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Analyse des séries financières
Final exam, February 2018

3h00, without any documents.

In all the sequel, (ξt)t∈Z is a sequence of centered independent and identically distributed random variables following a
symmetric distribution (i.e., the distributions of ξ0 and −ξ0 are the same) continuous with respect to Lebesgue measure
and such as IE(ξ20) = 1.

1. Preliminaries:

(a) Let (Xt)t∈Z be a stationary time series. Prove that (X2
t )t∈Z is a stationary time series.

(b) Assume that (Y 2
t )t∈Z is a stationary time series. Prove that (Yt)t∈Z is not necessary a stationary time series.

(c) Let (ut)t∈Z be a stationary time series, independent to (ξt)t∈Z. Prove that (ξt ut)t∈Z is a stationary time
series.

(d) For a random variable Z, define sign(Z) = IIZ>0 − IIZ<0. Prove that (sign(ξt))t∈Z is a white noise, inde-
pendent of (|ξt|)t∈Z. Let (Yt)t∈Z be a time series defined by Yt = ξtG

(
(|Yt−i|)i∈N∗

)
for any t ∈ Z where

G : RN → (0,∞) is a fixed function. Assume that (Y 2
t )t∈Z is a causal (with respect to ((ξs)s≤t)t∈Z) station-

ary process. Prove that (Yt)t∈Z is also a causal stationary time series.

Proof. (a) Clear since g(Xt1 , . . . , Xtk )
D∼ g(Xt1+c, . . . , Xtk+c) when g : Rk → Rk is a Borelian function.

(b) If Xt = (−1)t for any t ∈ Z, then (Xt) is not a stationary process, but (X2
t ) is a stationary process.

(c) We have (ut1 , . . . , utk )
D∼ (ut1+c, . . . , utk+c) and (ξt1 , . . . , ξtk )

D∼ (ξt1+c, . . . , ξtk+c). Since (ut1 , . . . , utk ) and (ξt1 , . . . , ξtk )

are independent, then (ut1 , . . . , utk , ξt1 , . . . , ξtk )
D∼ (ut1+c, . . . , utk+c, ξt1+c, . . . , ξtk+c). Apply now h : R2k → Rk such as

h(x1, . . . , x2k) = (x1xk+1, . . . , xkx2k) at both sides of the previous equality.

(d) It is clear that (sign(ξt))t∈Z is a sequence of iidrv since (ξt)t∈Z is a sequence of iidrv and IE(sign(ξt)) = 0 (symmetry) for any
t and var(sign(ξt)) = Cte > 0 since the law of ξ0 is not the Dirac measure in 0. Moreover, for any t, sign(ξt) is independent
to (|ξs|)s 6=t since (ξt)t∈Z is a sequence of iidrv. The only thing to prove is |ξ0| independent to sign(ξ0). For x ≥ 0, IP(|ξ0| ≤
x | sign(ξ0) = 1) = IP(0 ≤ ξ0 ≤ x | sign(ξ0) = 1) = IP(0 ≤ ξ0 ≤ x)/P (sign(ξ0) = 1) = 2 IP(0 ≤ ξ0 ≤ x) = 2 IP(−x ≤ ξ0 ≤ 0) =
IP(|ξ0| ≤ x | sign(ξ0) = 1) from symmetry of the distribution of ξ0 (the case ξ0 = 0 has not to be considered wince it is with null
probability).
If (Y 2

t )t∈Z is a causal stationary process, with the same trick than in (a), we deduce ((|Yt|)t∈Z is a stationary process. But

|Yt| = |ξt|G1/2
(
(|Yt−i|)i∈N∗

)
, and since it is also causal and since (ξt)t∈Z is a sequence of iidrv, (sign(ξt)) is independent to

(|Yt|). Finally, since Yt = sign(ξt) |Yt|, and using (c), we deduce that (Yt) is also a causal stationary process.

2. Main theoretical part: If it exists, we consider a sequence (Xt)t∈Z such as:

Xt = αXt−1 + εt with εt = ξt

√
a0 + a1X2

t−1 for any t ∈ Z (1)

where (α, a0, a1) ∈] = R× (0,∞)× [0,∞) are unknown parameters.

(a) In this question, we assume α = a1 = 0. Which kind of process is (Xt)t∈Z and provide a condition of the
existence of a stationary causal second order solution. Compute IE(X0) and rX(k) = cov(X0, Xk) for k ∈ N.

(b) In this question, we assume a1 = 0 and α 6= 0. Which kind of process is (Xt)t∈Z and provide a condition of
the existence of a stationary causal second order solution. Compute IE(X0) and rX(k) for k ∈ N.

(c) In this question, we assume α = 0 and a1 > 0. Which kind of process is (Xt)t∈Z and provide condition of the
existence of a stationary causal second order solution. Compute IE(X0) and rX(k) for k ∈ N.

(d) Now and until the end, we study the general case (α, a0, a1) ∈] = R × (0,∞) × [0,∞). Prove that (Xt)t∈Z
is an affine causal process. Prove that the function x →

√
1 + x2 is Lipshitzian and deduce that a sufficient

condition for (Xt)t∈Z to be a causal stationary second order process is:

|α|+
√
a1 < 1. (2)
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(e) For |α| < 1, prove that if (Xt)t∈Z is a causal stationary second order process then (εt)t∈Z defined by

εt = ξt

√√√√a0 + a1

( ∞∑
i=0

αi εt−1−i

)2
for any t ∈ Z, (3)

is a causal stationary second order process and a weak white noise. Show that if (εt)t∈Z is a causal stationary
second order process then

a1 + α2 < 1. (4)

Compare this condition with (2).

(f) In Doukhan et al. (2016), it was established that under (4), then (εt)t∈Z is a causal stationary second order
process. Extend this property to (Xt)t∈Z. Under (4), compute IE(X0) and rX(k) for k ∈ N.

(g) Deduce also IE(Xt | (Xt−s)s∈N∗) and var(Xt | (Xt−s)s∈N∗). Is (Xt)t∈Z a conditionaly heteroskedastic process?

(h) Assume now that (X1, · · · , XN ) is observed and let θ = t(α, a0, a1). Provide the expression of the quasi-

maximum likelihood estimator θ̂ of θ. Is θ̂ a consistent estimator? What is its convergence rate?

(i) Provide forecasting of XN+1 and X2
N+1.

Proof. (a) If α = a1 = 0, then (Xt) is a white noise and a stationary process without additional condition. And E(X0) = 0,
rX(k) = a0 if k = 0, else 0.

(b) If a1 = 0 and α 6= 0, then (Xt) is a causal AR[1] process if |α| < 1, a noncausal AR[1] process if |α| > 1 and a non stationary
process if |α| = 1. We have IE(X0) = 0, and rX(k) = a0 αk/(1− α2) when |α| < 1, rX(k) = a0 α2−k/(α2 − 1) when |α| > 1.

(c) If a1 6= 0 and α = 0, then (Xt) is a causal ARCH[1] process when a1 < 1. We have IE(X0) = 0, and rX(k) = a0/(1 − a1) if
k = 0, else 0.

(d) We have Xt = F ((Xs)s<t) + ξtM((Xs)s<t), with F ((Xs)s<t) = αXt−1 and M((Xs)s<t) =
√
a0 + a1X2

t−1: (Xt) is an affine

causal process.

From finite increments theorem, we have |
√

1 + x2 −
√

1 + y2| ≤ supz∈R |z|(1 + z2)−1/2 |x− y| ≤ |x− y| for any (x, y) ∈ R2.

Therefore, with M((Xs)s<t) =
√
a0

√
1 + (

√
a1 Xt−1/

√
a0)2, the Lipshitzian coefficients of M are αi(M) =

√
a0 ×

√
a1/
√
a0 =√

a1 for i = 1, and 0 else, while for F , αi(F ) = |α| for i = 1, and 0 else. Therefore a sufficient condition of stationarity of a
secon order solution is

∑
i
αi(F ) +

∑
i
αi(M) < 1 implying |α|+√a1 < 1.

(e) As εt = Xt −αXt−1, a finite linear combination of a stationary process, then (εt) is a stationary process. Moreover, as |α| < 1,
we have Xt =

∑∞
i=0

αiεt−i and therefore we obtain (3). As (Xt) is a causal process, this such a case for (εt) and as it was done

mnay times, since εt = ξtG((ξs)s<t) we deduce IE(ε0) = 0 and rε(k) = Cte for k = 0 and 0 else: a weak white noise.

Moreover, since var(εt) = IE(ε2t ) = IE(ε20) for any t, we deduce, IE(ε2t ) = IE(ξt)

(
a0 + a1IE

(
(
∑∞

i=0
αiεt−1−i)2

))
from indepen-

dence, implying IE(ε20) =

(
a0 + a1 IE(ε20)

∑∞
i=0

α2i

)
and therefore (1 − α2 − a1)IE(ε20) = a0(1 − α2). This is possible only if

1− α2 − a1 >, i.e. condition (4).
We have (

√
a1 + |α|)2 = a1 + α2 + 2a1|α| ≥ a1 + α2. Therefore if a1 + α2 < 1 then

√
a1 + |α| < 1.

(f) If (εt) is a causal stationary second order process, then since Xt =
∑∞

i=0
αiεt−i and

∑
|αi| < ∞, then (Xt) is also a causal

stationary second order process.
We have IE(Xt) = 0 and rX(k) = a0

1−a1
αk/(1− α2).

(g) It is clear that IE(Xt | (Xt−s)s∈N∗ ) = F ((Xt−s)s∈N∗ ) = αXt−1 and var(Xt | (Xt−s)s∈N∗ ) = M2((Xt−s)s∈N∗ ) = a0+a1 X2
t−1.

Therefore (Xt) is a conditionally heteroskedastic process.

(h) After usual computations, we have

θ̂ = argmin
θ∈Θ

{
log(a0) +

X2
1

a0
+

N∑
i=2

log
(
a0 + a1X

2
i−1

)
+

(Xi − αXi−1)2

a0 + a1X2
i−1

}
Since the number of Lipshitzian coefficients is finite, since the identification assumption is satisfied, then under (4), the estimator
is strongly consistent.
Moreover, since the numbers of Lipzitzian coefficients of derivatives and second derivatives are also finite, then if IE(ξ4

0) < ∞
and under (4), the estimator is strongly consistent, then θ̂ satisfies a central limit theorem with a convergence rate

√
n.

(i) We have X̂N+1 = IE(XN+1 | Xn, . . .) = αXN . Since α is unknown, it could be replaced by α̂.

We have X̂2
N+1 = IE(X2

N+1 | XN , . . .) = α2X2
N + (a0 + a1X2

N ). Since the parameters are unknown, they could be replaced by

α̂, â0 and â1.

3. Numerical part: We study with R software the open daily historical data of Bitcoin from January 28 2014 to
January 28 2018.

(a) First the following commands have been executed with figures exhibited below:

Bit=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MO/TP/BTC-USD.csv")

Bit0=Bit$Open; n=length(Bit0)

plot.ts(Bit0); plot.ts(log(Bit0))

Y=log(Bit0); X1=c(1:n); X2=X1^2

Y.lm=lm(Y~X1+X2); summary(Y.lm)
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Command lm realizes a least squares linear regression. Here there are the graphs and main numerical results:
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.541e+00 1.645e-02 397.61 <2e-16 ***

X1 -4.034e-03 5.396e-05 -74.76 <2e-16 ***

X2 4.332e-06 3.711e-08 116.73 <2e-16 ***

Residual standard error: 0.2054 on 1404 degrees of freedom

Multiple R-squared: 0.9635,Adjusted R-squared: 0.9635

F-statistic: 1.854e+04 on 2 and 1404 DF, p-value: < 2.2e-16

Question II.1: Explain what is done.

(b) New commands are then executed:

plot.ts(Y.lm$residuals)

Fit=arima(Y.lm$residuals, order = c(1,0,2))

acf(Fit$residuals)

Box.test(Fit$residuals, lag = 20,"Ljung-Box", fitdf=3)

Here there are graphs and numerical results:
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Box-Ljung test

data: Fit$residuals

X-squared = 25.557, df = 17, p-value = 0.08292

Question II.2: Explain what is done (notably why we use fitdf=3) and explain which conclusions you deduce.

(c) The following sequence of commands is then executed:

pred=predict(Fit,n.ahead=1); pred[1]

exp(pred$pred[1]+sum(Y.lm$coeff*c(1,(n+1),(n+1)^2)))

The results are the following:

>-0.09092553

> 11582.19
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Question II.3: What is done here and what are your conclusions?

(d) Finally, the following sequence of commands is executed:

LogRetBit=log(Bit0[2:n]/Bit0[1:(n-1)])

plot.ts(LogRetBit); acf(LogRetBit)

library(fGarch)

FitLogRet1=garchFit(~garch(1,1),data=LogRetBit,trace=FALSE)

summary(FitLogRet1)

FitLogRet2=garchFit(~garch(1,2),data=LogRetBit,trace=FALSE)

summary(FitLogRet2)

The graphs and results are the following:
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> Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 1.646e-03 7.012e-04 2.347 0.018911 *

omega 2.894e-05 7.565e-06 3.825 0.000131 ***

alpha1 1.690e-01 2.155e-02 7.845 4.44e-15 ***

beta1 8.365e-01 1.774e-02 47.139 < 2e-16 ***

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 2253.533 0

Shapiro-Wilk Test R W 0.9142998 0

Ljung-Box Test R Q(10) 31.40408 0.0005030119

Ljung-Box Test R Q(15) 34.67742 0.002732705

Ljung-Box Test R Q(20) 42.10945 0.002676158

Ljung-Box Test R^2 Q(10) 7.152754 0.7109496

Ljung-Box Test R^2 Q(15) 11.73218 0.6991771

Ljung-Box Test R^2 Q(20) 16.21253 0.7033551

LM Arch Test R TR^2 9.629902 0.648393

Information Criterion Statistics:

AIC BIC SIC HQIC

-3.971264 -3.956332 -3.971280 -3.965683

> Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 1.711e-03 7.038e-04 2.431 0.015041 *

omega 3.529e-05 1.068e-05 3.305 0.000949 ***

alpha1 2.098e-01 3.277e-02 6.401 1.54e-10 ***

beta1 4.464e-01 1.945e-01 2.295 0.021745 *

beta2 3.485e-01 1.755e-01 1.985 0.047127 *

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 2360.269 0

Shapiro-Wilk Test R W 0.9149907 0
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Ljung-Box Test R Q(10) 30.51412 0.000705495

Ljung-Box Test R Q(15) 33.53633 0.003954055

Ljung-Box Test R Q(20) 40.94799 0.003782937

Ljung-Box Test R^2 Q(10) 5.451614 0.8590436

Ljung-Box Test R^2 Q(15) 8.699528 0.8926969

Ljung-Box Test R^2 Q(20) 13.33315 0.8626366

LM Arch Test R TR^2 7.509703 0.8221771

Information Criterion Statistics:

AIC BIC SIC HQIC

-3.974214 -3.955549 -3.974239 -3.967238

Question II.4: What is done here and which model could you chose?


