Master 2 M0 2017-2018 Analyse des séries financières

Final exam, February 2018

3h00, without any documents.

In all the sequel, $\left(\xi_{t}\right)_{t \in \mathbf{Z}}$ is a sequence of centered independent and identically distributed random variables with a symmetric distribution (the distributions of ξ_{0} and $-\xi_{0}$ are the same) continuous with respect to Lebesgue measure, such as $\mathbb{E}\left(\xi_{0}^{2}\right)=1$.

1. Preliminaries:

(a) Let $\left(X_{t}\right)_{t \in \mathbf{Z}}$ be a stationary time series. Prove that $\left(X_{t}^{2}\right)_{t \in \mathbf{Z}}$ is a stationary time series.
(b) Assume that $\left(Y_{t}^{2}\right)_{t \in \mathbf{Z}}$ is a stationary time series. Prove that $\left(Y_{t}\right)_{t \in \mathbf{Z}}$ is not necessary a stationary time series.
(c) Let $\left(u_{t}\right)_{t \in \mathbf{Z}}$ be a stationary time series, independent to $\left(\xi_{t}\right)_{t \in \mathbf{Z}}$. Prove that $\left(\xi_{t} u_{t}\right)_{t \in \mathbf{Z}}$ is a stationary time series.
(d) For a random variable Z, define $\operatorname{sign}(Z)=\mathbb{I}_{Z>0}-\mathbb{I}_{Z<0}$. Prove that $\left(\operatorname{sign}\left(\xi_{t}\right)\right)_{t \in \mathbf{Z}}$ is a white noise, independent of $\left(\left|\xi_{t}\right|\right)_{t \in \mathbf{Z}}$. Let $\left(Y_{t}\right)_{t \in \mathbf{Z}}$ be a time series defined by $Y_{t}=\xi_{t} G\left(\left(\left|Y_{t-i}\right|\right)_{i \in \mathbf{N}^{*}}\right)$ for any $t \in \mathbf{Z}$ where $G: \mathbf{R}^{\mathbf{N}} \rightarrow(0, \infty)$ is a fixed function. Assume that $\left(Y_{t}^{2}\right)_{t \in \mathbf{Z}}$ is a causal (with respect to $\left.\left(\left(\xi_{s}\right)_{s \leq t}\right)_{t \in \mathbf{Z}}\right)$ stationary process. Prove that $\left(Y_{t}\right)_{t \in \mathbf{Z}}$ is also a causal stationary time series.
2. Main theoretical part: If it exists, we consider a sequence $\left(X_{t}\right)_{t \in \mathbf{Z}}$ such as:

$$
\begin{equation*}
X_{t}=\alpha X_{t-1}+\varepsilon_{t} \quad \text { with } \quad \varepsilon_{t}=\xi_{t} \sqrt{a_{0}+a_{1} X_{t-1}^{2}} \quad \text { for any } t \in \mathbf{Z} \tag{1}
\end{equation*}
$$

where $\left.\left(\alpha, a_{0}, a_{1}\right) \in\right]=\mathbf{R} \times(0, \infty) \times[0, \infty)$ are unknown parameters.
(a) In this question, we assume $\alpha=a_{1}=0$. Which kind of process is $\left(X_{t}\right)_{t \in \mathbf{Z}}$ and provide a condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}\left(X_{0}\right)$ and $r_{X}(k)=\operatorname{cov}\left(X_{0}, X_{k}\right)$ for $k \in \mathbf{N}$.
(b) In this question, we assume $a_{1}=0$ and $\alpha \neq 0$. Which kind of process is $\left(X_{t}\right)_{t \in \mathbf{Z}}$ and provide a condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}\left(X_{0}\right)$ and $r_{X}(k)$ for $k \in \mathbf{N}$.
(c) In this question, we assume $\alpha=0$ and $a_{1}>0$. Which kind of process is $\left(X_{t}\right)_{t \in \mathbf{Z}}$ and provide condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}\left(X_{0}\right)$ and $r_{X}(k)$ for $k \in \mathbf{N}$.
(d) Now and until the end, we study the general case $\left.\left(\alpha, a_{0}, a_{1}\right) \in\right]=\mathbf{R} \times(0, \infty) \times[0, \infty)$. Prove that $\left(X_{t}\right)_{t \in \mathbf{Z}}$ is an affine causal process. Prove that the function $x \rightarrow \sqrt{1+x^{2}}$ is Lipshitzian and deduce that a sufficient condition for $\left(X_{t}\right)_{t \in \mathbf{Z}}$ to be a causal stationary second order process is:

$$
\begin{equation*}
|\alpha|+\sqrt{a_{1}}<1 \tag{2}
\end{equation*}
$$

(e) For $|\alpha|<1$, prove that if $\left(X_{t}\right)_{t \in \mathbf{Z}}$ is a causal stationary second order process then $\left(\varepsilon_{t}\right)_{t \in \mathbf{Z}}$ defined by

$$
\begin{equation*}
\varepsilon_{t}=\xi_{t} \sqrt{a_{0}+a_{1}\left(\sum_{i=0}^{\infty} \alpha^{i} \varepsilon_{t-1-i}\right)^{2}} \quad \text { for any } t \in \mathbf{Z} \tag{3}
\end{equation*}
$$

is a causal stationary second order process and a weak white noise. Show that if $\left(\varepsilon_{t}\right)_{t \in \mathbf{Z}}$ is a causal stationary second order process then

$$
\begin{equation*}
a_{1}+\alpha^{2}<1 \tag{4}
\end{equation*}
$$

Compare this condition with (2).
(f) In Doukhan et al. (2016), it was established that under (4), then $\left(\varepsilon_{t}\right)_{t \in \mathbf{Z}}$ is a causal stationary second order process. Extend this property to $\left(X_{t}\right)_{t \in \mathbf{Z}}$. Under (4), compute $\mathbb{E}\left(X_{0}\right)$ and $r_{X}(k)$ for $k \in \mathbf{N}$.
(g) Deduce also $\mathbb{E}\left(X_{t} \mid\left(X_{t-s}\right)_{s \in \mathbf{N}^{*}}\right)$ and $\operatorname{var}\left(X_{t} \mid\left(X_{t-s}\right)_{s \in \mathbf{N}^{*}}\right)$. Is $\left(X_{t}\right)_{t \in \mathbf{Z}}$ a conditionaly heteroskedastic process?
(h) Assume now that $\left(X_{1}, \cdots, X_{N}\right)$ is observed and let $\theta={ }^{t}\left(\alpha, a_{0}, a_{1}\right)$. Provide the expression of the quasi-maximum likelihood estimator $\hat{\theta}$ of θ. Is $\widehat{\theta}$ a consistent estimator? What is its convergence rate?
(i) Provide forecasting of X_{N+1} and X_{N+1}^{2}.
3. Numerical part: We study with R software the open daily historical data of Bitcoin from January 282014 to January 282018.
(a) First the following commands have been executed with figures exhibited below:

```
Bit=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MO/TP/BTC-USD.csv")
Bit0=Bit$Open; n=length(Bit0)
plot.ts(Bit0); plot.ts(log(Bit0))
Y=log(Bit0); X1=c(1:n); X2=X1^2
Y.lm=lm(Y~}\textrm{X}1+\textrm{X}2); summary(Y.lm
```

Command lm realizes a least squares linear regression. Here there are the graphs and main numerical results:

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
$\begin{array}{lrrrr}\text { (Intercept) } & 6.541 \mathrm{e}+00 & 1.645 \mathrm{e}-02 & 397.61 & <2 \mathrm{e}-16 * * * \\ \text { X1 } & -4.034 \mathrm{e}-03 & 5.396 \mathrm{e}-05 & -74.76 & <2 \mathrm{e}-16 * * * \\ \text { X2 } & 4.332 \mathrm{e}-06 & 3.711 \mathrm{e}-08 & 116.73 & <2 \mathrm{e}-16 * * *\end{array}$

Residual standard error: 0.2054 on 1404 degrees of freedom
Multiple R-squared: 0.9635,Adjusted R-squared: 0.9635
F-statistic: 1.854e+04 on 2 and 1404 DF, p-value: < 2.2e-16
Question II.1: Explain what is done.
(b) New commands are then executed:

```
plot.ts(Y.lm$residuals)
Fit=arima(Y.lm$residuals, order = c(1,0,2))
acf(Fit$residuals)
Box.test(Fit$residuals, lag = 20,"Ljung-Box", fitdf=3)
```

Here there are graphs and numerical results:

Box-Ljung test
data: Fit\$residuals
X-squared $=25.557, \mathrm{df}=17, \mathrm{p}$-value $=0.08292$

Question II.2: Explain what is done (notably why we use fitdf=3) and explain which conclusions you deduce.
(c) The following sequence of commands is then executed:

```
pred=predict(Fit,n.ahead=1); pred[1]
exp(pred$pred[1]+sum(Y.lm$coeff*c(1,(n+1),(n+1)^2)))
```

The results are the following:

```
>-0.09092553
```

> 11582.19

Question II.3: What is done here and what are your conclusions?
(d) Finally, the following sequence of commands is executed:

```
LogRetBit=log(Bit0[2:n]/Bit0[1:(n-1)])
plot.ts(LogRetBit); acf(LogRetBit)
library(fGarch)
FitLogRet1=garchFit(~garch(1,1),data=LogRetBit,trace=FALSE)
summary(FitLogRet1)
FitLogRet2=garchFit(~ garch (1,2), data=LogRetBit,trace=FALSE)
summary(FitLogRet2)
```

The graphs and results are the following:

> Error Analysis:

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
mu	$1.646 \mathrm{e}-03$	$7.012 \mathrm{e}-04$	2.347	0.018911	$*$
omega	$2.894 \mathrm{e}-05$	$7.565 \mathrm{e}-06$	3.825	0.000131	$* * *$
alpha1	$1.690 \mathrm{e}-01$	$2.155 \mathrm{e}-02$	7.845	$4.44 \mathrm{e}-15$	$* * *$
beta1	$8.365 \mathrm{e}-01$	$1.774 \mathrm{e}-02$	47.139	$<2 \mathrm{e}-16$	$* * *$

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test	R	Chi^2	2253.533	0
Shapiro-Wilk Test	R	W	0.9142998	0
Ljung-Box Test	R	$Q(10)$	31.40408	0.0005030119
Ljung-Box Test	R	$Q(15)$	34.67742	0.002732705
Ljung-Box Test	R	$Q(20)$	42.10945	0.002676158
Ljung-Box Test	$R \wedge 2$	$Q(10)$	7.152754	0.7109496
Ljung-Box Test	$R \wedge 2$	$Q(15)$	11.73218	0.6991771
Ljung-Box Test	$R \wedge 2$	$Q(20)$	16.21253	0.7033551
LM Arch Test	R	$T R \wedge 2$	9.629902	0.648393

Information Criterion Statistics:
AIC BIC SIC HQIC
$-3.971264-3.956332-3.971280-3.965683$
> Error Analysis:

Estimate S	Std. Error t	value $\operatorname{Pr}(>\|t\|)$
mu $\quad 1.711 \mathrm{e}-03$	$7.038 \mathrm{e}-04$	2.4310 .015041
omega 3.529e-05	$1.068 \mathrm{e}-05$	3.3050 .000949 ***
alpha1 2.098e-01	$3.277 \mathrm{e}-02$	$6.4011 .54 \mathrm{e}-10$ ***
beta1 $4.464 \mathrm{e}-01$	$1.945 \mathrm{e}-01$	2.2950 .021745
beta2 $3.485 \mathrm{e}-01$	$1.755 \mathrm{e}-01$	1.9850 .047127
Standardised Residuals Tests:		
		Statistic p-Value
Jarque-Bera Test	R $\mathrm{Chi}^{\wedge} 2$	2360.2690
Shapiro-Wilk Test	$\mathrm{R} \quad \mathrm{W}$	0.9149907
Ljung-Box Test	$R \quad \mathrm{Q}(10)$	30.514120 .000705495
Ljung-Box Test	$R \quad \mathrm{Q}(15)$	33.536330 .003954055
Ljung-Box Test	$R \quad \mathrm{Q}(20)$	40.947990 .003782937
Ljung-Box Test	R^2 Q (10)	5.4516140 .8590436
Ljung-Box Test	R^2 Q (15)	8.6995280 .8926969
Ljung-Box Test	R^2 Q (20)	13.333150 .8626366
LM Arch Test	R TR^2	7.5097030 .8221771
Information Criterion Statistics:		
AIC BIC	S SIC	HQIC
-3.974214-3.955549	-3.974239 -	3.967238

Question II.4: What is done here and which model could you chose?

