Master 2 M0 2018-2019

Analyse des séries financières

Examen final, Février 2019

3h00, sans aucun document

1. Let $\left(\varepsilon_{t}\right)_{t \in \mathbf{Z}}$ a sequence of centered independent and identically distributed random variables such as $\mathbb{E}\left(\varepsilon_{0}^{2}\right)=1$. If it exists we consider a sequence $\left(X_{t}\right)_{t \in \mathbf{Z}}$ such as:

$$
\begin{equation*}
X_{t}=\varepsilon_{t} \sigma_{t} \quad \text { with } \quad \sigma_{t}=a_{0}+a_{1}\left|X_{t-1}\right|+b_{1} \sigma_{t-1} \quad \text { for any } t \in \mathbf{Z} \tag{1}
\end{equation*}
$$

where $\left(a_{0}, a_{1}, b_{1}\right) \in[0, \infty)^{3}$ are unknown parameters with $b_{1}>0$.
(a) Prove that $\left(\varepsilon_{t}\right)$ is a stationary time series.
(b) Denote \mathbf{R}^{∞} the space of sequences of real numbers with finite number of non-zero real numbers. Consider $F: \mathbf{R}^{\infty} \rightarrow \mathbf{R}$ be a measurable function on \mathbf{R}^{∞}. Assume also that F is Lipchitzian on \mathbf{R}^{∞} : there exists a sequence $\left(\ell_{i}\right)_{i \in \mathbf{N}^{*}}$ of real non-negative numbers such that for any $x=\left(x_{i}\right)_{i}, y=$ $\left(y_{i}\right)_{i} \in \mathbf{R}^{\infty}$,

$$
|F(x)-F(y)| \leq \sum_{i=1}^{\infty} \ell_{i}\left|x_{i}-y_{i}\right|, \quad \text { where } \quad \sum_{i=1}^{\infty} \ell_{i}<\infty
$$

For $t \in \mathbf{Z}$, prove that $\left(Y_{t}^{(n)}\right)_{n}$ where $Y_{t}^{(n)}=F\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{t-n}, 0,0, \ldots\right)$ is a Cauchy sequence on \mathbb{L}^{2}. Deduce that $\left(Y_{t}\right)_{t \in \mathbf{Z}}$, where $Y_{t}=F\left(\left(\varepsilon_{t-k}\right)_{k \in \mathbf{N}}\right)$ for $t \in \mathbf{Z}$, is a stationary second order process.
(c) Let $\alpha(\cdot)$ be the function such as $\alpha(x)=a_{1}|x|+b_{1}$. Show that $\mathbb{E}\left[\left|\log \left(\alpha\left(\varepsilon_{0}\right)\right)\right|\right]<\infty$ using Jensen Inequality. Deduce also that for any $t \in \mathbf{Z}$:

$$
\begin{equation*}
\left(\prod_{i=1}^{n} \alpha\left(\varepsilon_{t-i}\right)\right)^{1 / n} \underset{n \rightarrow+\infty}{\stackrel{\text { a.s. }}{\rightarrow}} e^{\gamma} \quad \text { with } \quad \gamma=\mathbb{E}\left[\log \left(\alpha\left(\varepsilon_{0}\right)\right)\right] \tag{2}
\end{equation*}
$$

(d) Suppose $\left(\sigma_{t}\right)_{t \in \mathbf{Z}}$ exists in (1). Then, establish that $\sigma_{t}=a_{0}+\alpha\left(\varepsilon_{t-1}\right) \sigma_{t-1}$ for any $t \in \mathbf{Z}$. Deduce by recurrence that for any $t \in \mathbf{Z}$ and $k \in \mathbf{N}^{*}$,

$$
\sigma_{t}=\beta_{t}(k)+\alpha\left(\varepsilon_{t-1}\right) \times \cdots \times \alpha\left(\varepsilon_{t-k}\right) \sigma_{t-k} \quad \text { with } \quad \beta_{t}(k)=a_{0}\left(1+\sum_{i=1}^{k-1} \prod_{j=1}^{i} \alpha\left(\varepsilon_{t-j}\right)\right)
$$

(e) Using (2) prove that if $\gamma<0$ then for any $t \in \mathbf{Z}, \beta_{t}(n) \underset{n \rightarrow+\infty}{\text { a.s. }} \beta_{t}$ with β_{t} a positive random variable and satisfies $\beta_{t}=a_{0}+\alpha\left(\varepsilon_{t-1}\right) \beta_{t-1}$. Consequently, write $X_{t}=F\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots\right)$ and conclude about the existence and stationarity of $\left(X_{t}\right)_{t \in \mathbf{Z}}$. What's happening if $a_{0}=0$?
(f) Assume now $\gamma<0$ and $b_{1}<1$. Using an iterating decomposition, show for any $t \in \mathbf{Z}$:

$$
\sigma_{t}=\frac{a_{0}}{1-b_{1}}+a_{1} \sum_{j=0}^{\infty} b_{1}^{j}\left|X_{t-j-1}\right|
$$

Deduce $\mathbb{E}\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right)$ and $\operatorname{var}\left(X_{t} \mid X_{t-1}, X_{t-2}, \ldots\right)$. Is $\left(X_{t}\right)$ a conditionaly heteroskedastic process?
(g) Assume now that $\left(X_{1}, \cdots, X_{N}\right)$ is observed and let $\theta={ }^{t}\left(a_{0}, a_{1}, b_{1}\right)$. Prove that the quasi-maximum likelihood estimator $\widehat{\theta}$ of θ is:

$$
\begin{aligned}
\widehat{\theta}= & \underset{\theta \in \Theta}{\operatorname{argmin}}\left\{\log \left(\frac{a_{0}}{1-b_{1}}\right)+\right. \\
2 & \frac{1}{2}\left(\frac{\left(1-b_{1}\right) X_{1}}{a_{0}}\right)^{2}+ \\
& \left.\sum_{i=2}^{N} \log \left(\frac{a_{0}}{1-b_{1}}+a_{1} \sum_{j=0}^{i-2} b_{1}^{j}\left|X_{i-j-1}\right|\right)+\frac{1}{2}\left(\frac{X_{i}}{\frac{a_{0}}{1-b_{1}}+a_{1} \sum_{j=0}^{i-2} b_{1}^{j}\left|X_{i-j-1}\right|}\right)^{2}\right\}
\end{aligned}
$$

where Θ is a set that should be specified.
(h) Is $\widehat{\theta}$ a consistent estimator? What is its convergence rate?
(i) Provide forecasting of X_{N+1} and X_{N+1}^{2}.

Proof. (a) Consider $k \in N^{*}, t_{1}<\cdots<t_{k} \in \mathbf{Z}^{k}$ and $c \in \mathbf{Z}$. Then the characteristic function of $\left(\varepsilon_{t_{1}}, \ldots, \varepsilon_{t_{k}}\right)$ is $\prod_{i=1}^{k} \phi_{\varepsilon}\left(u_{i}\right)$ for any $\left(u_{1}, \ldots, u_{k}\right) \in \mathbf{R}^{k}$ since $\left(\varepsilon_{t}\right)$ is a sequence of i.i.d.r.v. Thus this is the same than the one of $\left(\varepsilon_{t_{1}+c}, \ldots, \varepsilon_{t_{k}+c}\right)$, implying the stationarity of $\left(\varepsilon_{t}\right)$.
(b) Set $\eta>0$. For $n_{1}<n_{2} \in \mathbf{N}$, we have $\left|Y_{t}^{\left(n_{1}\right)}-Y_{t}^{\left(n_{2}\right)}\right| \leq \sum_{k=n_{1}+1}^{n_{2}} \ell_{k}\left|\varepsilon_{t-k}\right|$ using the Lipchitz property. As a consequence $\operatorname{var}\left[\left|Y_{t}^{\left(n_{1}\right)}-Y_{t}^{\left(n_{2}\right)}\right|\right] \leq \operatorname{var}\left[\left|\varepsilon_{0}\right|\right] \sum_{k=n_{1}+1}^{n_{2}} \ell_{k}^{2}+\mathbb{E}\left[\left|\varepsilon_{0}\right|\right]^{2}\left(\sum_{k=n_{1}+1}^{n_{2}} \ell_{k}\right)^{2}$ and since $\sum_{k=1}^{\infty} \ell_{k}<\infty$, we deduce that there exists n_{0} such as for any $n_{0} \leq n_{1}<n_{2}$, $\operatorname{var}\left[\left|Y_{t}^{\left(n_{1}\right)}-Y_{t}^{\left(n_{2}\right)}\right|\right] \leq \eta$. As a consequence $\left(Y_{t}^{(n)}\right)_{n}$ is a Cauchy sequence on \mathbb{L}^{2}.
Since \mathbb{L}^{2} is a Banach space, we deduce that $\left(Y_{t}^{(n)}\right)_{n}$ is also a consistent sequence on \mathbb{L}^{1} and its limit is Y_{t}. We also have for any $n \in \mathbf{N},\left(\varepsilon_{t}\right)_{t_{1}-n \leq t \leq t_{k}}$ has the same characteristic function than $\left(\varepsilon_{t}\right)_{t_{1}+c-n \leq t \leq t_{k}+c}$. As a consequence, if we consider $Y_{t}^{(n)}=F\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{t-n}, 0,0, \ldots\right)$, then it is clear than $\left(Y_{t_{1}}^{(n)}, \ldots, Y_{t_{k}}^{(n)}\right)$ has the same distribution than $\left(Y_{t_{1}+c}^{(n)}, \ldots, Y_{t_{k}+c}^{(n)}\right)$ and therefore $\left(Y_{t}^{(n)}\right)_{t}$ is a stationary sequence. As this is true for any $n \in \mathbf{N}$, this is also true when $n \rightarrow \infty$, and this implies the stationarity of $\left(Y_{t}\right)$, which is also a \mathbb{L}^{2} sequence.
(c) If $b_{1}>0$ then $\log \left(\alpha\left(\varepsilon_{0}\right)\right)=\log \left(b_{1}\right)+\log \left(1+a_{1}^{\prime}\left|\varepsilon_{0}\right|\right)$ with $a_{1}^{\prime} a_{1} / b_{1} \geq 0$. Since $x[0, \infty) \mapsto \log (1+x)$ is a concave function, the Jensen Inequality implies $\mathbb{E}\left|\left[\log \left(\alpha\left(\varepsilon_{0}\right)\right) \mid\right] \leq\left|\log \left(b_{1}\right)\right|+\log \left(1+a_{1}^{\prime} \mathbb{E}\left(\left|\varepsilon_{0}\right|\right)\right) \leq\left|\log \left(b_{1}\right)\right|+\log \left(1+a_{1}^{\prime}\right)\right)<\infty$ since $\mathbb{E}\left(\left|\varepsilon_{0}\right|\right) \leq \sqrt{\operatorname{var}\left(\varepsilon_{0}\right)} \leq 1$ from Jensen Inequality.
We have

$$
\left(\prod_{i=1}^{n} \alpha\left(\varepsilon_{t-i}\right)\right)^{1 / n}=\exp \left(\frac{1}{n} \sum_{i=1}^{n} \log \left(\alpha\left(\varepsilon_{t-i}\right)\right) .\right.
$$

Using Strong Law of Large Numbers, since the sequence $\left(\log \left(\alpha\left(\varepsilon_{k}\right)\right)\right)_{k}$ is a sequence of iidrv satisfying $\mathbb{E}\left(\left|\log \left(\alpha\left(\varepsilon_{0}\right)\right)\right|\right)<$ ∞, then $\left(\frac{1}{n} \sum_{i=1}^{n} \log \left(\alpha\left(\varepsilon_{t-i}\right)\right) \underset{n \rightarrow+\infty}{\stackrel{a . s}{\rightarrow}} \gamma\right.$.
(d) We have $\sigma_{t}=a_{0}+a_{1}\left|X_{t-1}\right|+b_{1} \sigma_{t-1}=a_{0}+\sigma_{t-1}\left(a_{1}\left|\varepsilon_{t-1}\right|+b_{1}\right)$.

We prove the relationship by recurrence. It is valid for $k=1$. Now assume it is valid for k and replace σ_{t-k} by $a_{0}+\sigma_{t-k-1}\left(a_{1}\left|\varepsilon_{t-k-1}\right|+b_{1}\right)$. Then this provides the relationship at rank $k+1$.
(e) Using the Cauchy Lemma for sum of positive real numbers, since $e^{\gamma}<1$ for $\gamma<0$, we deduce from (2) that $\beta_{n}(t) \xrightarrow[n \rightarrow+\infty]{\text { a.s. }} \beta(t)$ for any $t \in \mathbf{Z}$.
As we have $\left.\left.\alpha\left(\varepsilon_{t-1}\right) \beta_{t-1}(n-1)=a_{0}\left(\alpha\left(\varepsilon_{t-1}\right)+\sum_{i=1}^{n-2} \prod_{j=1}^{i} \alpha\left(\varepsilon_{t-1-j}\right)\right)\right)=a_{0}\left(\sum_{i=1}^{n-1} \prod_{j=1}^{i} \alpha\left(\varepsilon_{t-j}\right)\right)\right)=\beta_{t}(n)-a_{0}$. Therefore since each limit exists almost surely, we obtain $\alpha\left(\varepsilon_{t-1}\right) \beta_{t-1}=\beta_{t}-a_{0}$.
We finally obtain that if $\gamma<0, \prod_{j=1}^{n} \alpha\left(\varepsilon_{t-j}\right) \underset{n \rightarrow+\infty}{\underset{n}{\text { a.s. }}} 0$ and therefore

$$
X_{t}=\beta_{t} \varepsilon_{t}=a_{0} \varepsilon_{t}\left(1+\sum_{i=1}^{\infty} \prod_{j=1}^{i} \alpha\left(\varepsilon_{t-j}\right)\right)
$$

implying that $\left(X_{t}\right)$ exists almost surely an is a stationary process.
If $a_{0}=0$ the only possibility is $X_{t}=0$ a.s.
(f) We have $\sigma_{t}=a_{0}+a_{1}\left|X_{t-1}\right|+b_{1}\left(a_{0}+a_{1}\left|X_{t-2}\right|+b_{1} \sigma_{t-2}\right)=a_{0}\left(1+b_{1}\right)+a_{1}\left(\left|X_{t-1}\right|+b_{1}\left|X_{t-2}\right|\right)+b_{1}^{2} \sigma_{t-2}$. By iteration, we obtain for any $k \in \mathbf{N}$:

$$
\sigma_{t}=a_{0}\left(1+b_{1}+\cdots+b_{1}^{k}\right)+a_{1}\left(\left|X_{t-1}\right|+b_{1}\left|X_{t-2}\right|+\cdots+b_{1}^{k}\left|X_{t-k-1}\right|\right)+b_{1}^{k+1} \sigma_{t-k-1}
$$

As $\left(\sigma_{t}\right)$ is stationary sequence, and $0<b_{1}<1$ implies $b_{1}^{k+1} \underset{n \rightarrow \infty}{\longrightarrow} 0,1+b_{1}+\cdots+b_{1}^{k}=\left(1-b_{1}\right)^{-1}$ and $\left|X_{t-1}\right|+$ $b_{1}\left|X_{t-2}\right|+\cdots+b_{1}^{k}\left|X_{t-k-1}\right|$ converges almost surely as a linear combination of $\left(\left|X_{t}\right|\right)$ with $\sum\left|b_{1}^{j}\right|<\infty$, we finally obtain the relation.
We obtain $\mathbb{E}\left(X_{t} \mid X_{t-1}, \cdots\right)=\mathbb{E}\left(\varepsilon_{t}\right) \mathbb{E}\left(\sigma_{t}\right)=0$ and $\operatorname{var}\left(X_{t} \mid X_{t-1}, \cdots\right)=\mathbb{E}\left(X_{t}^{2} \mid X_{t-1}, \cdots\right)=\sigma_{t}^{2}$.
This implies that (X_{t}) is a conditionally heteroskedastic process (APARCH process).
(g) Since σ_{t}^{2} is the volatility of $\left(X_{t}\right)$, the conditional log-density of X_{t} with respect to X_{t-1}, X_{t-2}, \ldots is $-\frac{1}{2}(\log (2 \pi)+$ $\left.\log \left(\sigma_{t}^{2}\right)+X_{t}^{2} / \sigma_{t}^{2}\right)$. As a consequence, since $\left(X_{1}, \ldots, X_{N}\right)$ is observed, we replace in this formula X_{t} by 0 for $t \leq 0$. Moreover as $\widehat{\theta}$ is supposed to be a maximizer of the quasi-log-likelihood, this is equivalent to minimize it multiplied by (-2). Finally $\Theta=(0, \infty) \times\left\{a_{1} \geq 0, b_{1}>0, \mathbb{E}\left[\left|\log \left(a_{1}+b_{1}\left|\varepsilon_{0}\right|\right)\right|\right]<\infty\right\}$.
(h) If we consider the relation $X_{t}=\varepsilon_{t}\left(\frac{a_{0}}{1-b_{1}}+a_{1} \sum_{j=0}^{\infty} b_{1}^{j}\left|X_{t-j-1}\right|\right)$ it could be written as a causal affine model $X_{t}=$ $M_{\theta}^{t} \varepsilon_{t}+f_{\theta}^{t}$ with $f_{\theta}^{t}=0$ and $M_{\theta}^{t}=\sigma_{t}=G\left(X_{t-1}, X_{t-2}, \ldots\right)$. But the function G is Lipshitzian with coefficients $\alpha_{j}^{(0)}(M)=a_{1} b_{1}^{j}$ and therefore $\sum_{j} \alpha_{j}^{(0)}(M)<\infty$. Moreover, $M_{\theta}^{t}=M_{\theta^{\prime}}^{t}$ implies $\theta=\theta^{\prime}$ almost surely. It is also possible to compute $\alpha_{j}^{(1)}(M)$ and $\alpha_{j}^{(2)}(M)$ and we conclude that $\widehat{\theta}$ is a consistent estimator of θ and there exists a definite positive matrix Σ_{θ} such as $\sqrt{n}(\widehat{\theta}-\theta) \underset{n \rightarrow \infty}{\stackrel{\mathcal{L}}{\longrightarrow}} \mathcal{N}\left(0, \Sigma_{\theta}\right)$.
(i) From prÃ© \subset vious computations, $\widehat{X}_{N+1}=0$ and $\widehat{X}_{N+1}^{2}=\left(\frac{\widehat{a}_{0}}{1-\widehat{b}_{1}}+\widehat{a}_{1} \sum_{j=0}^{\infty} \widehat{b}_{1}^{j}\left|X_{t-j-1}\right|\right)^{2}$.
2. We study with R software the Nasdaq index from January 11st 2000 to January 112016.
(a) First the following commands have been executed with figures exhibited below:

```
Nas=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MMMEF/TP/Nasdaq.csv")
X=Nas$Closing
n=length(X)
Y=log(X[2:n]/X[1:(n-1)])
ts.plot(Y)
acf(Y)
acf(Y^2)
```


Series \mathbf{Y}

Question II.1: Explain what is done. Which conclusions could you obtain from both the last commands? Are they compatible with a GARCH modelling?
(b) New commands are then executed:
library (fGarch)
QMLE=garchFit($\sim \operatorname{garch}(1,1)$, data $=Y$, trace $=$ FALSE)
QMLE
Here there are the numerical results:
Call:
garchFit (formula $=\sim \operatorname{garch}(1,1)$, data $=Y$, trace $=$ FALSE $)$
Coefficient(s):

mu	omega	alpha1	beta1
$6.4040 \mathrm{e}-04$	$2.1146 \mathrm{e}-06$	$8.6732 \mathrm{e}-02$	$9.0314 \mathrm{e}-01$

	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$	
mu	$6.404 \mathrm{e}-04$	$1.617 \mathrm{e}-04$	3.961	$7.46 \mathrm{e}-05$

Jarque-Bera Test	R	Chi^2	168.5587	0
Shapiro-Wilk Test	R	W	0.9923722	$2.300106 \mathrm{e}-14$
Ljung-Box Test	R	Q(10)	10.64455	0.3858725
Ljung-Box Test	R	Q(15)	17.2698	0.3029932
Ljung-Box Test	R	Q(20)	26.26701	0.1571734
Ljung-Box Test	R^2	Q(10)	20.02718	0.02899662
Ljung-Box Test	R^2	Q(15)	31.17497	0.008323147
Ljung-Box Test	R^2	Q(20)	35.92566	0.01569342
LM Arch Test	R	TR^2	20.11987	0.06485208

Information Criterion Statistics:

$$
\begin{array}{llll}
\text { AIC } & \text { BIC } & \text { SIC } & \text { HQIC }
\end{array}
$$

$-5.886147-5.880197-5.886149-5.884045$

Question II.2: Explain what is done and explain which conclusions you deduce.
(c) Finally the following sequence of commands are executed:

```
M=matrix(0,3,4)
NAS10=garchFit(~ garch(1,0), data = Y, trace = FALSE)
M[1,1]=NAS10@fit$ics[2]
NAS11=garchFit(~ garch(1,1), data = Y, trace = FALSE)
M[1,2]=NAS11@fit$ics[2]
NAS12=garchFit(~ garch(1,2), data = Y, trace = FALSE)
M[1,3]=NAS12@fit$ics[2]
NAS13=garchFit(~ garch(1,3), data = Y, trace = FALSE)
M[1,4]=NAS13@fit$ics[2]
NAS20=garchFit(~ garch(2,0), data = Y, trace = FALSE)
M[2,1]=NAS20@fit$ics[2]
NAS21=garchFit(~ garch(2,1), data = Y, trace = FALSE)
M[2,2]=NAS21@fit$ics[2]
NAS22=garchFit(~ garch(2,2), data = Y, trace = FALSE)
NAS33=garchFit(~ garch(3,3), data = Y, trace = FALSE)
M[3,4]=NAS33@fit$ics[2]
M
(Gop=which(M==min(M),2))
summary(NAS21)
```

The resuts are the following:

```
> M
```

	[,1]	[,2]	[,3]	[,4]
[1,	-5.501540	-5.880197	-5.878215	-5.876146
[2,	-5.665021	-5.881333	-5.879577	-5.877575
[3,	-5.717491	-5.879332	-5.877748	-5.875797
	p=which (M	$=\min (\mathrm{M}), 2$		
	row col			
[1,	22			

Question II.3: What is done here and what are your conclusions?

