Master 2 M0 2017 – 2018 Analyse des séries financières

Final exam, February 2018

3h00, without any documents.

In all the sequel, $(\xi_t)_{t \in \mathbb{Z}}$ is a sequence of centered independent and identically distributed random variables with a symmetric distribution (the distributions of ξ_0 and $-\xi_0$ are the same) continuous with respect to Lebesgue measure, such as $\mathbb{E}(\xi_0^2) = 1$.

1. Preliminaries:

- (a) Let $(X_t)_{t \in \mathbf{Z}}$ be a stationary time series. Prove that $(X_t^2)_{t \in \mathbf{Z}}$ is a stationary time series.
- (b) Assume that $(Y_t^2)_{t \in \mathbf{Z}}$ is a stationary time series. Prove that $(Y_t)_{t \in \mathbf{Z}}$ is not necessary a stationary time series.
- (c) Let $(u_t)_{t \in \mathbf{Z}}$ be a stationary time series, independent to $(\xi_t)_{t \in \mathbf{Z}}$. Prove that $(\xi_t u_t)_{t \in \mathbf{Z}}$ is a stationary time series.
- (d) For a random variable Z, define sign(Z) = $\mathbb{I}_{Z>0} \mathbb{I}_{Z<0}$. Prove that $(\text{sign}(\xi_t))_{t\in\mathbb{Z}}$ is a white noise, independent of $(|\xi_t|)_{t\in\mathbb{Z}}$. Let $(Y_t)_{t\in\mathbb{Z}}$ be a time series defined by $Y_t = \xi_t G((|Y_{t-i}|)_{i\in\mathbb{N}^*})$ for any $t\in\mathbb{Z}$ where $G:\mathbb{R}^{\mathbb{N}} \to (0,\infty)$ is a fixed function. Assume that $(Y_t^2)_{t\in\mathbb{Z}}$ is a causal (with respect to $((\xi_s)_{s\leq t})_{t\in\mathbb{Z}}$) stationary process. Prove that $(Y_t)_{t\in\mathbb{Z}}$ is also a causal stationary time series.
- 2. Main theoretical part: If it exists, we consider a sequence $(X_t)_{t \in \mathbb{Z}}$ such as:

$$X_t = \alpha X_{t-1} + \varepsilon_t \quad \text{with} \quad \varepsilon_t = \xi_t \sqrt{a_0 + a_1 X_{t-1}^2} \quad \text{for any } t \in \mathbf{Z}$$
(1)

where $(\alpha, a_0, a_1) \in \mathbf{R} \times (0, \infty) \times [0, \infty)$ are unknown parameters.

- (a) In this question, we assume $\alpha = a_1 = 0$. Which kind of process is $(X_t)_{t \in \mathbb{Z}}$ and provide a condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}(X_0)$ and $r_X(k) = \operatorname{cov}(X_0, X_k)$ for $k \in \mathbb{N}$.
- (b) In this question, we assume $a_1 = 0$ and $\alpha \neq 0$. Which kind of process is $(X_t)_{t \in \mathbb{Z}}$ and provide a condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}(X_0)$ and $r_X(k)$ for $k \in \mathbb{N}$.
- (c) In this question, we assume $\alpha = 0$ and $a_1 > 0$. Which kind of process is $(X_t)_{t \in \mathbb{Z}}$ and provide condition of the existence of a stationary causal second order solution. Compute $\mathbb{E}(X_0)$ and $r_X(k)$ for $k \in \mathbb{N}$.
- (d) Now and until the end, we study the general case $(\alpha, a_0, a_1) \in] = \mathbf{R} \times (0, \infty) \times [0, \infty)$. Prove that $(X_t)_{t \in \mathbf{Z}}$ is an affine causal process. Prove that the function $x \to \sqrt{1 + x^2}$ is Lipshitzian and deduce that a sufficient condition for $(X_t)_{t \in \mathbf{Z}}$ to be a causal stationary second order process is:

$$|\alpha| + \sqrt{a_1} < 1. \tag{2}$$

(e) For $|\alpha| < 1$, prove that if $(X_t)_{t \in \mathbf{Z}}$ is a causal stationary second order process then $(\varepsilon_t)_{t \in \mathbf{Z}}$ defined by

$$\varepsilon_t = \xi_t \sqrt{a_0 + a_1 \left(\sum_{i=0}^{\infty} \alpha^i \, \varepsilon_{t-1-i}\right)^2} \quad \text{for any } t \in \mathbf{Z},\tag{3}$$

is a causal stationary second order process and a weak white noise. Show that if $(\varepsilon_t)_{t \in \mathbb{Z}}$ is a causal stationary second order process then

$$a_1 + \alpha^2 < 1. \tag{4}$$

Compare this condition with (2).

- (f) In Doukhan *et al.* (2016), it was established that under (4), then $(\varepsilon_t)_{t \in \mathbb{Z}}$ is a causal stationary second order process. Extend this property to $(X_t)_{t \in \mathbb{Z}}$. Under (4), compute $\mathbb{IE}(X_0)$ and $r_X(k)$ for $k \in \mathbb{N}$.
- (g) Deduce also $\mathbb{E}(X_t \mid (X_{t-s})_{s \in \mathbf{N}^*})$ and $\operatorname{var}(X_t \mid (X_{t-s})_{s \in \mathbf{N}^*})$. Is $(X_t)_{t \in \mathbf{Z}}$ a conditionally heteroskedastic process?
- (h) Assume now that (X_1, \dots, X_N) is observed and let $\theta = {}^t(\alpha, a_0, a_1)$. Provide the expression of the quasi-maximum likelihood estimator $\hat{\theta}$ of θ . Is $\hat{\theta}$ a consistent estimator? What is its convergence rate?
- (i) Provide forecasting of X_{N+1} and X_{N+1}^2 .

- 3. Numerical part: We study with R software the open daily historical data of Bitcoin from January 28 2014 to January 28 2018.
 - (a) First the following commands have been executed with figures exhibited below:

```
Bit=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MO/TP/BTC-USD.csv")
Bit0=Bit$Open; n=length(Bit0)
plot.ts(Bit0); plot.ts(log(Bit0))
Y=log(Bit0); X1=c(1:n); X2=X1^2
Y.lm=lm(Y~X1+X2); summary(Y.lm)
```

Command 1m realizes a least squares linear regression. Here there are the graphs and main numerical results:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	6.541e+00	1.645e-02	397.61	<2e-16	***
X1	-4.034e-03	5.396e-05	-74.76	<2e-16	***
Х2	4.332e-06	3.711e-08	116.73	<2e-16	***

Residual standard error: 0.2054 on 1404 degrees of freedom Multiple R-squared: 0.9635, Adjusted R-squared: 0.9635 F-statistic: 1.854e+04 on 2 and 1404 DF, p-value: < 2.2e-16

Question II.1: Explain what is done.

(b) New commands are then executed:

```
plot.ts(Y.lm$residuals)
Fit=arima(Y.lm$residuals, order = c(1,0,2))
acf(Fit$residuals)
Box.test(Fit$residuals, lag = 20,"Ljung-Box", fitdf=3)
```

Here there are graphs and numerical results:

Box-Ljung test
data: Fit\$residuals
X-squared = 25.557, df = 17, p-value = 0.08292

Question II.2: Explain what is done (notably why we use fitdf=3) and explain which conclusions you deduce.

(c) The following sequence of commands is then executed:

```
pred=predict(Fit,n.ahead=1); pred[1]
exp(pred$pred[1]+sum(Y.lm$coeff*c(1,(n+1),(n+1)^2)))
The results are the following:
>-0.09092553
> 11582.19
```

Question II.3: What is done here and what are your conclusions?

(d) Finally, the following sequence of commands is executed:

```
LogRetBit=log(Bit0[2:n]/Bit0[1:(n-1)])
plot.ts(LogRetBit); acf(LogRetBit)
library(fGarch)
FitLogRet1=garchFit(~garch(1,1),data=LogRetBit,trace=FALSE)
summary(FitLogRet1)
FitLogRet2=garchFit(~garch(1,2),data=LogRetBit,trace=FALSE)
summary(FitLogRet2)
```

The graphs and results are the following:


```
> Error Analysis:
```

Estimate	Std. Error	t value	Pr(> t)	
1.646e-03	7.012e-04	2.347	0.018911	*
2.894e-05	7.565e-06	3.825	0.000131	***
1.690e-01	2.155e-02	7.845	4.44e-15	***
8.365e-01	1.774e-02	47.139	< 2e-16	***
	Estimate 1.646e-03 2.894e-05 1.690e-01 8.365e-01	EstimateStd. Error1.646e-037.012e-042.894e-057.565e-061.690e-012.155e-028.365e-011.774e-02	EstimateStd. Errort value1.646e-037.012e-042.3472.894e-057.565e-063.8251.690e-012.155e-027.8458.365e-011.774e-0247.139	EstimateStd. Errort valuePr(> t)1.646e-037.012e-042.3470.0189112.894e-057.565e-063.8250.0001311.690e-012.155e-027.8454.44e-158.365e-011.774e-0247.139< 2e-16

```
Standardised Residuals Tests:
```

			Statistic	p-Value
Jarque-Bera Test	R	Chi^2	2253.533	0
Shapiro-Wilk Test	R	W	0.9142998	0
Ljung-Box Test	R	Q(10)	31.40408	0.0005030119
Ljung-Box Test	R	Q(15)	34.67742	0.002732705
Ljung-Box Test	R	Q(20)	42.10945	0.002676158
Ljung-Box Test	R^2	Q(10)	7.152754	0.7109496
Ljung-Box Test	R^2	Q(15)	11.73218	0.6991771
Ljung-Box Test	R^2	Q(20)	16.21253	0.7033551
LM Arch Test	R	TR^2	9.629902	0.648393

```
Information Criterion Statistics:
AIC BIC SIC HQIC
-3.971264 -3.956332 -3.971280 -3.965683
```

> Error Analysis:

```
Estimate Std. Error t value Pr(>|t|)
      1.711e-03 7.038e-04 2.431 0.015041 *
mu
omega 3.529e-05 1.068e-05 3.305 0.000949 ***
                  3.277e-026.4011.54e-101.945e-012.2950.021745
alpha1 2.098e-01
beta1 4.464e-01
beta2 3.485e-01
                  1.755e-01 1.985 0.047127 *
Standardised Residuals Tests:
                               Statistic p-Value
 Jarque-Bera Test R
                        Chi<sup>2</sup> 2360.269 0
Shapiro-Wilk Test R
                        W
                               0.9149907 0
Ljung-Box Test
                   R
                        Q(10) 30.51412 0.000705495
                   R
Ljung-Box Test
                        Q(15) 33.53633 0.003954055
Ljung-Box Test R
                        Q(20) 40.94799 0.003782937
Ljung-Box Test
                 R<sup>2</sup> Q(10) 5.451614 0.8590436
Ljung-Box Test
                   R<sup>2</sup> Q(15) 8.699528 0.8926969
Ljung-Box Test
                   R<sup>2</sup> Q(20) 13.33315 0.8626366
LM Arch Test
                   R
                        TR^2
                               7.509703 0.8221771
Information Criterion Statistics:
      AIC
               BIC
                         SIC
                                  HQIC
-3.974214 -3.955549 -3.974239 -3.967238
```

