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Abstract10

This paper is first devoted to the study of an adaptive wavelet-based estimator of the long-memory11

parameter for linear processes in a general semiparametric frame and as such is an extension of the previous12

contribution of Bardet et al. (2008) which only concerned Gaussian processes. Moreover, the definition of13

the long-memory parameter estimator is modified and asymptotic results are improved even in the Gaussian14

case. Finally an adaptive goodness-of-fit test is also built and easy to be employed: it is a chi-square type15

test. Simulations confirm the interesting properties of consistency and robustness of the adaptive estimator16

and test.17
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1 Introduction18

Presently, long memory processes have become a widely-studied subject area and find frequent applications19

(see for instance Dhoukhan et al, 2003)20

The best known long-memory stationary time series are the fractional Gaussian noises (fGn) with Hurst21

parameter H and FARIMA(p, d, q) processes. For both these time series, the spectral density f in 0 follows22

power law: f(λ) ∼ C λ−2d where H = d + 1/2 in the case of the fGn. This behavior of the spectral density23

generally defines a stationary long-memory (or long-range-dependent) process even if it needs the presence of24

a second order moment.25

26

In this paper, we consider the general case of a linear process with a memory parameter d and propose

an adaptive wavelet-based estimator of this parameter, i.e. for d < 1/2 and d′ > 0, we use the the following

semiparametric framework for the present study:

Assumption A(d, d′): X = (Xt)t∈Z is a zero mean stationary linear process, i.e.

Xt =
∑
s∈Z

α(t− s)ξs, t ∈ Z, where

• (ξs)s∈Z is a sequence of independent identically distributed random variables such that the distribution of27

ξ0 is symmetric, i.e. ∀M ∈ R, Pr(ξ0 > M) = Pr(ξ0 < −M), Eξ0 = 0, Var ξ0 = 1 and µ4 := Eξ40 <∞;28

• (α(t))t∈Z is a sequence of real numbers such that there exist cd > 0 and cd′ ∈ R satisfying29

|α̂(λ)|2 =
1

λ2d
(
cd + cd′ |λ|d

′
(1 + ε(λ))

)
for any λ ∈ [−π, π], (1)

where α̂(λ) := 1
2π

∑
k∈Z α(k)e

−ikλ for λ ∈ [−π, π] and with ε(λ) → 0 (λ→ 0).30

31

Thus, if X satisfies Assumption A(d, d′), the spectral density f of X is such that32

f(λ) = 2π |α̂(λ)|2 =
2π

λ2d
(
cd + cd′ |λ|d

′
(1 + ε(λ))

)
for any λ ∈ [−π, π], (2)

with ε(λ) → 0 (λ → 0). Thus, if d ∈ (0, 1/2), the process X is a long-memory process, and if d ≤ 0, it is a33

short-memory process (see Doukhan et al., 2003).34

35

After preliminary studies devoted to self-similar processes Abry et al. (1998), were the first to propose the36

use of a wavelet-based estimator for estimating d by computing the log-log regression slope for different scales37
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of wavelet coefficient sample variances. Bardet et al. (2000) provided proofs of the consistency of such an38

estimator in a Gaussian semiparametric frame. Moulines et al. (2007) not only improved these results, they39

also established a central limit theorem for the estimator of d which they proved rate optimal for the minimax40

criterion. As to Roueff and Taqqu (2009a). They yielded similar results in a semiparametric frame for linear41

processes.42

All of these studies used a wavelet analysis based on a discrete multi-resolution wavelet transform, which in43

particular allows to compute the wavelet coefficients with the fast Mallat’s algorithm. Their results, however,44

are inferred from a semiparametric frame such as to (2) and consider the “optimal” scale used for the wavelet45

analysis which depends on the second order expansion d′ to be known although, in fact it is unknown. Two46

studies present automatic selection method for this “optimal” scale in the Gaussian semiparametric frame.47

The chi-square test according to Veitch et al. (2003) despite convincing numerical results, lacks sufficient48

evidence of consistency . Whereas, Bardet et al. (2008) proved the consistency of a procedure for choosing49

optimal scales based on the detection of the “most linear part” of the log-variogram graph. They consider that50

the “mother” wavelet is not necessarily associated with a multi-resolution analysis: although the computa-51

tion cost is more important, it offers a larger wavelet function choice and scales are not limited to the power of 2.52

53

The present paper is an extension of a previous study of Bardet et al. (2008). Improvements concern three54

following central issues:55

1. The semiparametric Gaussian framework of Bardet et al. (2008) is extended to the semiparametric56

framework Assumption A(d, d′) for linear processes. The same automatic procedure of the optimal scale57

selection allowed us to obtain adaptive estimators.58

2. As in Bardet et al. (2008), the “mother” wavelet is not necessarily associated with a discrete multi-59

resolution transform. We also slightly modified the definition of the wavelet coefficient sample variance60

(“variogram”). The result of both these changes is a multidimensional central limit theorem satisfied by61

the logarithms of variograms with an extremely simple asymptotic covariance matrix (see (10)) depending62

only on d and the Fourier transform of the wavelet function. Hence it is easy to compute an adaptive63

pseudo-generalized least square estimator (PGLSE) of d, satisfying a CLT with an asymptotic variance64

which is smaller than both the the adaptive (Bardet et al. (2008))and the non-adaptive (Roueff and65

Taqqu (2009)) ordinary least square estimator of d . Simulations confirm the good performance of this66

PGLSE.67

3. Finally, we used this PGLSE to perform an adaptive goodness-of-fit test. It represents a normalized sum68
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of the squared PGLS-distance between the PGLS-regression line and the points. We proved that this test69

statistic converges in distribution to a chi-square distribution.the asymptotic covariance matrix being70

easily approximated, the test is very simple test to compute. When d > 0 this test is a long-memory71

test. Moreover, simulations show that this test provides good properties of consistency under H0 and72

reasonable properties of robustness under H1.73

In the light of these results, the present paper represents a conclusion to the study of Bardet et al. (2008).74

and the adaptive PGLS estimator and test an interesting extension of Roueff and Taqqu (2009).75

76

The present paper is organized into 4 sections as follows.77

Assumptions, definitions and a first multidimensional central limit theorem are the subject matter of78

Section 2.79

The construction and consistency of the adaptive PGLS estimator and goodness-of-fit test in dealt with80

section 3.81

In Section 4 features a Monte Carlo simulations-based demonstration of the convergence of the adaptive82

estimator, followed by a comparaison with efficient semiparametric estimators others than oures and investi-83

gations into the consistency and robustness properties of the adaptive goodness-of-fit test. Proofs figure in84

section 5.85

2 Central limit theorem for the sample variance of wavelet coeffi-86

cients87

We let ψ : R → R the wavelet function , k ∈ N∗. We shall consider the following assumption on ψ:88

89

Assumption Ψ(k): ψ : R → R is such that90

1. the support of ψ is included in (0, 1);91

2.

∫ 1

0

ψ(t) dt = 0;92

3. ψ ∈ Ck(R).93

Straightforward implications of these assumptions are ψ(j)(0) = ψ(j)(1) = 0 for any 0 ≤ j ≤ k.94

95
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If we define ψ̂(u) the Fourier transform of ψ when ψ satisfies Assumption Ψ(k), i.e.

ψ̂(u) :=

∫ 1

0

ψ(t) e−iutdt,

Then ψ̂(u) ∼ C uk (u→ 0) with C a real number not independant of u and96

sup
u∈R

∣∣uk ψ̂(u)∣∣ ≤ sup
x∈[0,1]

|ψ(k)(x)|. (3)

If Y = (Yt)t∈R is a continuous-time process, for (a, b) ∈ R∗
+ × R, the ”classical” wavelet coefficient d(a, b) of97

the process Y for the scale a and the shift b is d(a, b) := 1√
a

∫
R ψ(

t−b
a )Yt dt. However, since the process X98

satisfying Assumption A(d, d′) is a discrete-time process, we define the wavelet coefficients of X by99

e(a, b) :=
1√
a

N∑
t=1

Xtψ(
t− b

a
) =

a∑
j=1

( 1√
a
ψ(
j

a
)
)
Xb+j (4)

for (a, b) ∈ N∗ ×Z (this definition of e(a, b) also holds for a ∈ R∗
+ to avoid the use of [a], the integer part of a,100

we restrict it to a ∈ N∗).101

Let (X1, . . . , XN ) be an observed path of X, a ∈ N∗ and b = 1, . . . , N − a. We use the usual convention102

y = o(g(x)) (x→ ∞) when limx→∞ y/g(x) = 0,103

Property 1. Under Assumption A(d, d′) with d < 1/2 and d′ > 0, and if ψ satisfies Assumption Ψ(k) with104

k > d′ − d+ 1/2, for a ∈ N∗, then (e(a, b))b∈Z is a zero mean stationary linear process and105

E(e2(a, 0)) = 2π cd

(
K(ψ,2d) a

2d +
cd′

cd
K(ψ,2d−d′) a

2d−d′
)
+ o

(
a2d−d

′)
when a→ ∞, (5)

with K(ψ,α) :=

∫ ∞

−∞
|ψ̂(u)|2 |u|−αdu > 0 for all α < 1. (6)

Refer to section 5 for the details results of all demonstrations.106

Let (X1, . . . , XN ) be an observed path of X satisfying Assumption A(d, d′). As soon as a consistent estimator107

of E(e2(a, 0)) is provided, property 1 allows to make a log-log regression-based estimation of 2d. Which allows108

us together with a ∈ {1, . . . , N − 1} to consider the sample variance of the wavelet coefficients,109

TN (a) :=
1

N − a

N−a∑
b=1

e2(a, b). (7)

Remark 1. In Bardet et al. (2000), (2008) or in Moulines et al. (2007) or Roueff and Taqqu (2009), this110

sample variance of wavelet coefficients is111

VN (a) :=
1

[N/a]

[N/a]∑
b=1

e2(a, ab) (8)

(with a = 2j in case of multiresolution analysis). Definition (7) has both a drawback and two advantages with

respect to the usual definition (8): not being adapted to the fast Mallat’s algorithm it is more time consuming.
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Its advantage twofold : we have a simpler expression of the asymptotic variance (γij)1≤i,j≤ℓ (see (10) below,

γij = 4π
(rir

′
j)

1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(riλ)∣∣2|ψ̂(rjλ)∣∣2
|λ|4d

dλ), furthermore, as inferred from the numerical approximations,

this asymptotic variance is smaller that the one obtained with (8), i.e.

γ′ij =
2(rirj)

2−2d

K2
(ψ,2d)dij

∞∑
m=−∞

(∫ ∞

−∞

ψ̂(uri)ψ̂(urj)

|u|2d
cos(u dijm) du

)2

with dij = GCD(ri, rj)

(diagonal terms are nearly twice as small as with (r1, . . . , rℓ) = (1, . . . , ℓ)).112

The following proposition specifying a multidimensional central limit theorem for a vector (log T̃N (ai))i,113

which provides the first step towards obtaining by log-log regression-based definition of the asymptotic prop-114

erties of the ordinary least square estimator :115

Proposition 1. Define ℓ ∈ N \ {0, 1} and (r1, · · · , rℓ) ∈ (N∗)ℓ. Under Assumption A(d, d′) with d < 1/2 and116

d′ > 0, if ψ satisfies Assumption Ψ(k) with k ≥ d′ − d + 1/2 and if (an)n∈N is such as N/aN −→
N→∞

∞ and117

aN N
−1/(1+2d′) −→

N→∞
∞, then118

√
N

aN

(
log TN (riaN )− 2d log(riaN )− log

( cd
2π
K(ψ,2d)

))
1≤i≤ℓ

d−→
N→∞

Nℓ

(
0 ; Γ(r1, . . . , rℓ, ψ, d)

)
, (9)

with Γ(r1, . . . , rℓ, ψ, d) = (γij)1≤i,j≤ℓ the asymptotic covariance matrix such as119

γij = 4π
(rir

′
j)

1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(riλ)∣∣2|ψ̂(rjλ)∣∣2
λ4d

dλ. (10)

3 Adaptive estimator of the memory parameter and adaptive goodness-120

of-fit test121

The CLT of Proposition 1 opens a certain number of perspectives. As we shall see, the simple expression of122

the asymptotic covariance matrix reveals to be very advantageous as compared to the complicated expression123

of the asymptotic covariance obtained in the case of a multiresolution analysis (see Roueff and Taqqu, 2009a).124

Proposition 1 confirms the consistency of estimator d̂N of d. Hence, we define125

d̂N (aN ) :=
(
0
1

2

)
(Z ′

aN ZaN )−1Z ′
aN

(
log TN (riaN )

)
1≤i≤ℓ with ZaN =



1 log(aN )

1 log(2aN )

...
...

1 log(ℓaN )


. (11)

Remark 2. To minimize the asymptotic covariance matrix Γ(r1, . . . , rℓ, ψ, d), proposition 1 does not allow to126

choose (r1, . . . , rℓ) unless we know the value of d. We therefore simply consider (r1, r2, · · · , rℓ) = (1, 2, . . . , ℓ).127
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Then, it can be clearly inferred from Proposition 1 that d̂N (aN ) converges to d following a central limit theorem

with convergence rate
√

N
aN

when aN satisfies the condition aN N
−1/(1+2d′) −→

N→∞
∞.

But d′ is actually unknown. Bardet et al. (2008)presented an automatic procedure for choosing an “optimal”

scale aN . We shall presently apply this procedure. Here a brief recall of its principle: for α ∈ (0, 1), define

QN (α, c, d) =
(
YN (α)− ZNα

( c

2d

))′
·
(
YN (α)− ZNα

( c

2d

))
, with YN (α) =

(
log TN (iNα)

)
1≤i≤ℓ.

QN (α, c, d) corresponds to a squared distance between the ℓ points
(
log(iNα) , log TN (iNα)

)
i
and a line. It

can be minimized first by defining for α ∈ (0, 1)

Q̂N (α) = QN
(
α, ĉ(Nα), 2d̂(Nα)

)
with

( ĉ(Nα)

2d̂(Nα)

)
=

(
Z ′
NαZNα

)−1
Z ′
NαYN (α);

and by defining α̂N by:128

Q̂N (α̂N ) = min
α∈AN

Q̂N (α) where AN =
{ 2

logN
,

3

logN
, . . . ,

log[N/ℓ]

logN

}
.

Remark 3. As outlined in Bardet et al’s. (2008) definition of the set AN , logN can be replaced by any129

sequence negligible with respect to any power law of N . Hence, in numerical applications we will use 10 logN130

which significantly increases the precision of α̂N .131

Under the assumptions of Proposition 1, we obtain (see the proof in Bardet et al., 2008),

α̂N =
log âN
logN

P−→
N→∞

α∗ =
1

1 + 2d′
.

We then define:132

̂̂
dN := d̂(N α̂N ) and Γ̂N := Γ(1, . . . , ℓ,

̂̂
dN , ψ). (12)

It is clear that
̂̂
dN

P−→
N→∞

d (for a convergence rate see also Bardet et al., 2008) and therefore, from the

expression of Γ in (10) which is a continuous function of the variable d, we obtain Γ̂N
P−→

N→∞
Γ(1, . . . , ℓ, d, ψ).

We can thus define a (pseudo)-generalized least square estimator (PGLSE) of d. After defining :

α̃N := α̂N +
6α̂N

(ℓ− 2)(1− α̂N )

log logN

logN
.

In the sequel and for a for reason of technical feasibility (i.e. Pr(α̃N ≤ α∗) −→
N→∞

0 which is not satisfied by133

α̂N (see Bardet et al., 2008), we consider α̃N rather than α̂N . Consequently, we use the usual expression of134

PGLSE, the adaptive estimators of c and d can be defined as follows:135

( c̃N

2d̃N

)
:=

(
Z ′
N α̃N

Γ̂−1
N ZN α̃N

)−1
Z ′
N α̃N

Γ̂−1
N YN (α̃N ). (13)

The following theorem provides the asymptotic behavior of the estimator d̃N ,136
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Theorem 1. Under assumptions of Proposition 1,137 √
N

N α̃N

(
d̃N − d

) d−→
N→∞

N
(
0 ; σ2

d(ℓ)
)

with σ2
d(ℓ) :=

(
0
1

2

)(
Z ′
1

(
Γ(1, . . . , ℓ, d, ψ)

)−1
Z1

)−1(
0
1

2

)′
(14)

and for all ρ >
2(1 + 3d′)

(ℓ− 2)d′
,

N
d′

1+2d′

(logN)ρ
×

∣∣d̃N − d
∣∣ P−→
N→∞

0. (15)

Remark 4. 1. From Gauss-Markov Theorem it is clear that the asymptotic variance of d̃N is smaller or138

equal to the one of
̂̂
dN . Moreover d̃N satisfies the CLT (14) which provides confidence intervals which139

can be easily computed.140

2. In the Gaussian case, the adaptive estimator d̃N converge to d, its rate of convergence being equal to141

the minimax rate of convergence N
d′

1+2d′ up to a logarithm factor (see Giraitis et al., 1997). Thus, this142

estimator is comparable to adaptive log-periodogram or local Whittle estimators (see respectively Moulines143

and Soulier, 2003, and Robinson, 1995).144

3. Under additive assumptions on ψ (ψ is supposed to have its first m vanishing moments), the estimator145

d̃N can also be applied to a process X with an additive polynomial trend of degree ≤ m − 1. Then the146

trend is being “vanished” by the wavelet function in the expression of the wavelet coefficient and the value147

of d̃N is the same as the result obtained without this additive trend. No such robustness property can148

be obtained with the cited adaptive log-periodogram or local Whittle estimator (however to an adaptive149

version of the local Whittle estimator which prooved robust for polynomial trends refer to Andrews and150

Sun, 2004).151

Finally it is easy to deduce from the previous pseudo-generalized least square regression an adaptive goodness-152

of-fit test. It consists on a sum of the PGLS squared distances between the PGLS regression line and the153

points. To be precise, consider the statistic:154

T̃N :=
N

N α̃N

(
YN (α̃N )− ZN α̃N

( c̃N

2d̃N

))′
Γ̂−1
N

(
YN (α̃N )− ZN α̃N

( c̃N

2d̃N

))
. (16)

Then, using the previous results, we obtain:155

Theorem 2. Under assumptions of Proposition 1,156

T̃N
d−→

N→∞
χ2(ℓ− 2). (17)

This (adaptive) goodness-of-fit test is therefore very simple to be computed and used. In the case where d > 0,157

which can be tested easily from Theorem 1, this test can also be seen as a test of long memory for linear158

processes.159
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4 Simulations160

We then examined the numerical consistency and robustness of d̃N . We proceeded to Simulations and we161

compared d̃N estimator-computed results with the more accurate semiparametric long-memory estimators. To162

conclude we examined the numerical properties of the test statistic T̃N .163

Remark 5. Note that all softwares (in Matlab language) used in this section are freely available access on164

http://samm.univ-paris1.fr/-Jean-Marc-Bardet.165

First of all we need to specify the the simulation conditions. The results are based on 100 generated independent166

samples of each process belonging to the following ”benchmark”. The concrete generation procedures of these167

processes are based on the circulant matrix method in case of Gaussian processes and the truncation of168

an infinite sum if the process is non-Gaussian (see Doukhan et al., 2003). The simulations carried out for169

d = 0, 0.1, 0.2, 0.3 and 0.4, for N = 103 and 104 as well as the following processes which satisfy Assumption170

A(d, d′):171

1. the fractional Gaussian noise (fGn) of parameter H = d + 1/2 (for d ∈ [0, 0.5)) and σ2 = 1. A fGn is172

such that Assumption A(d, 2) holds even if in general studies of the fGn do not include the Gaussian173

linear process;174

2. a FARIMA[p, d, q] process with parameter d such that d ∈ [0, 0.5), p, q ∈ N. A FARIMA[p, d, q] process175

is such that Assumption A(d, 2) holds if (ξi)i the innovation process is such that Eξi = 0, Eξ4i <∞ and176

ξi symmetric random variables.177

3. The centered Gaussian stationary process X(d,d′), with spectral density is178

f3(λ) =
1

λ2d
(1 + λd

′
) for λ ∈ [−π, 0) ∪ (0, π], (18)

with d ∈ [0, 0.5) and d′ ∈ (0,∞). X(d,d′) being a Gaussian process with spectral density f3, it is considered179

a linear process within the Wold decomposition Theorem as well , thus confirming Assumption A(d, d′)180

holds.181

The ”benchmark” referred to ,below include following particular processes for d = 0, 0.1, 0.2, 0.3, 0.4:182

• X1 : fGn processes with parameters H = d+ 1/2;183

• X2 : FARIMA[0, d, 0] processes with standard Gaussian innovations;184

• X3 : FARIMA[0, d, 0] processes with innovations following a uniform U [−1, 1] distribution;185
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• X4 : FARIMA(0, d, 0) processes with innovations satisfying a symmetric Burr distribution with cumu-186

lative distribution function F (x) = 1 − 1
2

1
1+x2 for x ≥ 0 and F (x) = 1

2
1

1+x2 for x ≤ 0 (and therefore187

E|Xi|2 = ∞ but E|Xi| <∞);188

• X5 : FARIMA(0, d, 0) processes with innovations satisfying a symmetric Burr distribution with cumula-189

tive distribution function F (x) = 1− 1
2

1
1+|x|3/2 for x ≥ 0 and F (x) = 1

2
1

1+|x|3/2 for x ≤ 0 (and therefore190

E|Xi|2 = ∞ but E|Xi| <∞);191

• X6 : FARIMA[1, d, 1] processes with standard Gaussian innovations, MA coefficient ϕ = −0.3 and AR192

coefficient ϕ = 0.7;193

• X7 : FARIMA[1, d, 1] processes with innovations following a uniform U [−1, 1] distribution, MA coefficient194

ϕ = −0.3 and AR coefficient ϕ = 0.7;195

• X8 : X(d,d′) Gaussian processes with d′ = 1.196

Note that the processes X4 and X5 do not satisfy the condition Eξ40 required in Theorems 1 and 2. However,197

considering the logarithm of wavelet coefficient sample variance and not only the wavelet coefficient sample198

variance, we should be able to prove the consistency of d̃N under Eξr0 with r ≥ 2.199

4.1 Comparison of the wavelet-based estimator with other estimators200

the wavelet-based estimator has been selected on the following base:201

202

Choice of the function ψ: A wavelet function ψ associated with a multi-resolution analysis being not203

mandatory, as mentioned above, we use function ψ(x) = x3(1− x)3
(
x3 − 3

2 x
2 + 15

22 x−
1
11

)
Ix∈[0,1] which satis-204

fies Assumption Ψ(2)205

206

Choice of the parameter ℓ: This parameter largely determines the ”beginning” of the linear part of207

the graph drawn by points (log(iaN ), log TN (iaN ))1≤i≤ℓ and hence the data-driven âN .208

We adopted on this point a two step procedure:209

1. According to numerical study (not detailed here), ℓ = [2 ∗ log(N)] (therefore ℓ = 13 for N = 1000 and210

ℓ = 18 for N = 10000) seems an appropriate first step: the computation of α̂n.211

2. Concerning computation of d̃N , Γ̂N seems to be independant of d. Using classical approximations of212

the integrals defined in Γ(1, . . . , ℓ, d, ψ), we compute σ2
d(ℓ) =

(
0 1

2

)(
Z ′
1

(
Γ(1, . . . , ℓ, d, ψ)

)−1
Z1

)−1(
0 1

2

)′
213
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taking into account several values of d and ℓ . For the results of these numerical experiments refer to214

Figure 2. It can be inferred that any d ∈ [0, 0.5), σ2
d(ℓ) is almost independent on d and decreases as ℓ215

increases. Chosing the second step ℓ = N1−α̃N (logN)−1, we notice that the larger considered scale is216

N(logN)−1 (which is negligible with respect to N , confirming CLT 9).

Figure 1: Graph of the approximated values of σ2
d(ℓ) defined in (14) for d ∈ [0, 0.5] and ℓ = 10, 20, 50, 100, 200

and 500.
217

Applying d̃N as well as 2 other semiparametric d-estimators (see Bardet et al, 2003 or 2008) to the above218

mentioned benchmark-processes, we obtain :219

• d̂MS is the adaptive global log-periodogram estimator introduced by Moulines and Soulier (1998, 2003),220

also called FEXP estimator, with bias-variance balance parameter κ = 2;221

• d̂R is the local Whittle estimator introduced by Robinson (1995). The trimming parameter is m = N/30.222

For simulation results see Table 1.223

224

Conclusions from Table 1: Compared to other estimators, d̃N shows numerically convincing convergence rate.225

With both the “spectral” estimator d̂R and d̂MS , the results are quiet stable and hardly sensible to d and to226

the flatness of the spectral density of the process. However the spectral density of the process notably effects227

the convergence rate of d̃N . As compared to other estimators, d̃N is a very accurate and even more efficient228

for “smooth” spectral densities (fGn and FARIMA(0, d, 0)), d̃N .229

Remark 6. A previous comparaison (Bardet et al. (2008)) of two adaptive wavelet-based estimators (respec-230

tively defined in Veitch et al., (2003) and in Bardet et al. (2008)) with d̂MS and d̂R (as well as with two231

further estimators as defined respectively in Giraitis et al., (2000), and Giraitis et al., (2006) neither of which232
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N = 103 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1

√
MSE d̂MS 0.089 0.091 0.096 0.090 0.100√
MSE d̂R 0.102 0.114 0.116 0.106 0.102√
MSE d̃N 0.047 0.046 0.042 0.052 0.047
p̃n 0.85 0.76 0.78 0.76 0.64

X2

√
MSE d̂MS 0.091 0.094 0.086 0.091 0.099√
MSE d̂R 0.107 0.105 0.112 0.110 0.097√
MSE d̃N 0.048 0.050 0.053 0.061 0.074
p̃n 0.82 0.82 0.75 0.73 0.67

X3

√
MSE d̂MS 0.092 0.094 0.080 0.099 0.096√
MSE d̂R 0.113 0.113 0.100 0.112 0.095√
MSE d̃N 0.052 0.071 0.063 0.077 0.092
p̃n 0.84 0.72 0.75 0.67 0.51

X4

√
MSE d̂MS 0.088 0.079 0.079 0.093 0.104√
MSE d̂R 0.096 0.100 0.103 0.097 0.095√
MSE d̃N 0.051 0.066 0.056 0.061 0.064
p̃n 0.84 0.78 0.78 0.75 0.66

X5

√
MSE d̂MS 0.069 0.067 0.077 0.121 0.143√
MSE d̂R 0.072 0.078 0.093 0.087 0.074√
MSE d̃N 0.073 0.069 0.083 0.087 0.120
p̃n 0.73 0.69 0.68 0.74 0.64

X6

√
MSE d̂MS 0.096 0.091 0.090 0.086 0.093√
MSE d̂R 0.111 0.102 0.100 0.101 0.101√
MSE d̃N 0.153 0.146 0.144 0.158 0.147
p̃n 0.52 0.47 0.48 0.39 0.50

X7

√
MSE d̂MS 0.085 0.096 0.086 0.093 0.098√
MSE d̂R 0.106 0.116 0.097 0.099 0.092√
MSE d̃N 0.155 0.150 0.56 0.147 0.157
p̃n 0.60 0.55 0.49 0.52 0.41

X8

√
MSE d̂MS 0.097 0.104 0.097 0.094 0.101√
MSE d̂R 0.120 0.116 0.117 0.113 0.110√
MSE d̃N 0.179 0.189 0.177 0.175 0.176
p̃n 0.75 0.75 0.68 0.66 0.67

N = 104 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

X1

√
MSE d̂MS 0.032 0.029 0.031 0.031 0.036√
MSE d̂R 0.028 0.028 0.029 0.029 0.032√
MSE d̃N 0.016 0.027 0.034 0.025 0.022
p̃n 0.97 0.93 0.97 0.94 0.97

X2

√
MSE d̂MS 0.034 0.030 0.029 0.032 0.028√
MSE d̂R 0.027 0.027 0.029 0.028 0.023√
MSE d̃N 0.026 0.019 0.019 0.019 0.025
p̃n 0.95 0.97 0.98 0.96 0.94

X3

√
MSE d̂MS 0.034 0.034 0.033 0.030 0.031√
MSE d̂R 0.029 0.028 0.028 0.028 0.029√
MSE d̃N 0.027 0.017 0.016 0.022 0.030
p̃n 0.93 0.96 0.97 0.93 0.92

X4

√
MSE d̂MS 0.029 0.060 0.036 0.031 0.031√
MSE d̂R 0.025 0.027 0.029 0.031 0.029√
MSE d̃N 0.016 0.020 0.021 0.015 0.023
p̃n 0.95 0.91 0.97 0.92 0.91

X5

√
MSE d̂MS 0.093 0.046 0.039 0.073 0.047√
MSE d̂R 0.040 0.046 0.035 0.032 0.024√
MSE d̃N 0.056 0.071 0.027 0.025 0.024
p̃n 0.85 0.88 0.93 0.86 0.85

X6

√
MSE d̂MS 0.031 0.032 0.033 0.032 0.029√
MSE d̂R 0.029 0.028 0.028 0.028 0.028√
MSE d̃N 0.045 0.044 0.046 0.044 0.041
p̃n 0.96 0.93 0.89 0.93 0.90

X7

√
MSE d̂MS 0.030 0.031 0.037 0.030 0.029√
MSE d̂R 0.027 0.027 0.032 0.028 0.027√
MSE d̃N 0.049 0.044 0.050 0.048 0.046
p̃n 0.94 0.91 0.88 0.87 0.86

X8

√
MSE d̂MS 0.038 0.040 0.040 0.035 0.037√
MSE d̂R 0.039 0.038 0.040 0.036 0.035√
MSE d̃N 0.085 0.083 0.086 0.087 0.085
p̃n 0.92 0.94 0.94 0.95 0.93

Table 1: Comparison of the different long-memory parameter estimators for benchmark processes. For each
process and value of d and N ,

√
MSE takes into account 100 independently generated samples. The frequency

of acceptation of the adaptive goodness-of-fit test is p̃n = 1
n #

(
T̃N < qχ2(ℓ−2)(0.95)

)
.
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N = 103 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

GARMA(0, d, 0)
√
MSE d̂MS 0.089 0.091 0.123 0.132 0.166√
MSE d̂R 0.112 0.111 0.119 0.106 0.106√
MSE d̃N 0.041 0.076 0.114 0.142 0.180
p̃n 0.82 0.78 0.63 0.59 0.46

Trend
√
MSE d̂MS 0.548 0.411 0.292 0.190 0.142√
MSE d̂R 0.499 0.394 0.279 0.167 0.091√
MSE d̃N 0.044 0.052 0.056 0.060 0.065
p̃n 0.83 0.81 0.80 0.73 0.64

Trend + Seasonality
√
MSE d̂MS 0.479 0.347 0.233 0.142 0.112√
MSE d̂R 0.499 0.393 0.279 0.167 0.091√
MSE d̃N 0.216 0.215 0.215 0.217 0.185
p̃n 0.35 0.26 0.18 0.21 0.18

N = 104 −→

Model
√
MSE d = 0 d = 0.1 d = 0.2 d = 0.3 d = 0.4

GARMA(0, d, 0)
√
MSE d̂MS 0.031 0.035 0.039 0.049 0.062√
MSE d̂R 0.028 0.031 0.030 0.030 0.034√
MSE d̃N 0.023 0.053 0.052 0.058 0.060
p̃n 0.96 0.94 0.93 0.91 0.88

Trend
√
MSE d̂MS 0.452 0.286 0.167 0.096 0.056√
MSE d̂R 0.433 0.308 0.191 0.100 0.051√
MSE d̃N 0.014 0.016 0.016 0.021 0.028
p̃n 0.99 0.97 0.97 0.95 0.93

Trend + Seasonality
√
MSE d̂MS 0.471 0.307 0.196 0.123 0.076√
MSE d̂R 0.432 0.305 0.191 0.100 0.052√
MSE d̃N 0.044 0.069 0.047 0.042 0.045
p̃n 0.83 0.81 0.76 0.78 0.82

Table 2: Robustness of the different long-memory parameter estimators. For each process and value of d and
N ,

√
MSE takes into account 100 independent generated samples. The frequency of acceptation of the adaptive

goodness-of-fit test is p̃n = 1
n #

(
T̃N < qχ2(ℓ−2)(0.95)

)
.

display good numerical properties of consistenciy.) shows that
√
MSE of d̃N obtained in Table 1 is generally233

smaller to
√
MSE of Bardet et al.’s (2008)-based estimator. Because we opted for definition (7) instead of234

(8) and PGLS regression instead of LS regression.235

Comparison of the robustness of the different semiparametric estimators:236

To conclude, take three different processes not satisfying Assumption A(d, d′) as follows:237

• A Gaussian stationary process with a spectral density f(λ) =
∣∣|λ| − π/2

∣∣−2d
for all λ ∈ [−π, π] \238

{−π/2, π/2}. The local behavior of f in 0 is f(|λ|) ∼ (π/2)−2d |λ|−2d with d = 0. It does not satisfy239

Assumption A(0, 2).240

• A Gaussian FARIMA(0, d, 0) with an additive linear trend (Xt = FARIMAt+(1−2t/n) for t = 1, · · · , n241

and therefore mean value(X1, · · · , Xn) ≃ 0);242

• A Gaussian FARIMA(0, d, 0) with an additive linear trend and an additive sinusoidal seasonal com-243

ponent of period T = 12 (Xt = FARIMAt + (1 − 2t/n) + sin(π t/6) for t = 1, · · · , n hence mean244

value(X1, · · · , Xn) ≃ 0).245

For results of these simulations see Table 2.246

247
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248

Conclusions from Table 2: The main advantage of d̃N with respect to d̂MS and d̂R as listed in this table:249

is the robust with respectness to smooth trends (or seasonality). Note that the sample mean value of d̂MS and250

d̂R for processes with trend or with trend and seasonality is almost 0.5 for any choice of d.251

4.2 Consistency and robustness of the adaptive goodness-of-fit test:252

Tables 1 and 2 provide informations concerning the adaptive goodness-of-fit test. The consistency properties253

of this test are clearly satisfactory when N is large enough (N = 1000 seems to be too small to correctly using254

this goodness-of-fit test).255

256

In order to appreciate the tendancy of the test statistic under H1. We take a process which satisfying neither257

the stationarity condition nor relation (1) (verified by the spectral density). We have 3 particular cases :258

1. a process X denoted MFARIMA and defined as a succession of two independent Gaussian FARIMA pro-259

cesses. More precisely, we considerXt = FARIMA(0, 0.1, 0) for t = 1, · · · , n/2 andXt = FARIMA(0, 0.4, 0)260

for t = n/2 + 1, · · · , n.261

2. a process X denoted MGN and defined by the increments of a multifractional Brownian motion (in-

troduced in Peltier and Lévy-Vehel, 1995). Using the harmonizable representation, define Y = (Yt)t

by

Yt := C(t)

∫
R

eitx − 1

|x|H(t)+1/2
W (dx)

where W (dx) is a complex-valued Gaussian noise with variance dx and H(·) as well as C(·) are functions262

(the case H(·) = H with H ∈ (0, 1) is the case of fBm). Consider H(t) = 0.5+0.4 sin(t/10) and C(t) = 1.263

Then Xt = Yt+1 −Yt for t ∈ Z. The process X is not a stationary process, it rather behaves “locally” as264

a fGn with a parameter H(t) (therefore depending on t).265

3. a process X denoted MFGN and defined by the increments of a multiscale fractional Brownian motion

(introduced in Bardet and Bertrand, 2007). Let Z = (Zt)t be such that

Zt :=

∫
R
σ(x)

eitx − 1

|x|H(x)+1/2
W (dx)

where W (dx) is a complex-valued Gaussian noise with variance dx, H(·) and σ(·) are piecewise constant266

functions. Consider function H(x) = 0.9 for 0.001 ≤ x ≤ 0.04 and H(x) = 0.1 for 0.04 ≤ x ≤ 3. Define267

Xt := Zt+1 − Zt for t ∈ Z then X = (Xt)t∈Z is a Gaussian stationary process which can be written as268
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Model N = 103 N = 104

MFARIMA p̃n = 0.58 p̃n = 0.87
MGN p̃n = 0.18 p̃n = 0.08
MFGN p̃n = 0.02 p̃n = 0.04

Table 3: Robustness of the adaptive goodness-of-fit test. The frequency of acceptation of the adaptive goodness-
of-fit test is p̃n = 1

n #
(
T̃N < qχ2(ℓ−2)(0.95)

)
.

a Gaussian linear process (Wold decomposition Theorem) behaving as a fGn of parameter 0.9 for low269

frequencies (large time) and a fGn of parameter 0.1 for high frequencies (small time).270

We used the test statistic to 100 independent replications of these processes. The results figure in Table 3.271

The goodness-of-fit test is rejected for processes MGN and MFGN. Whereas for the process MFARIMA which272

actually does not satisfy the Assumption of the Theorem 2 it is not rejected. It is due to the fact the test273

calculates the average behavior of the sample whereas in case of change (for example MFARIMA) it calculates274

the average of LRD parameter275

(an average of 0.30 for d̃N and a standard deviation 0.03 are obtained).276

277

5 Proofs278

We shall proceed to applications of lemma.279

Lemma 1. If g is a function satisfying Assumption Ψ(k) with k ≥ 1, then for all λ ∈ R,280 ∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ ≤ Cg(k) min

(1 + |λ|k

ak
, 1

)
with Cg(k) = 2

k∑
p=0

(
k
p

)
sup
x∈[0,1]

|g(p)(x)|. (19)

Proof of Lemma 1. 1/ If h is a Ck(R) function such as h(x) = 0 for x /∈ [0, 1] with k ≥ 1, then for all a > 0:281 ∣∣∣1
a

a∑
j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤ sup

x∈[0,1]

|h(k)(x)| 1

ak
. (20)

This proof is established by induction on k. If k = 1, the classical approximation of an integral by a Riemann

sum implies ∣∣∣1
a

a∑
j=1

h
( j
a

)
−
∫ 1

0

h(t)dt
∣∣∣ ≤ (1

2
sup
x∈[0,1]

|h′(x)|
) 1

a
≤ sup
x∈[0,1]

|h′(x)| 1
a
.

Assuming that property (20) is true for any k ≤ n with n ∈ N∗. We can to prove that (20) is also true for282

k = n+ 1. Supposing that h satisfies Assumption Ψ(n+ 1). We then obtain, with the usual Taylor expansion283 ∣∣h(t)− h(u)−
∑n
k=1

(t−u)k
k! h(k)(u)

∣∣ ≤ |t−u|n+1

(n+1)! supx∈[0,1] |h(n+1)(x)| for (t, u) ∈ [0, 1]2,284 ∣∣∣1
a

a∑
j=1

h
( j
a

)
−

∫ 1

0

h(t)dt
∣∣∣ ≤

∣∣∣ a∑
j=1

∫ j/a

(j−1)/a

n∑
k=1

(j/a− t)k

k!
h(k)(j/a)dt

∣∣∣+ ( 1

(n+ 2)!
sup
x∈[0,1]

|h(n+1)(x)|
) 1

an+1

≤
n∑
k=1

1

ak(k + 1)!

∣∣∣1
a

a∑
j=1

h(k)(j/a)dt
∣∣∣+ ( 1

(n+ 2)!
sup
x∈[0,1]

|h(n+1)(x)|
) 1

an+1
.
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If we use (20) for h(k) and k = 1, . . . , n, we have

∣∣∣1
a

a∑
j=1

h(k)(j/a)dt−
∫ 1

0

h(k)(t)dt
∣∣∣ ≤ 1

(n− k + 1)!
sup
x∈[0,1]

|h(n+1)(x)| 1

an+1−k

since h(k) satisfies Assumption Ψ(n+ 1− k). Given
∫ 1

0
h(k)(t)dt =

[
1

(k+1)!h
(k+1)(t)

]1
0
= 0. We have,285

∣∣∣1
a

a∑
j=1

h
( j
a

)
−

∫ 1

0

h(t)dt
∣∣∣ ≤

( n∑
k=1

1

(k + 1)!

1

(n− k + 1)!
+

1

(n+ 2)!

)
sup
x∈[0,1]

|h(n+1)(x)| 1

an+1

≤ (e− 2) sup
x∈[0,1]

|h(n+1)(x)| 1

an+1
,

and thus (20) is verified for k = n+ 1 and therefore for any k ∈ N∗.

2/ Now, we apply (20) for h(t) = g(t)e−itλ when λ ∈ [a, a]. Since |h(k)(t)| ≤
∑k
p=0

(
k
p

)
|λ|p|g(k−p)(t)|, and

for all λ ∈ [a, a], supx∈[0,1] |h(k)(x)| ≤ max(1, |λ|k)
∑k
p=0

(
k
p

)
sup
x∈[0,1]

|g(p)(x)| and (19) holds.

If |λ| > a, it is obvious that

∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ ≤ 2 sup

x∈[0,1]

|g(x)|

Conscequently (19) holds. Moreover, if g is not the null function, we can not expect a really smaller bound.

Indeed, if we denote λ′ such as
∫ 1

0
g(t)e−iλ

′tdt ̸= 0 (if λ′ does not exist, g(x) = 0 for all x ∈ R). Then, for a > λ′

and for λ = λ′ + 2nπa with n ∈ Z∗, then 1
a

∑a
j=1 g(j/a)e

−iλj/a = 1
a

∑a
j=1 g(j/a)e

−iλ′j/a =
∫ 1

0
g(t)e−iλ

′t +

O(a−k) when a → ∞ from the above case |λ′| ≤ a. But we also have
∫ 1

0
g(t)e−iλt = O(|λ|−k) = O(a−k) from

k integrations by parts since g satisfies Assumption Ψ(k). Therefore, for any λ = λ′ + 2nπa with n ∈ Z∗, we

have: ∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a −

∫ 1

0

g(t)e−iλ tdt
∣∣∣ = ∣∣∣ ∫ 1

0

g(t)e−iλ
′t
∣∣∣+O

(
a−k

)
Which means that no better bound than O(1) when λ ∈ R can be obtained.286

Lemma 2. If g is a function satisfying Assumption Ψ(k) with k ≥ 0, then for all a ≥ 1 and λ ∈ [−aπ, 0) ∪287

(0, aπ],288

∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ ≤ Dg(k)
1

|λ|k
with Dg(k) = 10k sup

x∈[0,1]

|g(k)(x)|. (21)

Proof of Lemma 2. This proof is also established by induction on k. If k = 0, it is obvious that:

∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ ≤ sup
x∈[0,1]

|g(x)|
)
,

thus satisfying (21). Assume (21) is true for any k ≤ n with n ∈ N∗. We can prove that (21) is also true for289

k = n + 1. Assume g satisfies Assumption Ψ(n + 1). With Sj(a, λ) :=

j∑
ℓ=0

e−iλℓ/a =
1

2i sin(λ/2a)

(
eiλ/2a −290
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e−iλ/2ae−ijλ/a
)
for j ∈ {0, 1, . . . , a}, we obtain:291

∣∣∣1
a

a∑
j=1

g
( j
a

)
e−iλ

j
a

∣∣∣ =
∣∣∣1
a

a∑
j=1

g
( j
a

)(
Sj(a, λ)− Sj−1(a, λ)

)∣∣∣
≤ Ia(λ) +

1

a

∣∣g(1
a

)∣∣ with Ia(λ) :=
∣∣∣1
a

a−1∑
j=1

(
g
( j
a

)
− g

(j + 1

a

))
Sj(a, λ)

∣∣∣. (22)

But since g satisfies Assumption Ψ(n+ 1) and a ≥ 1, we have :292

1

a

∣∣g(1
a

)∣∣ ≤ sup
x∈[0,1]

|g(n+1)(x)| 1

an+1(n+ 1)!
. (23)

With the usual Taylor expansion
∣∣g( j+1

a

)
− g

(
j
a

)
−

∑n
k=1

1
akk!

g(k)
(
j
a

)∣∣ ≤ 1
an+1(n+1)! supx∈[0,1] |g(n+1)(x)| for293

j ∈ {0, 1, . . . , a− 1}, we obtain:294

Ia(λ) ≤
n∑
k=1

1

akk!

∣∣∣1
a

a−1∑
j=1

g(k)
( j
a

)
Sj(a, λ)

∣∣∣+ 1

an+1(n+ 1)!
sup
x∈[0,1]

|g(n+1)(x)|.

From the definition of Sj(a, λ) and with the inequality 2
π u ≤ sin(u) ≤ u for u ∈ [0, π/2], we have for295

λ ∈ [−aπ, 0) ∪ (0, aπ] and k ∈ {1, . . . , n}:296

∣∣∣1
a

a−1∑
j=1

g(k)
( j
a

)
Sj(a, λ)

∣∣∣ ≤ 1

2| sin(λ/2a)|

(∣∣∣1
a

a−1∑
j=1

g(k)
( j
a

)∣∣∣+ ∣∣∣1
a

a−1∑
j=1

g(k)
( j
a

)
e−iλ

j
a

∣∣∣)
≤ πa

2|λ|

( 1

an+1−k(n+ 1− k)!
sup
x∈[0,1]

|g(n+1)(x)|+Dg(k)(n+ 1− k)
1

|λ|n+1−k

)
,

using (20) for bounding 1
a

∑a−1
j=1 g

(k)
(
j
a

)
and the induction hypothesis for bounding 1

a

∑a−1
j=1 g

(k)
(
j
a

)
e−iλ

j
a .297

Hence, with (23),298

Ia(λ) +
1

a

∣∣g(1
a

)∣∣ ≤ 1

an+1
sup
x∈[0,1]

|g(n+1)(x)|
n+1∑
k=0

1

(n+ 1− k)! k!
+

πa

2|λ|
sup
x∈[0,1]

|g(n+1)(x)|
n∑
k=1

10n+1−k

akk!

1

|λ|n+1−k

≤ (2π)n+1

(n+ 1)! |λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|+ 10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
n∑
k=1

1

k!

( π
10

)k
(24)

≤ 10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
n+1∑
k=1

1

k!

(π
5

)k
≤ 10n+1

|λ|n+1
sup
x∈[0,1]

|g(n+1)(x)|
(
eπ/5 − 1

)
, (25)

since a−k ≤ πk |λ|−k for all λ ∈ [−aπ, 0) ∪ (0, aπ] and k ∈ {0, 1, . . . , n+ 1}. Thus since eπ/5 − 1 < 1 and from299

(22) and (25), we deduce that (21) is true for k = n+ 1 and therefore for any k ∈ N.300

Proof of Property 1. Since (Xt)t∈Z being a stationary centered linear process, e(a, b) =
∑a
j=1

(
1√
a
ψ( ja )

)
Xb+j301

for any (a, b) ∈ N∗ × Z from (4) and
∑a
j=1

1√
a

∣∣ψ( ja)∣∣ < ∞, it is obvious that for a ∈ N∗, (e(a, b))b∈Z is a302

stationary centered linear process.303

With computations similar to those performed in Bardet et al. (2008) [Proof of Property 1], we obtain with304
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f the spectral density of X and for a ∈ N∗,305

E(e2(a, 0)) =

∫ aπ

−aπ
f
(u
a

)
×
∣∣∣1
a

a∑
j=1

ψ
( j
a

)
e−i

j
au

∣∣∣2 du.
Now, since ψ satisfies Assumption Ψ(k), from Lemma 1, for a large enough and u ∈ [−

√
a,
√
a], we obtain306

from (3):307

∣∣∣∣∣1
a

a∑
j=1

ψ
( j
a

)
e−i

j
au

∣∣2 − |ψ̂(u)|2
∣∣∣ ≤ 2Cψ(k)

|u|k

ak
|ψ̂(u)|+ C2

ψ(k)
|u|2k

a2k

≤
(
2Cψ(k) sup

x∈[0,1]

|ψ(k)(x)|+ C2
ψ(k)

) 1

ak
, (26)

Moreover, for |u| ∈ [
√
a , aπ], from Lemma 2 and a ∈ N∗, we have:308

∣∣∣∣∣1
a

a∑
j=1

ψ
( j
a

)
e−i

j
au

∣∣∣2 ≤ D2
ψ(k)

1

|u|2k
, (27)

Given the existence of309

cf > 0 satisfying f(λ) ≤ cf |λ|−2d for all λ ∈ [−π, π], together with (26) and (27) we obtain with Fψ(k) =310

2Cψ(k) supx∈[0,1] |ψ(k)(x)|+ C2
ψ(k) and for all d < 1/2,311

∣∣∣E(e2(a, 0))− ∫ √
a

−
√
a

f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ Fψ(k)

ak

∫ √
a

−
√
a

f
(u
a

)
du+ 2D2

ψ(k)

∫ aπ

√
a

1

|u|2k
f
(u
a

)
du

≤ a2d
(2cf Fψ(k)

1− 2d
+

2D2
ψ(k)

2k + 2d− 1

) 1

ak+d−1/2
. (28)

Using again (3), for a large enough, we have :312

∣∣∣ ∫ √
a

−
√
a

f
(u
a

)
|ψ̂(u)|2 du−

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du

∣∣∣ ≤
(
2cf sup

x∈[0,1]

|ψ(k)(x)|
)
a2d

∫ ∞

√
a

1

u2d+2k
du

≤ a2d
(2cf supx∈[0,1] |ψ(k)(x)|

2k + 2d− 1

) 1

ak+d−1/2
. (29)

So, from Assumption A(d, d′), we obtain the following expansion:313

∫ ∞

−∞
f
(u
a

)
|ψ̂(u)|2 du = 2π

∫ ∞

−∞

(
cd
∣∣u
a

∣∣−2d
+ cd′

∣∣u
a

∣∣d′−2d
+
∣∣u
a

∣∣d′−2d
ε(
u

a
)
)
|ψ̂(u)|2 du

= 2π cdK(ψ,2d) a
2d + 2π cd′ K(ψ,2d−d′) a

2d−d′ + o(a2d−d
′
) (30)

Definition (6) of K(ψ,α) (limλ→0 ε(λ) = 0) as well as Lebesgue Theorem and (28), (29) and (30), we find that314

C exists only depending on ψ and k such as for a large enough, we have:315

∣∣∣E(e2(a, 0))− 2π cdK(ψ,2d) a
2d − 2π cd′ K(ψ,2d−d′) a

2d−d′
∣∣∣ ≤ a2d

(
C a−k−d+1/2 + o(a2d−d

′
)
)
. (31)

When k ≥ d′ − d+ 1/2 implying k + d− 1/2 > d′, then (5) holds.316
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Proof of Theorem 1. We decompose this proof into 4 steps. First define the normalized wavelet coefficients of317

X by:318

ẽN (a, b) :=
e(a, b)√
E(e2(a, 0))

for a ∈ N∗ and b ∈ Z, (32)

and the normalized sample variance of wavelet coefficients by:319

T̃N (a) :=
1

N − a

N−a∑
k=1

ẽ2(a, k). (33)

Step 1We prove thatNCov (T̃N (r aN ), T̃N (r′ aN )) converges to the asymptotic covariance matrix Γ(r1, . . . , rℓ, ψ, d)

defined in (10). First for λ ∈ R, denote

Sa(λ) :=
1

a

a∑
t=1

ψ(
t

a
)eiλt/a.

Then for a ∈ N∗ and b = 1, · · · , N − a, since ψ is a [0, 1]-supported function and α̂ ∈ L2([−π, π]) inducing320

α(k) =
∫ π
−π α̂(λ)e

ikλdλ, we have:321

N∑
t=1

α(t− s)ψ(
t− b

a
) =

a∑
t=0

ψ
( t
a

) ∫ π

−π
α̂(λ)eiλ(t−s+b)dλ

=

∫ π

−π
aSa(aλ)α̂(λ)e

i(b−s)λdλ

=

∫ aπ

−aπ
Sa(λ)α̂(

λ

a
)ei(b−s)

λ
a dλ. (34)

But,322

Cov (T̃N (a), T̃N (a′)) =
1

N − a

1

N − a′

N−a∑
b=1

N−a′∑
b′=1

Cov (ẽ2(a, b), ẽ2(a′, b′))

=
(E(e2(a, 0))E(e2(a′, 0)))−1

4π2(N − a)(N − a′)

N−a∑
b=1

N−a′∑
b′=1

Cov (e2(a, b), e2(a′, b′)). (35)

and,323

Cov (e2(a,b), e
2
(a′,b′))=

1

a a′

N∑
t1,t2,t3,t4=1

∑
s1,s2,s3,s4∈Z

( 2∏
i=1

α(ti − si)ψ(
ti − b

a
)
)( 2∏

i=1

α(ti − si)ψ(
ti − b′

a′
)
)
Cov

(
ξs1ξs2 , ξs3ξs4

)
= C1 + C2, (36)

since there are only two nonvanishing cases , i.e. s1 = s2 = s3 = s4 (Case 1 => C1), s1 = s3 ̸= s2 = s4 and324

s1 = s4 ̸= s2 = s3 (Case 2 => C2).325

Case 1: in such a case, Cov
(
ξs1ξs2 , ξs3ξs4

)
= µ4 − 1 and326

C1=
µ4 − 1

a a′

∑
s∈Z

∣∣∣ N∑
t=1

α(t− s)ψ(
t− b

a
)
∣∣∣2∣∣∣ N∑

t=1

α(t− s)ψ(
t− b′

a′
)
∣∣∣2

C1=(µ4 − 1) a a′ lim
M→∞

∫
[−π,π]4
dλdλ′dµdµ′ei[b(λ−λ

′)+b′(µ−µ′)]

×
M∑

s=−M

eis[(λ−λ
′)+(µ−µ′)]Sa(aλ)α̂(λ)Sa(aλ′)α̂(λ′)Sa′(a

′µ)α̂(µ)Sa′(a′µ′)α̂(µ′)
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using (34)( z denoting the conjugate of z ∈ C). From the usual asymptotic behavior of Dirichlet kernel, for327

g a 2π-periodic function such as g ∈ C1((−π, π)), we have lim
M→∞

∫ π

−π
DM (z)g(x+ z)dz = g(x) uniformly in x328

with329

DM (z) :=
1

2π

M∑
k=−M

eikz =
1

2π

sin
(
(2M + 1)z/2

)
sin

(
z/2

) . (37)

Thus with h : R4 7→ R a continuously differentiable function 2π-periodic for each component,

lim
M→∞

∫
[−π,π]4
2πDM ((λ− λ′) + (µ− µ′))h(λ, λ′, µ, µ′)dλdλ′dµdµ′ = 2π

∫
[−π,π]3
h(λ′ − µ+ µ′, λ′, µ, µ′)dλ′dµdµ′;

Therefore, we have:

C1 = 2π (µ4 − 1) a a′
∫
[−π,π]3
dλ′dµdµ′ei(µ−µ

′)(b′−b)

× Sa(a(λ
′ − µ+ µ′))α̂(λ′ − µ+ µ′)Sa(aλ′)α̂(λ′)Sa′(a

′µ)α̂(µ)Sa′(a′µ′)α̂(µ′). (38)

* Case 2: in such a case, with s1 ̸= s2, Cov
(
ξs1ξs2 , ξs1ξs2

)
= 1 using the asymptotic behaviors of two Dirichlet330

kernels, we have:331

C2=
2

a a′

∑
(s,s′)∈Z2,s ̸=s′

N∑
t1=1

α(t1 − s)ψ(
t1 − b

a
)
N∑
t2=1

α(t2 − s)ψ(
t2 − b′

a′
)
N∑
t3=1

α(t3 − s′)ψ(
t3 − b

a
)
N∑
t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)

=− 2C1

µ4 − 1
+

1

a a′

∑
(s,s′)∈Z2

N∑
t1=1

α(t1 − s)ψ(
t1 − b

a
)
N∑
t2=1

α(t2 − s)ψ(
t2 − b′

a′
)
N∑
t3=1

α(t3 − s′)ψ(
t3 − b

a
)
N∑
t4=1

α(t4 − s′)ψ(
t4 − b′

a′
)

C2=− 2C1

µ4 − 1
+ 2 a a′ lim

M→∞
lim

M ′→∞

∫
[−π,π]4
dλdλ′dµdµ′ei[b(λ−µ)−b

′(λ′−µ′)]

×
M∑

s=−M

M ′∑
s=−M ′

eis(λ
′−λ)+is′(µ′−µ)Sa(aλ)α̂(λ)Sa′(a′λ′)α̂(λ′)Sa(aµ)α̂(µ)Sa′(a′µ′)α̂(µ′)

=− 2C1

µ4 − 1
+ 8π2 a a′

∫
[−π,π]2
ei(λ−µ)(b−b

′)Sa(aλ)Sa′(a′λ)Sa(aµ)Sa′(a′µ) ×
∣∣α̂(λ)∣∣2 ∣∣α̂(µ)∣∣2dλdµ,

Compute

N−a∑
b=1

N−a′∑
b′=1

(C1 + C2). For both (C1 and C2), a Dirichlet kernel function is confirmed as follows:332

FN (a, a′, v) :=

N−a∑
b=1

N−a′∑
b′=1

ei v (b−b
′) = eiv(a−a

′)/2 sin((N − a)v/2) sin((N − a′)v/2)

sin2(v/2)
. (39)

For a continuous function h : [−π, π] 7→ R,

lim
N→∞

1

N

∫ π

−π
h(v)FN (a, a′, v)dv = lim

N→∞

1

N2

∫ πN

−πN
h(
v

N
)FN (a, a′,

v

N
)dv = 4h(0)

∫ ∞

−∞

sin2(v/2)

v2
dv = 2πh(0),
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The Lebesgue Theorem a, a/N → 0 (N → 0)and (38) give us:333

N
1

N − a

1

N − a′

N−a∑
b=1

N−a′∑
b′=1

C1∼4π2 (µ4 − 1)aa′
∫
[−π,π]2
dλ′dµ′|Sa(aλ′)|2 |Sa′(a′µ′)|2 |α̂(λ′)|2|α̂(µ′)|2

∼4π2 (µ4 − 1)

∫ aπ

−aπ
|Sa(λ)|2 |α̂(λ/a)|2dλ

∫ a′π

−a′π
|Sa(µ)|2 |α̂(µ/a′)|2dµ

=⇒ N
(E(e2(a, 0)))−1E(e2(a′, 0)))−1

4π2(N − a)(N − a′)

N−a∑
b=1

N−a′∑
b′=1

C1 −→
N→∞

(µ4 − 1) (40)

and therefore
N

aN

(raNr
′aN )−2d(cdK(ψ,2d))

−2

4π2(N − raN )(N − r′aN )

N−raN∑
b=1

N−r′aN∑
b′=1

C1 −→
N→∞

0, (41)

with a = raN and a′ = r′aN , using 1 since aN → ∞.334

Moreover, taking again aN → ∞ and N/aN → ∞, we have:335

N
1

N − a

1

N − a′

N−a∑
b=1

N−a′∑
b′=1

C2∼16π3aa′
∫ π

−π

∣∣Sa(aλ)∣∣2∣∣Sa′(a′λ)∣∣2∣∣α̂(λ)∣∣4dλ− 2N

µ4 − 1

1

N − a

1

N − a′

N−a∑
b=1

N−a′∑
b′=1

C1

∼ 16π3rr′aN

∫ aNπ

−aNπ

∣∣SraN (rλ)
∣∣2∣∣Sr′aN (r′λ)

∣∣2∣∣α̂(λ/aN )
∣∣4dλ− 2N

µ4 − 1

1

N − raN

1

N − r′aN

N−raN∑
b=1

N−r′aN∑
b′=1

C1

=⇒ N

aN

(r r′ a2N )−2d(cdK(ψ,2d))
−2

4π2(N − raN )(N − r′aN )

N−raN∑
b=1

N−r′aN∑
b′=1

C2 −→
N→∞

4π
(rr′)1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(rλ)∣∣2|ψ̂(r′λ)∣∣2
λ4d

dλ,

Since aN → ∞ and N/aN → ∞, using Property 1 and (41), we have:336

N

aN
Cov (T̃N (r aN ), T̃N (r′ aN )) −→

N→∞
4π

(rr′)1−2d

K2
(ψ,2d)

∫ ∞

−∞

∣∣ψ̂(rλ)∣∣2|ψ̂(r′λ)∣∣2
λ4d

dλ. (42)

Note that if r = r′ then
N

r aN
Var (T̃N (r aN )) −→

N→∞
σ2
ψ(d) = 64π5 K(ψ∗ψ,4d)

K2
(ψ,2d)

depending only on ψ and d.337

338

Step 2 Consequently if the distribution of the innovations (ξt)t is such that it exists r > 0 satisfying E
(
erξ0

)
≤339

∞ (the so-called the Cramèr condition), then for any a ∈ N∗, (T̃N (ri aN ))1≤i≤ℓ =
(

1
N−riaN

∑N−riaN
k=1 ẽ2(riaN , k)

)
1≤i≤ℓ

340

satisfies a central limit theorem.341

Such theorem holds if it can be proved that
√

N
aN

∑ℓ
i=1

ui

N−riaN

∑N−riaN
k=1 ẽ2(riaN , k) asymptotically342

follows a Gaussian distribution for any vector (ui)1≤i≤ℓ ∈ Rℓ.343

344

This result is based on an adaptation demonstration of Giraitis (1985)( Appell polynomials decomposition345

allows to prove central limit theorems for function of linear process). X being a two-sided linear process,346

martingale type results as in Wu (2002) or Furmanczyk (2007) cannot be used. Moreover, (aN )N being a347

sequence depending on N , the central limit theorem for triangular arrays has yet to be proved. As far as we348

are concerned, the paper of Roueff and Taqqu (2009)(dealing with central limit theorem for triangular arrays349

of decimated linear process) can be applied to establish a multidimensional central limit for the variogram of350
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wavelet coefficients associated to a multi-resolution analysis, however, it cannot be used in our case.Because351

the present variogramm is defined as in (8) with coefficients taken every n/nj (≃ aN with our notation) and352

mean value of nj (N/aN with our notation) coefficients (with a convergence rate
√
nj). Hence, we consider in353

the present case wavelet coefficient variogram (7) being an average of N − aN terms with a convergence rate354

is N/aN . and then adapt it to the method and results of Giraitis (1985).355

Consider the case ℓ = 1. For a > 0, (ẽ(a, b))1≤b≤N−a is a stationary linear process satisfying the assumptions

of the paper of Giraitis (refered as to Xt). Supposing H2(x) = x2 − 1 the second-order Hermite polynomial ,

we will prove that:

( N
aN

)1/2 1

N − aN

N−aN∑
b=1

(
ẽ2(aN , b)− 1

)
≃

( 1

NaN

)−1/2
N−aN∑
b=1

H2(ẽ(aN , b))
L−→

N→∞
N
(
0, σ2

ψ(d)
)
.

The distribution of ξ0 being supposed to satisfy the Cramèr condition and refereing to the proof of Proposition356

6 (Giraitis, 1985), we define S
(n)
N =

∑N−aN
b=1 A

(aN )
n (ẽ(aN , b)) where A

(aN )
n is the Appell polynomial of degree357

n corresponding to the probability distribution of ẽ(aN , ·). We can than prove that the cumulants of order358

k ≥ 3 are such as359

χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
= o

(
(NaN )k/2

)
(43)

for any n(1), · · · , n(k) ≥ 2 (the computation of the cumulants of order 2 is induced by Step 1 of this proof).360

Indeed, χ
(
S
(n(1))
N , . . . , S

(n(k))
N

)
=

∑
γ∈Γ0(T ) dγIγ(N) where Γ0(T ) is the set of possible diagrams (for the defi-361

nition of Iγ(N) see (34) of Giraitis (1985)).362

In the case of Gaussian diagrams, Iγ(N) = o
(
(NaN )k/2

)
is the result of gaussian case and the second order363

moments.364

If γ , however is a non-Gaussian diagram, mutatis mutandis, we use the notation and proof of Lemma 2 of365

Giraitis (1985). From Step 1, we obtain:366

ẽ(a, b) =
∑
s∈Z

βa(b− s) ξs with βa(s) =

√
a√

Ee2(a, b)

∫ π

−π
Sa(aλ)α̂(λ)e

iλsdλ. (44)

Then for u ∈ [−π, π],367

β̂a(u) =
1

2π

∞∑
s=−∞

βa(s)e
−isu

=

√
a

2π
√
Ee2(a, b)

lim
m→∞

∫ π

−π

m∑
s=−m

Sa(aλ)α̂(λ)e
is(λ−u)dλ

=

√
a√

Ee2(a, b)
Sa(au)α̂(u),

with the asymptotic behavior of Dirichlet kernel. Now, in the case a/ of Lemma 2 of Giraitis (1985), take

diagram V1 = {(1, 1), (2, 1), (3, 1)} and assume that for rows Lj of array T , j = 1, · · · , k (k ≥ 3), |V1 ∩Lj | ≥ 1
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for at least 3 different rows Lj . If we then replicate inequality (39), assume hyperplane xV1
, a part of the

integral (34) provides:∣∣∣ ∫
{x11+x21+x31=0}∩[−π,π]3

dx11dx21dx31

3∏
j=1

DN ((xj1 + · · ·+ xjn(j))β̂a(xj1)
∣∣∣ ≤ C α1(u1)α2(u2)α3(u3),

with ui = xi2 + · · · + xin(i) and the same expressions of αi provided in Giraitis (1985). We finally have to368

bound αi(u). Taking the same approximations as in the proof of Property 1, for aN and N large enough, we369

have:370

α1(u) =

∫ π

−π

∣∣β̂aN (u)DN (x+ u)
∣∣dx ∼

√
2π

1
√
aN

∫ aNπ

−aNπ

∣∣ ψ̂(x)
|x|d

∣∣ ∣∣DN

( x
aN

+ u
)∣∣du

≤ 2
√
aN sup

x∈R

{ |ψ̂(x)|
|x|d

} ∫ π

−π
|DN (x+ u)|dx

≤ 2C sup
x∈R

{ |ψ̂(x)|
|x|d

}√
aN logN,

since C > 0 exists such as
∫ π
−π |DN (x + u)|dx ≤ C logN for any u ∈ [−π, π]. upposinf S i = 2, 3, aN and N371

large enough, we have:372

α2
i (u) = ∥β̂aN (·)DN (u+ ·)∥22

≤ 2

∫ aNπ

−aNπ

|ψ̂(x)|2

|x|2d
D2
N

( x
aN

+ u
)
du

≤ 2C sup
x∈R

{ |ψ̂(x)|2

|x|2d
}
aN

∫ π

−π
|D2

N (x+ u)|dx

≤ C ′ sup
x∈R

{ |ψ̂(x)|2

|x|2d
}
NaN .

Then α1(u1)α2(u2)α3(u3) = o((NaN )3/2).373

For the k − 3 other terms, a result corresponding to Lemma 1 of Giraitis (1985) can also be obtained. If, for374

aN and N large enough,375

∥gN,j∥22 =

∫
[−π,π]n(j)

dxD2
N (x1 + · · ·+ xn(j))

n(j)∏
i=1

|β̂aN (xi)|2

≤ C

∫
[−aNπ,aNπ]n(j)

dxD2
N (

1

aN
(x1 + · · ·+ xn(j))

n(j)∏
i=1

|ψ̂(xi)|2

|xi|2d

≤ C
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣n(j) aN ∥DN

(
·
)
∥22

≤ C ′NaN

with C ′ ≥ 0 independent on N and aN . We Thus obtain ∥gN,j∥2 ≤ C (NaN )1/2 with C ≥ 0. Furthermore,376

C ′ ≥ 0 exists such as ∥g′N,j∥2 ≤ C (NaN )1/2 for j ≥ 2 while ∥g′N,1∥2 = O(
√
aN logN) = o((NaN )1/2).377

Consequently, if γ such as |V1 ∩ Lj | ≥ 1 for at least 3 different rows Lj , and more generally with |V1| ≥ 3, we378

have:379

Iγ(N) = o
(
(NaN )k/2

)
. (45)
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For further γ, we need to bound the function h(u1, u2) as defined in Giraitis (1985, p. 32) as follows (with380

x = x11 + x12) and with u1 + u2 ̸= 0:381

h(u1, u2) =
(∫ π

−π

∣∣β̂aN (−x)DN (u1 + x)DN (u2 − x)
∣∣dx)(∫ π

−π

∣∣β̂aN (x)
∣∣2dx)

≤
∣∣ sup
x∈R

{ |ψ̂(x)|2
|x|2d

}∣∣ aN (∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx)(2π ∫ ∞

−∞

|ψ̂(x)|2

|x|2d
dx

)
.

But382

∫ π

−π

∣∣DN

(
u1 + x

)
DN

(
u2 − x

)∣∣dx ≤ 2

∫ 2πN

−2πN

∣∣∣ sin(x)
x

sin(N2 (u1 + u2)− x)

sin(12 (u1 + u2)− x
N )

∣∣∣dx
≤


C logN

∣∣ sin(12 (u1 + u2))
∣∣−1

if |u1 + u2| ≥ (N logN)−1

C N if |u1 + u2| < (N logN)−1

.

Therefore,383

∥h(u1, u2)∥22 =

∫
[−π,π]2

h2(u1, u2)du1du2 ≤ C a2N

(
log2N

∫ π

(N logN)−1

(sinx)−2 dx+N2

∫ (N logN)−1

0

dx
)

≤ C a2N
(
N log3N +N logN

)
,

and hence ∥h(u1, u2)∥2 = o(NaN ). Finally, (45) holds for all γ and it implies (43).384

If ℓ > 1, the same proof can be replicated with the linearity properties of cumulants. Thus, (T̃N (ri aN ))1≤i≤ℓ385

satisfies the following central limit:386 √
N

aN

(
T̃N (ri aN )− 1

)
1≤i≤ℓ

d−→
N→∞

N
(
0 , Γ(r1, . . . , rℓ, ψ, d)

)
, (46)

with Γ(r1, . . . , rℓ, ψ, d) = (γij)1≤i,j≤ℓ given in (10).387

388

Step 3 With the truncation procedure, we can now we extend the central limit obtained in Step 2 (for389

linear processes with an innovation distribution satisfying a Cramèr condition (E
(
erξ0

)
< ∞)) to the weaker390

condition Eξ40 < ∞. Take Eξ40 < ∞. Let M > 0 and define ξ−t = ξt I|ξ|≤M and ξ+t = ξt I|ξ|>M , ẽ−(a, b) =391 ∑
s∈Z βa(b − s) ξ−s and ẽ+(a, b) =

∑
s∈Z βa(b − s) ξ+s using (44). We have ẽ(a, b) = ẽ+(a, b) + ẽ−(a, b). To392

confirm (46), take :393

T̃N (ri aN )− 1 =
1

N − riaN

(N−riaN∑
b=1

(
ẽ−(riaN , b)

)2 − 1
)
− 2ẽ+(riaN , b)ẽ

−(riaN , b) +
(
ẽ+(riaN , b)

)2)
(47)

We prove that
(
T̃−
N (ri aN ) − 1

)
1≤i≤ℓ =

(
1

N−riaN

∑N−riaN
b=1

(
ẽ−(riaN , b)

)2 − 1
)
1≤i≤ℓ satisfies (46). Indeed,394

(ẽ−(riaN , b)) is a linear process with innovations (ξ−t ) satisfying the Cramèr condition and it is obvious that395 ( E
(
ẽ(riaN ,b)

)2

E
(
ẽ−(riaN ,b)

)2

)1/2

ẽ−(riaN , b)b,i has exactly the same distribution as ẽ(riaN , b)b,i. Therefore We yet have to396
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prove that
√

N
aN

( E
(
ẽ(riaN ,b)

)2

E
(
ẽ−(riaN ,b))2

−1
)
converges to 0. If E

(
ẽ(riaN , b))

2 =
(∑

s∈Z β
2
a(s)

)
E(ξ0)2 = 1 and Eξ20 = 1397

(from Property 1), then398

∣∣∣E(ẽ−(riaN , b))2
E
(
ẽ(riaN , b))2

− 1
∣∣∣ ≤ 2

(
E
(
ẽ+(riaN , b))

2
)1/2

+ E
(
ẽ+(riaN , b))

2.

Assuming that the distribution of ξ0 is symmetric, we then obtain E
(
ẽ+(riaN , b))

2 =
(∑

s∈Z β
2
a(s)

)
E(ξ+0 )2 =

E(ξ+0 )2, with Hölder’s and Markov’s inequalities, however we have:

E(ξ+0 )
2 ≤ (Eξ40)1/2(Pr(|ξ0| > M))1/2 ≤ (Eξ40)M−2.

Hence, there exists C > 0 independent of M and N ,√
N

aN

∣∣∣E(ẽ−(riaN , b))2
E
(
ẽ(riaN , b))2

− 1
∣∣∣ ≤ C

M

√
NaN −→

N→∞
0

when M = N (for instance). Therefore
(
T̃−
N (ri aN )− 1

)
1≤i≤ℓ satisfies the CLT (46).

From (47), it remains to prove:√
N

aN

1

N − riaN

(N−riaN∑
b=1

−2ẽ+(riaN , b)ẽ
−(riaN , b) +

(
ẽ+(riaN , b)

)2) P−→
N→∞

0.

Wich based on Markov’s and Hölder inequalities , is verified when
√

N
aN

(
E
(
ẽ+(riaN , b)

)2
+2

√
E
(
ẽ+(riaN , b)

)2) −→
N→∞

0399

with E
(
ẽ+(riaN , b)

)2
= 1. Using E

(
ẽ+(riaN , b))

2 ≤ (Eξ40)M−2 obtained above, we can infere that this state-400

ment holds when M = N (for instance). Consequently, from (47), CLT (46) holds even if the distribution of401

ξ0 is only symmetric and such that Eξ40 <∞.402

403

Step 4 It remains to apply the Delta-method to (46) with function (x1, . . . , xℓ) 7→ (log x1, . . . , log xℓ):404 √
N

aN

(
log

(
TN (ri aN )

)
− log(Ee2(aN , 1))

)
1≤i≤ℓ

d−→
N→∞

N
(
0 , Γ(r1, . . . , rℓ, ψ, d)

)
,

With Ee2(aN , 1) provided in Property 1, we obtain

logEe2(aN , 1) = 2d log(aN ) + log
(cdK(ψ,2d)

2π

)
+
cd′K(ψ,2d−d′)

2π ad
′
N

(
1 + o(1)

)
Therefore, when

√
N

aN

1

ad
′
N

−→
N→∞

0, i.e. N
1

1+2d′ = o(aN ), CLT (9) holds.405

Proof of Theorem 1. We use Theorem 1 of Bardet et al. (2008) which proved that CLT (9) remains valid406

when aN is replaced by N α̃N . Since d̃N = M̃N YN (α̃N ) with M̃N =
(
0 1/2

)(
Z ′
1Γ̂

−1
N Z1

)−1
Z ′
1Γ̂

−1
N we de-407

duce that
√
N/N α̃N

(
d̃N − d

)
is asymptotically Gaussian with asymptotic variance limit in probability of408

M̃N Γ(1, . . . , ℓ, d, ψ) M̃ ′
N , that is σ2.409

Relation (15) is also an obvious consequence of Theorem 1 of Bardet et al. (2008).410
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Proof of Theorem 2. The theory of linear models can be applied as follows: ZN α̃N

( c̃N

2d̃N

)
is an orthogonal411

projector of YN (α̃N ) on a subspace of dimension 2, therefore YN (α̃N ) − ZN α̃N

( c̃N

2d̃N

)
is an orthogonal412

projector of YN (α̃N ) on a subspace of dimension ℓ − 2. Moreover, using CLT (9) where aN is replaced by413

N α̃N , we deduce that
√
N/N α̃N Γ̂−1

N YN (α̃N ) asymptotically follows a Gaussian distribution with asymptotic414

covariance matrix Iℓ (identity matrix). Hence, from the usual Cochran Theorem, we deduce (17).415
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[2] Andrews, D.W.K. and Sun, Y. (2004). Adaptive local polynomial Whittle estimation of long-range depen-420

dence, Econometrica, 72, 569–614.421

[3] Bardet, J.M. and Bertrand, P. (2007) Definition, properties and wavelet analysis of multiscale fractional422

Brownian motion, Fractals 15, 73–87.423

[4] Bardet, J.M., Bibi, H. and Jouini, A. (2008). Adaptive wavelet-based estimator of the memory parameter424

for stationary Gaussian processes, Bernoulli, 14, 691-724.425

[5] Bardet, J.M., Lang, G., Moulines, E. and Soulier, P. (2000). Wavelet estimator of long range-dependant426

processes, Statist. Infer. Stochast. Processes, 3, 85–99.427

[6] Bardet, J.M., Lang, G., Oppenheim, G., Philippe, A., Stoev, S. and Taqqu, M.S. (2003). Semiparametric428

estimation of the long-range dependence parameter: a survey. In Theory and applications of long-range429
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251–301, Birkhäuser, Boston.445

[14] Peltier, R. and Lévy Véhel, J. (1995) Multifractional Brownian Motion: definition and preliminary results.446

Preprint INRIA, available on http://hal.inria.fr/docs/00/07/40/45/PDF/RR-2645.pdf.447

[15] Robinson, P.M. (1995). Gaussian semiparametric estimation of long range dependence, Ann. Statist., 23,448

1630–1661.449

[16] Roueff, F. and Taqqu, M.S. (2009a). Asymptotic normality of wavelet estimators of the memory parameter450

for linear processes. J. Time Ser. Anal., 30, 534–558.451

[17] Roueff, F. and Taqqu, M.S. (2009b). Central limit theorems for arrays of decimated linear processes.452

Stochastic Process. Appl., 119, 3006–3041453

[18] Veitch, D., Abry, P. and Taqqu, M.S. (2003). On the Automatic Selection of the Onset of Scaling, Fractals,454

11, 377–390.455

[19] Wu, W.B. (2002). Central limit theorems for functionals of linear processes and their applications. Statist.456

Sinica, 12, 635–649.457

27


