|p=1 p=2 p=3|p=1 p=2 p=3

FO(y)=08y—1 200 0 20 0 0 15 5 0 17 3
FY(y)=03y+1 500 0 20 0 ] 17 3 0 8 12
1000 | © 20 0 0 6 14 0 4 16

1500 | 0 20 0 ] 1 19 0 5 15

2000 | 0 20 0 0 1 19 0 5 15

FP (y) = -1 200 0 20 0 0 20 0 0 20 0
F(y)=1 500 0 20 0 0 20 0 0 20 0
1000 | 0 20 0 0 20 0 0 20 0

1500 | 0 20 0 0 20 0 0 20 0

2000 | 0 20 0 0 20 0 0 20 0

TABLE 1. Results for the “marginal-loglikelihood” BIC-penalized
cost-function
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My M3
n |p=1 p=2 p=3|p=1 p=2 p=
F(y)=08y—1 200 0 16 4 0 15 5
F)(y)=03y+1 500 0 16 4 0 19 1
1000 0 17 3 0 19 1
1500 0 18 2 0 19 1
2000 0 19 1 0 20 0

TABLE 2. Results for the exact-loglikelihood BIC-penalized cost-function

1

5
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APPENDIX

4.1. Proof of theorem 1. Denote by g, the functions g maximizing the likelihood.
Since the set G is Glivenko-Cantelli, for all 7 > 0 and for n large enough: g, € G,,
where G, is defined by equation (3). Now, using Theorem 1 of Doukhan (1995),
under (B)

7 sup
@) ses, N —1

(Z s (Yk1,Yk)> =0Op (1)

k=2
with S, defined by equation (4). Moreover, S, C Lz (u), thus Sp C Ly (k)
and using the Lo-entropy condition Si = {(s)2 , g€ gn}, with (s) (yr—1,yx) =

min (0, s (Yr—1,¥x)), is Glivenko-Cantelli. Since (Yi_1,Y}) is ergodic and strictly
stationary, we obtain the following uniform convergence in probability:

1 i ) 2
Z (5)°> (Yie1,Yk) —n—oo inf ||(s) H
k=2 - SES,,] — 112

inf
s€eSp,n—1

The following lemma is a straightforward adaptation of the inequality 1.1 in Gassiat
(2002).

Lemma 2.
Under (B)
0 n
9—49 Et:Q Sg (5/;7151/;5)
(8) sup I=—=—|l2 < 2 sup ==
9€Gy:In(g)—In(g°)>0 go 9€Gy Zt:Q(SQ)Q_ (Y;—la }/t)
One may apply this inequality to obtain
_ 0
(9) swp Iy = 0 (n11?)
9€Gy:In(g)~In(g®)>0 9

Taylor expansion gives that In(1 +u) = u — “72 + u?R(u), with lim,. o R(u) = 0.
Thus, for any g,
_q° n —qg° n 2
In(g) — In(g%) = 195112 357p 5g (Yi1, Y2) — 51155813 005 (59 (Yio1, Y2))
_ 0 n 2 _ 0
IS 1B s (59 (Y1, Vo)) B (158 12 00y 5 (i1, Y2))

q° q°
By (B), w1y Yy (s, (Yoot ¥2))° = Op(1).
Now, we have the following lemma:
Lemma 3

Let (F(X1),---,F(X,)) be stationnary sequence of real random variables in L?
then

eax | (F(Xi)) = op(vin)

Proof of lemma 3
Let us show that

Ve >0, lim P(] max (F(X;))|>evn)=0
n—00 iE{l,---,n}
We have

P(| maxie{l,...’n}(F(Xi))\ > €\/ﬁ) <
P{|F(X1)] > eyn} U U{|F(Xy)] > ey/n}) < nP ([F(X1)] > ev/n)
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Now, since FI(X;) € L?

)

evn

lim h F(m)2dp(x)+/ F(x)%*dP(z) =0
n— o0 ev/n o
Hence
evn
nh_}rr;onxP(|F(X1)\ >eyv/n) < nh_}néog— (/ F(x)?dP(z) + / F(:c)QdP(x)> =0
|

Furthermore, since S, admits a square integrable envelop function F' and using (9)
we have:

n 0 n
g — 9 2 g—49g
sup 19 1B (59 (Ve YO R 15 112D 59 (Vier, V) | = 0v(1).
9€Gn:In(g)—In(g°)>0 g t=2 g t=2
Thus,
sup,eg, (In(g) —1n(g%)) =

_0 n —
subyeq, {1157 12 iy 59 (Veo1, Y0) = §1 954

which implies that

330 (35 (Yier, Vo)) |+ 0p(1),

n 2
0 )
sup (In(g) —In(g")) < sup - + op(1).
gegn( ( ) ( )) 9€Gy:In(g)—In(g°)>0 Zt:z(sg(::tflvyt))Z ( )
Since Sn2 is Glivenko-Cantelli:
n Y. .Y, 2
sup >oiea (8 (i1, Y%)) — 1| = os(1),
9€9y n
and
n 2
Yi_1,Y;
2 sup (In(g) — In(¢")) < sup <max{2t—2 59 Vi1, t);0}> +op(1).
9€Gy, 9€G,:In(g)~1In(g%)>0 Vn

Letgnn:{gegn:|g ¢

2 sup (In(g) — In(¢°)) < sup <max { Dizz S (Vio1, V1), o}>2 + o0s(1).

9gEGy 9€Gn,, \/ﬁ

Now, sup,eg, lsg —D|l2 —— 0, thus for a sequence u,, decreasing to 0, and with
n n— 00

*1/4}. Using (9), we obtain that

Ap={sg—d: gegG,,, deD,|sg—dlz <un},
we obtain that
2supyeg, (In(g) — In(g%)) <
(max {supdep P LG O SUPsen, iy 0io1 Ye) 5\%”’1’1/") ; 0}) ’ + op(1).

Jn

Under (B), thanks to Theorem 3 of Doukhan (1995) the empirical process indexed
by S, has the property of asymptotic stochastic equicontinuity, so:

sup Zt:Q J (Yt*h K)
SeA, Vn

= 0]p>(1),

and

Q;élgpzl (In(g) — In(g")) < sup (max{ = 2d\%t 1’Yt),0})2+0p(1).
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Moreover, using classical normal asymptotic properties along the parametric paths,
one obtains that, for a sequence of finite subsets Dy, increasing to D,

2 sup (In(g) —In(f)) > sup (max{zy_zd(n_l’n)ﬂ})Q + op(1).

b
9€Gy deDy, vn

for any k. Therefore, Theorem 1 is true. B

4.2. Proof of Theorem 2. Let 17 > 0 be a real number. Consider G, # 0 the set
of functions which maximize the log-likelihood. Since, under H-1, G is Glivenko-
Cantelli, for n large enough, |g — gOHLz(H) < nforge G,soG, C Gy. Let us
remark that, under assumption H-2, the score function s, € S,, is well defined in a
compact neighborhood of the true density function g°.

Proving that for an 7 > 0, a parametric family like S,, is Donsker is not so easy. The
problems arise when g — ¢° and the limits of 84 in L? (1) have to be computed.
To achieve our proof, let us split S into two classes of functions.

For a sufficiently small € > 0, we consider Fy C G, a neighborhood of ¢°,

Fo = {g € Gv
and S, \ Sp.
On S, \ So, it can be easily seen that

- IHLZ(M <e g #go}. S is splitted into Sy = {sg, g € Fo}

9 _ g2

‘Z%_l _ .g%_l <9 9" 9" L2 ()

R I T e B T P

g L2(p) g L2(u) |l 12 (p) g L2(p)
for every g1,92 € G, \ Fo and, moreover, by the definition of S,
i i 2|lg1 g2

9—3—1‘ 9%—1‘ “elle? 9l

g L2 () g L2(w) |1 L2 ()

On the other hand, by the assumption H-3, g% has square-integrable partial-
derivatives of order one and, using the result 19.7 on parametric classes of functions
in Van der Vaart (2000), we get:

1\P
N5\ S 1) =0 (5 )
where D is the number of parameters in the model.

It remains to prove that the bracketing number is a polynom of (%) for Sy. The idea
is to reparameterize the model in a convenient manner which will allow a Taylor
expansion around the identifiable part of the true value of the parameters.

Let us recall that it is assumed that pg < p.

When g% — 1 = 0, by the linear independence of the functions gs,, a vector of
positive integers t = (ti)0<z‘<p0 , to = 0 exists so that:

123

0 0
9t171+1 =..= Hti = Oi, Z T =T, 1 & {1, ...,po}
Jj=ti—1+1
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With this remark, one can define in the general case s = (s;);<;<,, and ¢ =
(qj')lgjgp so that, for every i € {1,...,po} , 7 € {tic1 + 1, ..., 4},

t;

-
_ 0 _ j

8; = E T= T 4= S

G=ti_1+1 I=t;_14+1 T

and a new parameterization will be

et = (¢>t,¢t), ¢t = ((ej)lgjgtpo 7(5i)1§z’§p0_1 ) (ﬂ—j);):tpo+1) y
Yy = ((Qj)lgjgp ) (ej)ﬁztm-',-l)

with ¢ containing all the identifiable parameters of the model and 1, the non-
identifiable ones. Then, for g = ¢", we will have:

¢ = (69,...60 .. 6,00, 0,.,0 0,..,0 )"
N—_—— —_—— N—— N~
tl tpo _tpo—l Po — 1 p_tpo

This reparameterization allows to write a second-order Taylor expansion of g-% -1
at ¢f.

With the notations introduced in assumptions H, the density ratio becomes:

Po t; p
g
fO—].:Z(Si'F’]T?) Z qj‘l(9].+ Z leg].—l
9 i=1 Jj=ti—1+1 j:tpo+1
and since s,, = — 3.7 i,
1
; —1= ¥ (st ) ZJ —ti 141 9l0; + ( - SZ) ]potpo 41 ilo;

+ Zj:tp0+l 7let9j

By remarking that when ¢; = ¢?, g% does not vary with v;, we will study the
variation of this ratio in a neighborhood of ¢? and for fixed ;.

We can state the following result:

Proposition 3
Let us denote D (¢4, 1) = Hg("’éigjw” - 1HL2( . With the notations of assumptions
o

H-8 and H-4, for any fized 1y, the second-order Taylor expansion at ¢Y exists such
as

g T 1 T
il G 0) gt T35 (@0 = 00)" Uspp (90 = 87) = 14 0(D (1, 4))
with

T
t;

Po
(¢ — ¢t 0, wt)—zﬂo Z q;0; — 0; lHZSil@?
=1

J=ti—1+1
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p
+ Z legj

J=tpe+1

and

P t r

0 [
(fr — ¢?)T (89.00) (60 — 7)) = Z 2s; Z 405 — 07 | Ui+
=1 j=ti—1+1
t;
#7030 g (0, -09) 1 (0 - 0F)
j=ti—1+1

Moreover,

(60 = 80) Uigg ey + 5 (00— 89) Uy ) (60— 60) =0 6, = of

Proof of Proposition 3

The first term in the development can be computed easily by remarking that the
gradient of g% —1at (¢?, 1) is:

(%1
o forie{1,...,po} and j € {t;—1 +1,...,t;}, (-"#j) (¢?,1/}t) = m0q;l;
o forie{1,...,po— 1},

(% - tpo
(gas )( 1/)t) *Zg =t;_1+1 qjle(’* j= tpo 1+1‘1yl00 7l9071920

i

1
o for j € {t,, +1,...,p}, (’%j) (qﬁ?,wt) =1,

The term of second order can be obtained by direct computations once the Hessian
is computed at (cb,?, z/}t):

#(-1) (o 0g:1! i '
° 89]2 ( tth) = WzQ]lz y U= 17 --+s PO and J= ti-1 + 1’ .“’tl
82(9%71) 0 .
° 00500, ((btth)zovjvl_la ,pandj#l
2( 9 _
d 8(’5529238:) ((bgawt) =0 9 Z>k = 17 = Po — 1
o*(&%-1) , Lo '
b 85269]' ((btawt) = qjlz ,i=1, -y PO — 1 and J=ti-1t Lot
92
® % (6, 9r) = —ajl por i=1L.po—Tland j=tp,_1+1, .. 1p,

e the other crossed derivatives of s; and 0; are zero

It still has to be proven that the rest is o (Hgf)t — Y ||) As it can be easily seen that
the third derivative of % — 1 can be expressed in terms of partial derivatives of
order two and three of l@?, j=1,...,pg, the result follows from the assumption H-3
and the linear independence in H-4. B

Using the Taylor expansion above, we can now show that Sy \ { go} is a Donsker
class, using the next result:
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Proposition 4

Let d be the dimension of the parameter indexing the functions go. The number of
c-brackets A7 (<. So. |- covering S is © (1) V77,

Proof of Proposition 4

The idea of this proof is to bound Nj (e, So, [ |l,) by the number of e-brackets
covering a wider class of functions. For every g € Fy, we will consider the reparam-
eterization ® = (¢4, 1;) which allows to write a second-order development of the
density ratio:

1
%‘ = (0—e)" (@ T3 (00— 6" 10 oy (60— 8) +0(D (1, )

Then, by remarking that the first two terms in the Taylor expansion are linear
combinations of lgO, I, 1f,i=1,...,p0 and lg,,j = tp, + 1,--- , p, the density ratio

17 Y1

can be written also as:

g(aﬁt,wt 1= Zazleo + Z ajle, + ZBTZI + Z’YTZN’YZ +0(D (¢¢,7%1))

J=tpetl
where (av;)1<i<p € R, (Bi)1<i<p, and (vi)1<i<p, € R
Now, using the linear independence, 3m > 0 ,so that, for every
(ajaj =1, ,p. By i=1,-- 7}90)

of norm 1,

Zazleﬂ + Z aylp, + ZﬁTZ/ + Z,YTZ/, > m.

Pteot L2 ()

At the same time, since

I(be,ve) 1
g° =1

9(ot,%
H tO t> N 1’
g

L2 () Il L2 ()

we will obtain thatd)the) Euclidean norm of the coefficients in the second-order de-
to t —1

velopment of H is upper bounded by % This fact implies that Sy

g(¢t ¢’t) 1HLz( )
u
can be included in

H = ﬂ izt (ail(’? + B+ Tl”%) + Z] =ty +1 ajly, +o(1),
‘ (aj7j:tpo+1a"'7paﬂ7,771’71 y 2 _15 apO)HS%}
and then obviously Aj (g, 2, ||-|l,) = O (1) m

Since the set S, was proved to be Donsker, it remains to identify the asymptotic
index set of score functions.
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Asymptotic index set. The set of limit score functions F is defined as the set
of functions d so that one can find a sequence g, satisfying Hg"’?f 2 — 0 and
ld = g, [l2 = 0.

Let us define the two principal behaviors for the sequences g, which influence the
form of functions d :

e If the second order term is negligible with respect to the first one :

gn
7~ 1= @ =@ lgp y +0(D(@n, ).

e If the second order term is not negligible with respect to the first one :

n _ oNT
.?70 —1=(%, 2" lE@?,wn)Jr

0.5(®n — @) {0 4, ) (P — °) + o(D(Pr, Yhn)).

In the first case, a set t = (to,--- ,tp,) exists so that the limit function of s,, will
be in the set:

Di = {Q (S0 CFlog + 300 CFlo + 02, ATE)
A17"' 7Ap0 eRd ;Cla"' an eR
SRR P

In the second case, an index 7 exists so that :

ti

Z qj(ejfe?):()v

j=ti_1+1

Otherwise, the second order term will be negligible compared to the first one, so

Z Vi < /3505 = 07) = 0.

j=ti—1+1

Hence, a set a set t = (to, - - ,tp,) exists so that the set of functions d will be:

{Q (Zfil Gilgo + 327y 1 Gile, + 22021 AL

12
+0 fil Zj:ti,ﬁl %Tl;/%)
AL, Apgs V1,00 Vo c R4 GG EeER
tho""l’.” ’017 € Chs {9(1)’ ’920}}

where § = 1 if there exists a vector q exists so that:

t; t; .
g <0, Ej:ti,le G =1 Zj:ti71+1 \/CIj'Y; =0 fori=1,---,po; and § = 0
otherwise.

So, the limit functions will belong to F. Conversely, let d be an element of F, as

functions d belong to the Hilbert sphere, one of their components is not equal to 0.

Let us assume that this component is (7, but the proof would be similar with any

other ccomponent. The norm of d is 1, so any component of d is determined by the
2

ior &2 ... L
ratio: & s & Vo

Then, by assumption H-1, the set of possible parameters contains a neighborhood
of the parameters realizing the true conditional density function ¢°, we can chose
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the parameters of g, so that:

Zt;f- +1 75— n—oo
Vie {2, - sttt T TN G
(S { bl 7p0} 231=1 71_;1_7_((1) Cl,
. Xt 41 9] (9;—«9?) n— |
V’Lg{l,... 7po} : Z;llﬂ']*ﬂ'? 5 CT)\Z’

n 7

)
j=1T5; —™1

Vie{po+l, e p) 5 s T A

t
ZjL1 L )

Vie{l,--  tp} = Z:HL(GH 07 Oocﬂj,

Proof of Proposition 1

23

Since the noise is Gaussian and |a?| < 1 for every i € {1,...,po}, by Yao and Attali
(2000), there exists a unique strictly stationary and geometrically ergodic solution,

which in particular will be geometrically S-mixing.

On the other hand, the Gaussian noise implies the existence of moments of any
order. Now let us prove the existence of an exponential moment for Y;. By denoting
0 = MaxX;=1,... p, O’ZQ , P = MaX;=1,... po ‘a?’ < 1,b=max;=1,. p, |b?‘ and for s € N*,

one has :

2s
Yi?* = [Ffy, (Vi) + 2oy, (O] < (Va4 b+ 0 f=a])

00 2s
< <b+a|st 30 <b+a|et_k>>

k=1

By taking the expectation,

¥

oo

IN

<Z Pt (b+o 5t_k|)>
k=0

1 %) 2s N
E (|Yt|28) *<E (kzzopk (b+o |5tk|)> < Zpk (b—|— oE (|5t7k‘25) 2s>

k=0

Since p < 1 and E (|e;[**) > E (¢7) = 1, we finally obtain

1
. (|Yt|25)i g b+oFE (\gt|2s) 3 ) b—&-aE(‘g”zs)i

1—p “1-0p

The exponential moment can be computed then by

E(JW)ZE:EM 5k<§:Eh‘

k=0

5<b+0)2
I—p

The last term being the moment generating function of a x? (1)-distribution, it will

2
be finite for any & such that 0 < § < % (g;—g) )
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Proof of Proposition 2

The norm of the generalized score function is

‘ :/g (o b2) g ax () — 1 =
L2(u) q° (ylva)

R

(2P e, (g2 — Fa, (1))’

_/ LT, (yszeoj (%))

dy2d\ (y1) —

and by the inequality (Y7_, i fo, (y2 — Fo, (41)))” < S20_ mifg (y2 — Fo, (11)), the
integral will be finite if

/ 13 (y2 = Fo, (1))
fo 1 jfg (312 - ng (y1)

)dyzd)\ (y1) < o0

for all 4 € {1,..,p}. On the other hand, since Y *°, 7 f, (y2 —Fy (yl)) >

ﬂ,gfgk (yg - F(S)k (yl)) for every k € {1,...,po}, the generalized score function is well
defined if for every i € {1,...,p}, there exists k € {1,...,po} such that

fa (y2 — Fy, (11))
o, (y2 = Fy, (1))

dy2dX (y1) <

Next, replace fp, and fgk by centered Gaussian densities with standard errors oy,
o9, respectively, and consider also Fy, (y) = a;y + b; and F(S)k (y) = aly + bY.

Then, each of the integrals above becomes:

fe (y2 — Fo, (y1)) o
)dde)‘(yl) /( -

fek ( FO (y1) 27r022.
1 2
GXP{ (Ug > (y2 —m (y1)) }dy2>
2
exp{ Fe,;(? w) }dA (1)

2
2(02)° Fo, (u1)—0? FS, (1)

2(02)2—01.2

where m (y;) =

To have a sufficient condition, the integral in yo is finite if 02 < 2 (02)2, and the

(a1 ak)2
CE

integral in y; is finite if
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