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1. Let (εt)t∈Z a sequence of centered independent and identically distributed random variables such as
IE(ε2

0) = 1. If it exists we consider a sequence (Xt)t∈Z such as:

Xt = εt σt with σt = a0 + a1 |Xt−1|+ b1 σt−1 for any t ∈ Z (1)

where (a0, a1, b1) ∈ [0,∞)3 are unknown parameters with b1 > 0.

(a) Prove that (εt) is a stationary time series.

(b) Denote R∞ the space of sequences of real numbers with finite number of non-zero real numbers.
Consider F : R∞ → R be a measurable function on R∞. Assume also that F is Lipchitzian on
R∞: there exists a sequence (`i)i∈N∗ of real non-negative numbers such that for any x = (xi)i, y =
(yi)i ∈ R∞, ∣∣F (x)− F (y)

∣∣ ≤ ∞∑
i=1

`i |xi − yi|, where
∞∑
i=1

`i <∞.

For t ∈ Z, prove that (Y
(n)
t )n where Y

(n)
t = F

(
εt, εt−1, . . . , εt−n, 0, 0, . . .

)
is a Cauchy sequence on

IL2. Deduce that (Yt)t∈Z, where Yt = F
(
(εt−k)k∈N

)
for t ∈ Z, is a stationary second order process.

(c) Let α(·) be the function such as α(x) = a1|x|+ b1. Show that IE
[∣∣ log

(
α(ε0)

)∣∣] <∞ using Jensen
Inequality. Deduce also that for any t ∈ Z:( n∏

i=1

α(εt−i)
)1/n a.s.−→

n→+∞
eγ with γ = IE

[
log
(
α(ε0)

)]
. (2)

(d) Suppose (σt)t∈Z exists in (1). Then, establish that σt = a0 + α(εt−1)σt−1 for any t ∈ Z. Deduce
by recurrence that for any t ∈ Z and k ∈ N∗,

σt = βt(k) + α(εt−1)× · · · × α(εt−k)σt−k with βt(k) = a0

(
1 +

k−1∑
i=1

i∏
j=1

α(εt−j)
)
.

(e) Using (2) prove that if γ < 0 then for any t ∈ Z, βt(n)
a.s.−→

n→+∞
βt with βt a positive random variable

and satisfies βt = a0 + α(εt−1)βt−1. Consequently, write Xt = F (εt, εt−1, . . .) and conclude about
the existence and stationarity of (Xt)t∈Z. What’s happening if a0 = 0?

(f) Assume now γ < 0 and b1 < 1. Using an iterating decomposition, show for any t ∈ Z:

σt =
a0

1− b1
+ a1

∞∑
j=0

bj1|Xt−j−1|.

Deduce IE(Xt | Xt−1, Xt−2, . . .) and var(Xt | Xt−1, Xt−2, . . .). Is (Xt) a conditionaly heteroskedastic
process?
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(g) Assume now that (X1, · · · , XN ) is observed and let θ = t(a0, a1, b1). Prove that the quasi-maximum
likelihood estimator θ̂ of θ is:

θ̂ = argmin
θ∈Θ

{
log
( a0

1− b1

)
+

1

2

((1− b1)X1

a0

)2
+

N∑
i=2

log
( a0

1− b1
+ a1

i−2∑
j=0

bj1|Xi−j−1|
)

+
1

2

( Xi

a0
1−b1 + a1

∑i−2
j=0 b

j
1|Xi−j−1|

)2}
where Θ is a set that should be specified.

(h) Is θ̂ a consistent estimator? What is its convergence rate?

(i) Provide forecasting of XN+1 and X2
N+1.

Proof. (a) Consider k ∈ N∗, t1 < · · · < tk ∈ Zk and c ∈ Z. Then the characteristic function of (εt1 , . . . , εtk ) is∏k
i=1 φε(ui) for any (u1, . . . , uk) ∈ Rk since (εt) is a sequence of i.i.d.r.v. Thus this is the same than the one of

(εt1+c, . . . , εtk+c), implying the stationarity of (εt).

(b) Set η > 0. For n1 < n2 ∈ N, we have
∣∣Y (n1)
t − Y

(n2)
t

∣∣ ≤ ∑n2
k=n1+1 `k|εt−k| using the Lipchitz property. As

a consequence var
[∣∣Y (n1)

t − Y
(n2)
t

∣∣] ≤ var[|ε0|]
∑n2
k=n1+1 `

2
k + IE[|ε0|]2

(∑n2
k=n1+1 `k

)2
and since

∑∞
k=1 `k < ∞, we

deduce that there exists n0 such as for any n0 ≤ n1 < n2, var
[∣∣Y (n1)

t − Y (n2)
t

∣∣] ≤ η. As a consequence (Y
(n)
t )n is a

Cauchy sequence on IL2.
Since IL2 is a Banach space, we deduce that (Y

(n)
t )n is also a consistent sequence on IL1 and its limit is Yt. We also

have for any n ∈ N, (εt)t1−n≤t≤tk has the same characteristic function than (εt)t1+c−n≤t≤tk+c. As a consequence,

if we consider Y
(n)
t = F (εt, εt−1, . . . , εt−n, 0, 0, . . .), then it is clear than (Y

(n)
t1

, . . . , Y
(n)
tk

) has the same distribution

than (Y
(n)
t1+c

, . . . , Y
(n)
tk+c

) and therefore (Y
(n)
t )t is a stationary sequence. As this is true for any n ∈ N, this is also true

when n→∞, and this implies the stationarity of (Yt), which is also a IL2 sequence.

(c) If b1 > 0 then log
(
α(ε0)

)
= log(b1)+log(1+a′1|ε0|) with a′1a1/b1 ≥ 0. Since x[0,∞) 7→ log(1+x) is a concave function,

the Jensen Inequality implies IE
∣∣[ log

(
α(ε0)

)∣∣] ≤ | log(b1)|+ log
(
1 + a′1IE(|ε0|)

)
≤ | log(b1)|+ log

(
1 + a′1)

)
<∞ since

IE(|ε0|) ≤
√

var(ε0) ≤ 1 from Jensen Inequality.
We have ( n∏

i=1

α(εt−i)
)1/n

= exp
( 1

n

n∑
i=1

log(α(εt−i)
)
.

Using Strong Law of Large Numbers, since the sequence (log(α(εk)))k is a sequence of iidrv satisfying IE(| log(α(ε0))|) <
∞, then

(
1
n

∑n
i=1 log(α(εt−i)

)
a.s.−→

n→+∞
γ.

(d) We have σt = a0 + a1 |Xt−1|+ b1 σt−1 = a0 + σt−1(a1|εt−1|+ b1).
We prove the relationship by recurrence. It is valid for k = 1. Now assume it is valid for k and replace σt−k by
a0 + σt−k−1(a1|εt−k−1|+ b1). Then this provides the relationship at rank k + 1.

(e) Using the Cauchy Lemma for sum of positive real numbers, since eγ < 1 for γ < 0, we deduce from (2) that
βn(t)

a.s.−→
n→+∞

β(t) for any t ∈ Z.

As we have α(εt−1)βt−1(n − 1) = a0(α(εt−1) +
∑n−2
i=1

∏i
j=1 α(εt−1−j)

)
) = a0(

∑n−1
i=1

∏i
j=1 α(εt−j)

)
) = βt(n) − a0.

Therefore since each limit exists almost surely, we obtain α(εt−1)βt−1 = βt − a0.
We finally obtain that if γ < 0,

∏n
j=1 α(εt−j)

a.s.−→
n→+∞

0 and therefore

Xt = βt εt = a0 εt
(

1 +

∞∑
i=1

i∏
j=1

α(εt−j)
)
,

implying that (Xt) exists almost surely an is a stationary process.
If a0 = 0 the only possibility is Xt = 0 a.s.

(f) We have σt = a0 + a1|Xt−1|+ b1(a0 + a1|Xt−2|+ b1σt−2) = a0(1 + b1) + a1(|Xt−1|+ b1|Xt−2|) + b21σt−2. By iteration,
we obtain for any k ∈ N:

σt = a0
(
1 + b1 + · · ·+ bk1

)
+ a1

(
|Xt−1|+ b1|Xt−2|+ · · ·+ bk1 |Xt−k−1|

)
+ bk+1

1 σt−k−1.

As (σt) is stationary sequence, and 0 < b1 < 1 implies bk+1
1 −→

n→∞
0, 1 + b1 + · · · + bk1 = (1 − b1)−1 and |Xt−1| +

b1|Xt−2| + · · · + bk1 |Xt−k−1| converges almost surely as a linear combination of (|Xt|) with
∑
|bj1| < ∞, we finally

obtain the relation.
We obtain IE(Xt | Xt−1, · · · ) = IE(εt)IE(σt) = 0 and var(Xt | Xt−1, · · · ) = IE(X2

t | Xt−1, · · · ) = σ2
t .

This implies that (Xt) is a conditionally heteroskedastic process (APARCH process).

(g) Since σ2
t is the volatility of (Xt), the conditional log-density of Xt with respect to Xt−1, Xt−2, . . . is − 1

2
(log(2π) +

log(σ2
t ) + X2

t /σ
2
t ). As a consequence, since (X1, . . . , XN ) is observed, we replace in this formula Xt by 0 for t ≤ 0.

Moreover as θ̂ is supposed to be a maximizer of the quasi-log-likelihood, this is equivalent to minimize it multiplied
by (−2). Finally Θ = (0,∞)×

{
a1 ≥ 0, b1 > 0, IE[| log(a1 + b1|ε0|)|] <∞

}
.
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(h) If we consider the relation Xt = εt
(

a0
1−b1

+ a1
∑∞
j=0 b

j
1|Xt−j−1|

)
it could be written as a causal affine model Xt =

M t
θεt + f tθ with f tθ = 0 and M t

θ = σt = G(Xt−1, Xt−2, . . .). But the function G is Lipshitzian with coefficients

α
(0)
j (M) = a1b

j
1 and therefore

∑
j α

(0)
j (M) <∞. Moreover, M t

θ = M t
θ′ implies θ = θ′ almost surely. It is also possible

to compute α
(1)
j (M) and α

(2)
j (M) and we conclude that θ̂ is a consistent estimator of θ and there exists a definite

positive matrix Σθ such as
√
n
(
θ̂ − θ

) L−→
n→∞

N
(
0 , Σθ

)
.

(i) From prÃ c©vious computations, X̂N+1 = 0 and X̂2
N+1 =

(
â0

1−b̂1
+ â1

∑∞
j=0 b̂

j
1|Xt−j−1|

)2
.

2. We study with R software the Nasdaq index from January 11st 2000 to January 11 2016.

(a) First the following commands have been executed with figures exhibited below:

Nas=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MMMEF/TP/Nasdaq.csv")

X=Nas$Closing

n=length(X)

Y=log(X[2:n]/X[1:(n-1)])

ts.plot(Y)

acf(Y)

acf(Y^2)
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Question II.1: Explain what is done. Which conclusions could you obtain from both the last com-
mands? Are they compatible with a GARCH modelling?

(b) New commands are then executed:

library(fGarch)

QMLE=garchFit(~ garch(1,1), data = Y, trace = FALSE)

QMLE

Here there are the numerical results:

Call:

garchFit(formula = ~garch(1, 1), data = Y, trace = FALSE)

Coefficient(s):

mu omega alpha1 beta1

6.4040e-04 2.1146e-06 8.6732e-02 9.0314e-01

Estimate Std. Error t value Pr(>|t|)

mu 6.404e-04 1.617e-04 3.961 7.46e-05 ***

omega 2.115e-06 4.052e-07 5.219 1.80e-07 ***

alpha1 8.673e-02 8.639e-03 10.039 < 2e-16 ***

beta1 9.031e-01 9.165e-03 98.544 < 2e-16 ***

Statistic p-Value

Jarque-Bera Test R Chi^2 168.5587 0

Shapiro-Wilk Test R W 0.9923722 2.300106e-14

Ljung-Box Test R Q(10) 10.64455 0.3858725

Ljung-Box Test R Q(15) 17.2698 0.3029932

Ljung-Box Test R Q(20) 26.26701 0.1571734

Ljung-Box Test R^2 Q(10) 20.02718 0.02899662

Ljung-Box Test R^2 Q(15) 31.17497 0.008323147

Ljung-Box Test R^2 Q(20) 35.92566 0.01569342

LM Arch Test R TR^2 20.11987 0.06485208

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.886147 -5.880197 -5.886149 -5.884045
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Question II.2: Explain what is done and explain which conclusions you deduce.

(c) Finally the following sequence of commands are executed:

M=matrix(0,3,4)

NAS10=garchFit(~ garch(1,0), data = Y, trace = FALSE)

M[1,1]=NAS10@fit$ics[2]

NAS11=garchFit(~ garch(1,1), data = Y, trace = FALSE)

M[1,2]=NAS11@fit$ics[2]

NAS12=garchFit(~ garch(1,2), data = Y, trace = FALSE)

M[1,3]=NAS12@fit$ics[2]

NAS13=garchFit(~ garch(1,3), data = Y, trace = FALSE)

M[1,4]=NAS13@fit$ics[2]

NAS20=garchFit(~ garch(2,0), data = Y, trace = FALSE)

M[2,1]=NAS20@fit$ics[2]

NAS21=garchFit(~ garch(2,1), data = Y, trace = FALSE)

M[2,2]=NAS21@fit$ics[2]

NAS22=garchFit(~ garch(2,2), data = Y, trace = FALSE)

...................................................

NAS33=garchFit(~ garch(3,3), data = Y, trace = FALSE)

M[3,4]=NAS33@fit$ics[2]

M

(Gop=which(M==min(M),2))

summary(NAS21)

The resuts are the following:

> M

[,1] [,2] [,3] [,4]

[1,] -5.501540 -5.880197 -5.878215 -5.876146

[2,] -5.665021 -5.881333 -5.879577 -5.877575

[3,] -5.717491 -5.879332 -5.877748 -5.875797

> (Gop=which(M==min(M),2))

row col

[1,] 2 2

Question II.3: What is done here and what are your conclusions?


