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1. Let (e¢)tez a sequence of centered independent and identically distributed random variables such as
[E(e?) = 1. If it exists we consider a sequence (X;)iez such as:

where (ag, a1, b1) € [0,00)

(a)
(b)

Xy =¢erop with op=ap+ a1 |X4—1|+bio—1 foranyteZ (1)

3 are unknown parameters with b; > 0.

Prove that (e¢) is a stationary time series.

Denote R™ the space of sequences of real numbers with finite number of non-zero real numbers.
Consider F' : R® — R be a measurable function on R*. Assume also that F' is Lipchitzian on
R°: there exists a sequence (¢;);en+ of real non-negative numbers such that for any x = (z;);, y =
(yi)i € R,

o0 (0.]

‘F(:):) — F(y)| < Z& |z; — yi|, where Z&- < 0.

i=1 i=1
For t € Z, prove that (Y;(n))n where Y;(n) = F(st,at_l, ceeyEt-n, 0,0, .. ) is a Cauchy sequence on
IL2. Deduce that (Y;)¢cz, where Y; = F((&;—k)keN) for t € Z, is a stationary second order process.

Let a(-) be the function such as a(x) = ai|x| + by. Show that IEH log (a(e0)) H < oo using Jensen
Inequality. Deduce also that for any ¢t € Z:

(Ha(et_i)f/n n%oo ¢’ with ~v=1IE[log (a(e0))]. (2)
i=1

Suppose (0¢)ez exists in (1). Then, establish that oy = ag + a(ei—1) oy—1 for any t € Z. Deduce
by recurrence that for any ¢t € Z and k € N*,

k=1 ¢

or = ﬂt(]{;) + a(&"t_l) X oo X a(at,k)at,k with 5t<k) = a0<1 + Z H Oé(z’:‘t_j)>.

i=1 j=1

Using (2) prove that if v < 0 then for any ¢t € Z, B¢(n) % B¢ with 5, a positive random variable
n—-+0o0

and satisfies 5; = ag + a(ei—1)Pi—1. Consequently, write X; = F'(g¢,e4-1,...) and conclude about
the existence and stationarity of (X;);cz. What’s happening if ay = 07

Assume now v < 0 and by < 1. Using an iterating decomposition, show for any ¢ € Z:

o0
ao E : J .
1—0; ta =~ by Xe—j-l.

gt —

Deduce IE(X; | Xy—1, Xi—2,...) and var(X; | X;—1, X¢—2,...). Is (X;) a conditionaly heteroskedastic
process?



(2)

(h)
(i)

Assume now that (X, -+, Xy) is observed and let § = *(ag, a1, b1). Prove that the quasi-maximum
likelihood estimator 6 of 0 is:

6= argmin{log( il ) + ;((l_bl)Xl>2+

0O 1—1b ag
N i—2
ag ; 1 X; 2
Zlog (74-&121)‘“)(}_]'_1‘) +*< 5 5 ) }
i=2 1= =0 2 2 a1 >0 bl Xi—j-1]

where O is a set that should be specified.

Is 6 a consistent estimator? What is its convergence rate?
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Proof. (a) Consider k € N*, t; < --- < t, € Z* and ¢ € Z. Then the characteristic function of (e,,...,&,) is
Hle ¢e(u;) for any (ui,...,ur) € RF since (g¢) is a sequence of i.i.d.r.v. Thus this is the same than the one of
(Et14cs- - -3 Ety+c), implying the stationarity of (g).

(b)

Set n > 0. For ni < ng € N, we have |Y<"1) — ("2)’ < > ny it lilet—k| using the Lipchitz property. As
a consequence varHYt("l) - Yt("Z)’] < var[leo]] D02 n1+1£’9 + Efleo|]* (X132 —— )2 and since > 2, < 00, we
deduce that there exists ng such as for any no < n1 < na, var[|Yt("1) — Yt(""’) H < n. As a consequence (Yt(n))n is a

Cauchy sequence on IL2,
Since I.? is a Banach space, we deduce that (Yt("))n is also a consistent sequence on IL' and its limit is ¥;. We also
have for any n € N, (€¢)¢; —n<t<t, has the same characteristic function than (e¢)¢, 4c—n<t<t,+c. As a consequence,

if we consider Y(n) F(et,e4-1,...,6t—n,0,0,...), then it is clear than (Yt(ln), cey Yt(k")) has the same distribution
than (Y;(’fgc, .. Y;(kn_ac) and therefore (Yt(”))t is a stationary sequence. As this is true for any n € N, this is also true

when n — 0o, and this implies the stationarity of (Y;), which is also a IL? sequence.

If by > 0 then log (a(c0)) = log(b1)+log(14a’|eo|) with ajai /by > 0. Since [0, 00) — log(1+x) is a concave function,
the Jensen Inequality implies IE|[log (a(c0))|] < |log(b1)| +log (1 + aiIE(|eo])) < |log(bi)|+log (14 a})) < oo since
E(|eo]) < /var(eo) <1 from Jensen Inequality.

We have N
(Ha(st—i))l/n = exp( Zlog alei-i))-
=1

Using Strong Law of Large Numbers, since the sequence (log(a(e k)));C is a sequence of iidrv satisfying IE(] log(a(eo0))|) <
oo, then (% > log(a(et,i)) 2

n—+oo
We have o, = ao + a1 | X¢—1| + b1 0t—1 = ao + o¢—1(a1|et—1| + b1).
We prove the relationship by recurrence. It is valid for ¥ = 1. Now assume it is valid for k and replace o¢—r by
ao + 0¢—k—1(a1|et—k—1| + b1). Then this provides the relationship at rank k + 1.
Using the Cauchy Lemma for sum of positive real numbers, since ¢” < 1 for v < 0, we deduce from (2) that
Br(t) njf)w B(t) for any t € Z.

As we have a(gi-1)Bi-1(n — 1) = ao(aler—1) + 21 [T, aler J)) = ao(X75 [T ale a))) = Bi(n) — ao.
Therefore since each limit exists almost surely, we obtain a(e¢—1)Bt—1 = Bt — ao.
We finally obtain that if v <0, [T/_, a(ei—;) % 0 and therefore

n—-+oo

= frer = ap &t (1 + Z H a(et_j)),
i=1j=1
implying that (X;) exists almost surely an is a stationary process.
If ap = 0 the only possibility is X; = 0 a.s.
We have ot = ao + a1|X¢—1| + b1(ao + a1|X¢—2| +b1ot—2) = ao(1 +b1) + a1 (| Xe—1| + b1]| Xe—2]) + b?0¢_5. By iteration,
we obtain for any k € N:

ot = aop (1 +bi 4+ + b’f) + a1 (|Xt—1| + 01| Xe—o| +- -+ blf|Xt7k71\) + oMo .
As (o) is stationary sequence, and 0 < b; < 1 implies 6™ — 0, 14b; + -+ b5 = (1 — b))~ and | Xe—1| +
n—oo

b1|Xi—a| 4+ - + b¥|X;_x_1| converges almost surely as a linear combination of (| X;|) with 3 |bi| < oo, we finally
obtain the relation.

We obtain IE(X; | Xi—1,---) = E(et)[E(0¢) = 0 and var(X; | X¢—1,---) = B(X? | X¢—1,---) = 07.

This implies that (X;) is a conditionally heteroskedastic process (APARCH process).

Since o7 is the volatility of (X;), the conditional log-density of X, with respect to X;—1, X;—2,... is —%(log(%r) +
log(c?) + X7 /0?). As a consequence, since (X1,..., Xn) is observed, we replace in this formula X; by 0 for ¢ < 0.
Moreover as 0 is supposed to be a maximizer of the quasi-log-likelihood, this is equivalent to minimize it multiplied
by (—2). Finally 0= (0,00) X {a1 >0, by >0, IEH log(a1 + b1|€0|)|] < OO}



(h) If we consider the relation X; = &; (1i70b1 + a1 Z;io b{|X1;_j_1‘> it could be written as a causal affine model X; =
Mie; + fb with ff = 0 and M§ = o, = G(Xt-1,Xt—2,...). But the function G is Lipshitzian with coefficients
ago)(M) = a1b? and therefore Z]. a;())(M) < 00. Moreover, M§ = M}, implies § = 0" almost surely. It is also possible
to compute a§1)(M ) and a§2)(M ) and we conclude that @ is a consistent estimator of 6 and there exists a definite

c

positive matrix 3y such as \/ﬁ(é\— 0) = /\/(0, Zg).
n— o0

- ~ ~ _ - 2
(i) From prA@vious computations, Xny4+1 =0 and X3, = ( i%l +a1 377, b{|Xt,j,1\) .

1

2. We study with R software the Nasdaq index from January 11st 2000 to January 11 2016.

(a) First the following commands have been executed with figures exhibited below:

Nas=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MMMEF/TP/Nasdaq.csv")
X=Nas$Closing

n=length(X)

Y=log(X[2:n]/X[1:(n-1)])

ts.plot(Y)

acf (Y)

acf(Y"2)
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Question I1.1: Fxplain what is done. Which conclusions could you obtain from both the last com-
mands? Are they compatible with o GARCH modelling?

New commands are then executed:

library(fGarch)
QMLE=garchFit(~ garch(1,1), data = Y, trace = FALSE)
QMLE

Here there are the numerical results:

Call:
garchFit(formula = “garch(l, 1), data = Y, trace = FALSE)

Coefficient(s):
mu omega alphal betal
6.4040e-04 2.1146e-06 8.6732e-02 9.0314e-01

Estimate 8Std. Error t value Pr(>|t|)
mu 6.404e-04 1.617e-04 3.961 7.46e-05 *xx
omega 2.115e-06  4.052e-07 5.219 1.80e-07 *x*x*
alphal 8.673e-02 8.639e-03 10.039 < 2e-16 *x*x
betal 9.031e-01 9.165e-03 98.544 < 2e-16 **x

Statistic p-Value
Jarque-Bera Test R Chi®2 168.5587 0
Shapiro-Wilk Test R W 0.9923722 2.300106e-14
Ljung-Box Test R Q(10) 10.64455 0.3858725
Ljung-Box Test R Q(15) 17.2698  0.3029932
Ljung-Box Test R Q(20) 26.26701 0.1571734
Ljung-Box Test R"2 Q(10) 20.02718 0.02899662
Ljung-Box Test R"2 Q(15) 31.17497 0.008323147
Ljung-Box Test R"2 Q(20) 35.92566 0.01569342
LM Arch Test R TR™2  20.11987 0.06485208

Information Criterion Statistics:
AIC BIC SIC HQIC
-5.886147 -5.880197 -5.886149 -5.884045



Question I1.2: Explain what is done and explain which conclusions you deduce.

Finally the following sequence of commands are executed:

M=matrix(0,3,4)

NAS10=garchFit(~ garch(1,0), data = Y, trace = FALSE)
M[1,1]=NAS100fit$ics[2]

NAS11=garchFit(~ garch(1,1), data = Y, trace = FALSE)
M[1,2]=NAS11@fit$ics[2]

NAS12=garchFit(~ garch(1,2), data = Y, trace = FALSE)
M[1,3]=NAS120fit$ics[2]

NAS13=garchFit(~ garch(1,3), data = Y, trace = FALSE)
M[1,4]=NAS130@fit$ics[2]

NAS20=garchFit(~ garch(2,0), data = Y, trace = FALSE)
M[2,1]1=NAS20@fit$ics[2]

NAS21=garchFit(~ garch(2,1), data = Y, trace = FALSE)
M[2,2]=NAS21@fit$ics[2]

NAS22=garchFit(~ garch(2,2), data = Y, trace = FALSE)
NAS33=garchFit(~ garch(3,3), data = Y, trace = FALSE)
M[3,4]=NAS330fit$ics[2]

M

(Gop=which(M==min(M),2))

summary (NAS21)

The resuts are the following:

> M
[,1] [,2] [,3] [,4]

[1,]1 -5.501540 -5.880197 -5.878215 -5.876146
[2,] -5.665021 -5.881333 -5.879577 -5.877575
[3,]1 -5.717491 -5.879332 -5.877748 -5.875797
> (Gop=which(M==min(M),2))

row col
[1,] 2 2

Question I1.3: What is done here and what are your conclusions?



