Statistiques et Probabilités, L2 MIASHS, Interrogation 2 14/12/2017, Durée : deux heures

Le barème est indicatif. L'utilisation de documents, téléphones portables, calculatrices ou tout autre appareil électronique, est interdite. Les réponses devront être soigneusement argumentées et justifiées.

Écrivez "Sujet AJ/BJ" sur votre copie et la rendez avec LE SUJET s.v.p.!

Exercice 1. Loi exponentielle (8 points)

Soit X une variable aléatoire suivant la loi exponentielle de paramètre 2. On lui associe la variable aléatoire discrète Y = [X], où les crochets désignent la partie entière. On rappelle que la fonction de répartition de X est $F(x) = 1 - \exp(-2x)$.

- 1. Calculer $\mathbb{P}(Y=0)$.
- 2. Quelle est la loi de Y?
- 3. Considérons la variable aléatoire Z:=X-[X]. Montrer que $\mathbb{P}(Z\leq z)=\frac{1-\exp(-2z)}{1-\exp(-2)}$ pour $z \in [0,1).$ (Indication : $\{Z \leq z\} = \bigcup_{y=0}^{\infty} \{y \leq X \leq y+z\})$
 - 4. En déduire la densité de Z.
 - 5. Calculer $\mathbb{E}Z$.

Exercice 2. Loi uniforme (12 points)

On considère un échantillon (X_1, \ldots, X_n) i.i.d. avec X_i , une variable aléatoire de loi uniforme à valeurs dans l'intervalle $[0,\lambda]$, où λ est un paramètre positif inconnu. Rappelons que la densité de la loi uniforme sur [a, b] est $f(t) = \frac{1}{b-a} \mathbb{I}_{[a,b]}(t)$.

- 1. Donner l'estimateur du maximum de vraisemblance de λ .
- 2. On pose $Z_n = \max(X_1, \dots, X_n)$. Calculer la fonction de répartition de X_i et en déduire celle de Z_n . (Indication : $\{\max(X_1,\ldots,X_n) \leq x\} = \{\forall i \in \{1,\ldots,n\}, X_i \leq x\}$) 3. En déduire que la densité de Z_n est $f_{Z_n}(z) = \frac{n}{\lambda^n} z^{n-1} \mathbb{I}_{[0,\lambda]}(z)$.

 - 4. Calculer $\mathbb{E}(Z_n)$, $\mathbb{E}(Z_n^2)$ puis $\mathrm{Var}(Z_n)$.
 - 5. Pour $z \in [0, \lambda]$, calculer $\lim_{n \to \infty} F_{Z_n}(z)$, en déduire la loi de la variable $Z = \lim_{n \to \infty} Z_n$.
 - 6. Pour $0 < \varepsilon < \lambda$, calculer $\mathbb{P}(|Z_n \lambda| > \varepsilon)$, en déduire que $\sum_{n=1}^{\infty} \mathbb{P}(|Z_n \lambda| > \varepsilon) < \infty$.