Master 2 M0 2018 - 2019

Analyse des séries financières

Examen final, Février 2019

3h00, sans aucun document

1. Let $(\varepsilon_t)_{t\in\mathbf{Z}}$ a sequence of centered independent and identically distributed random variables such as $\mathbb{E}(\varepsilon_0^2) = 1$. If it exists we consider a sequence $(X_t)_{t\in\mathbf{Z}}$ such as:

$$X_t = \varepsilon_t \, \sigma_t \quad \text{with} \quad \sigma_t = a_0 + a_1 \, |X_{t-1}| + b_1 \, \sigma_{t-1} \quad \text{for any } t \in \mathbf{Z}$$
 (1)

where $(a_0, a_1, b_1) \in [0, \infty)^3$ are unknown parameters with $b_1 > 0$.

- (a) Prove that (ε_t) is a stationary time series.
- (b) Denote \mathbf{R}^{∞} the space of sequences of real numbers with finite number of non-zero real numbers. Consider $F: \mathbf{R}^{\infty} \to \mathbf{R}$ be a measurable function on \mathbf{R}^{∞} . Assume also that F is Lipchitzian on \mathbf{R}^{∞} : there exists a sequence $(\ell_i)_{i \in \mathbf{N}^*}$ of real non-negative numbers such that for any $x = (x_i)_i$, $y = (y_i)_i \in \mathbf{R}^{\infty}$,

$$|F(x) - F(y)| \le \sum_{i=1}^{\infty} \ell_i |x_i - y_i|, \text{ where } \sum_{i=1}^{\infty} \ell_i < \infty.$$

For $t \in \mathbf{Z}$, prove that $(Y_t^{(n)})_n$ where $Y_t^{(n)} = F(\varepsilon_t, \varepsilon_{t-1}, \dots, \varepsilon_{t-n}, 0, 0, \dots)$ is a Cauchy sequence on \mathbb{L}^2 . Deduce that $(Y_t)_{t \in \mathbf{Z}}$, where $Y_t = F((\varepsilon_{t-k})_{k \in \mathbf{N}})$ for $t \in \mathbf{Z}$, is a stationary second order process.

(c) Let $\alpha(\cdot)$ be the function such as $\alpha(x) = a_1|x| + b_1$. Show that $\mathbb{E}[|\log(\alpha(\varepsilon_0))|] < \infty$ using Jensen Inequality. Deduce also that for any $t \in \mathbf{Z}$:

$$\left(\prod_{i=1}^{n} \alpha(\varepsilon_{t-i})\right)^{1/n} \xrightarrow[n \to +\infty]{a.s.} e^{\gamma} \quad \text{with} \quad \gamma = \mathbb{E}\left[\log\left(\alpha(\varepsilon_{0})\right)\right]. \tag{2}$$

(d) Suppose $(\sigma_t)_{t \in \mathbf{Z}}$ exists in (1). Then, establish that $\sigma_t = a_0 + \alpha(\varepsilon_{t-1}) \sigma_{t-1}$ for any $t \in \mathbf{Z}$. Deduce by recurrence that for any $t \in \mathbf{Z}$ and $k \in \mathbf{N}^*$,

$$\sigma_t = \beta_t(k) + \alpha(\varepsilon_{t-1}) \times \cdots \times \alpha(\varepsilon_{t-k}) \sigma_{t-k}$$
 with $\beta_t(k) = a_0 \Big(1 + \sum_{i=1}^{k-1} \prod_{j=1}^i \alpha(\varepsilon_{t-j}) \Big)$.

- (e) Using (2) prove that if $\gamma < 0$ then for any $t \in \mathbf{Z}$, $\beta_t(n) \xrightarrow[n \to +\infty]{a.s.} \beta_t$ with β_t a positive random variable and satisfies $\beta_t = a_0 + \alpha(\varepsilon_{t-1})\beta_{t-1}$. Consequently, write $X_t = F(\varepsilon_t, \varepsilon_{t-1}, \ldots)$ and conclude about the existence and stationarity of $(X_t)_{t \in \mathbf{Z}}$. What's happening if $a_0 = 0$?
- (f) Assume now $\gamma < 0$ and $b_1 < 1$. Using an iterating decomposition, show for any $t \in \mathbb{Z}$:

$$\sigma_t = \frac{a_0}{1 - b_1} + a_1 \sum_{j=0}^{\infty} b_1^j |X_{t-j-1}|.$$

Deduce $\mathbb{E}(X_t \mid X_{t-1}, X_{t-2}, \ldots)$ and $\text{var}(X_t \mid X_{t-1}, X_{t-2}, \ldots)$. Is (X_t) a conditionally heteroskedastic process?

(g) Assume now that (X_1, \dots, X_N) is observed and let $\theta = {}^t(a_0, a_1, b_1)$. Prove that the quasi-maximum likelihood estimator $\widehat{\theta}$ of θ is:

$$\begin{split} \widehat{\theta} &= \operatorname*{argmin}_{\theta \in \Theta} \Big\{ \log \Big(\frac{a_0}{1 - b_1} \Big) + \frac{1}{2} \Big(\frac{(1 - b_1) X_1}{a_0} \Big)^2 + \\ &\qquad \qquad \sum_{i=2}^{N} \log \Big(\frac{a_0}{1 - b_1} + a_1 \sum_{j=0}^{i-2} b_1^j |X_{i-j-1}| \Big) + \frac{1}{2} \Big(\frac{X_i}{\frac{a_0}{1 - b_1} + a_1 \sum_{j=0}^{i-2} b_1^j |X_{i-j-1}|} \Big)^2 \Big\} \end{split}$$

where Θ is a set that should be specified.

- (h) Is $\widehat{\theta}$ a consistent estimator? What is its convergence rate?
- (i) Provide forecasting of X_{N+1} and X_{N+1}^2 .
- *Proof.* (a) Consider $k \in N^*$, $t_1 < \dots < t_k \in \mathbf{Z}^k$ and $c \in \mathbf{Z}$. Then the characteristic function of $(\varepsilon_{t_1}, \dots, \varepsilon_{t_k})$ is $\prod_{i=1}^k \phi_{\varepsilon}(u_i)$ for any $(u_1, \dots, u_k) \in \mathbf{R}^k$ since (ε_t) is a sequence of i.i.d.r.v. Thus this is the same than the one of $(\varepsilon_{t_1+c}, \dots, \varepsilon_{t_k+c})$, implying the stationarity of (ε_t) .
 - (b) Set $\eta > 0$. For $n_1 < n_2 \in \mathbb{N}$, we have $\left| Y_t^{(n_1)} Y_t^{(n_2)} \right| \le \sum_{k=n_1+1}^{n_2} \ell_k | \varepsilon_{t-k}|$ using the Lipchitz property. As a consequence $\operatorname{var} \left[\left| Y_t^{(n_1)} Y_t^{(n_2)} \right| \right] \le \operatorname{var} \left[\left| \varepsilon_0 \right| \right] \sum_{k=n_1+1}^{n_2} \ell_k^2 + \mathbb{E} \left[\left| \varepsilon_0 \right| \right]^2 \left(\sum_{k=n_1+1}^{n_2} \ell_k \right)^2$ and since $\sum_{k=1}^{\infty} \ell_k < \infty$, we deduce that there exists n_0 such as for any $n_0 \le n_1 < n_2$, $\operatorname{var} \left[\left| Y_t^{(n_1)} Y_t^{(n_2)} \right| \right] \le \eta$. As a consequence $(Y_t^{(n)})_n$ is a Cauchy sequence on \mathbb{L}^2 . Since \mathbb{L}^2 is a Banach space, we deduce that $(Y_t^{(n)})_n$ is also a consistent sequence on \mathbb{L}^1 and its limit is Y_t . We also have for any $n \in \mathbb{N}$, $(\varepsilon_t)_{t_1-n \le t \le t_k}$ has the same characteristic function than $(\varepsilon_t)_{t_1+c-n \le t \le t_k+c}$. As a consequence, if we consider $Y_t^{(n)} = F(\varepsilon_t, \varepsilon_{t-1}, \dots, \varepsilon_{t-n}, 0, 0, \dots)$, then it is clear than $(Y_{t_1}^{(n)}, \dots, Y_{t_k}^{(n)})$ has the same distribution than $(Y_{t_1+c}^{(n)}, \dots, Y_{t_k+c}^{(n)})$ and therefore $(Y_t^{(n)})_t$ is a stationary sequence. As this is true for any $n \in \mathbb{N}$, this is also true when $n \to \infty$, and this implies the stationarity of (Y_t) , which is also a \mathbb{L}^2 sequence.
- (c) If $b_1 > 0$ then $\log (\alpha(\varepsilon_0)) = \log(b_1) + \log(1 + a_1'|\varepsilon_0|)$ with $a_1'a_1/b_1 \ge 0$. Since $x[0,\infty) \mapsto \log(1+x)$ is a concave function, the Jensen Inequality implies $\mathbb{E}[\log (\alpha(\varepsilon_0))] \le |\log(b_1)| + \log (1 + a_1'\mathbb{E}(|\varepsilon_0|)) \le |\log(b_1)| + \log (1 + a_1')) < \infty$ since $\mathbb{E}(|\varepsilon_0|) \le \sqrt{\operatorname{var}(\varepsilon_0)} \le 1$ from Jensen Inequality. We have

$$\left(\prod_{i=1}^{n} \alpha(\varepsilon_{t-i})\right)^{1/n} = \exp\left(\frac{1}{n} \sum_{i=1}^{n} \log(\alpha(\varepsilon_{t-i}))\right).$$

Using Strong Law of Large Numbers, since the sequence $(\log(\alpha(\varepsilon_k)))_k$ is a sequence of iidrv satisfying $\mathbb{E}(|\log(\alpha(\varepsilon_0))|) < \infty$, then $\left(\frac{1}{n}\sum_{i=1}^n\log(\alpha(\varepsilon_{t-i})\right) \xrightarrow[n \to +\infty]{a.s.} \gamma$.

- (d) We have $\sigma_t = a_0 + a_1 |X_{t-1}| + b_1 \sigma_{t-1} = a_0 + \sigma_{t-1}(a_1|\varepsilon_{t-1}| + b_1)$. We prove the relationship by recurrence. It is valid for k = 1. Now assume it is valid for k and replace σ_{t-k} by $a_0 + \sigma_{t-k-1}(a_1|\varepsilon_{t-k-1}| + b_1)$. Then this provides the relationship at rank k + 1.
- (e) Using the Cauchy Lemma for sum of positive real numbers, since $e^{\gamma} < 1$ for $\gamma < 0$, we deduce from (2) that $\beta_n(t) \xrightarrow[n \to +\infty]{a.s} \beta(t)$ for any $t \in \mathbf{Z}$.

As we have $\alpha(\varepsilon_{t-1})\beta_{t-1}(n-1) = a_0(\alpha(\varepsilon_{t-1}) + \sum_{i=1}^{n-2} \prod_{j=1}^i \alpha(\varepsilon_{t-1-j})) = a_0(\sum_{i=1}^{n-1} \prod_{j=1}^i \alpha(\varepsilon_{t-j})) = \beta_t(n) - a_0$. Therefore since each limit exists almost surely, we obtain $\alpha(\varepsilon_{t-1})\beta_{t-1} = \beta_t - a_0$. We finally obtain that if $\gamma < 0$, $\prod_{j=1}^n \alpha(\varepsilon_{t-j}) \xrightarrow[n \to +\infty]{a.s.} 0$ and therefore

$$X_t = \beta_t \, \varepsilon_t = a_0 \, \varepsilon_t \, \Big(1 + \sum_{i=1}^{\infty} \prod_{j=1}^{i} \alpha(\varepsilon_{t-j}) \Big),$$

implying that (X_t) exists almost surely an is a stationary process. If $a_0 = 0$ the only possibility is $X_t = 0$ a.s.

(f) We have $\sigma_t = a_0 + a_1|X_{t-1}| + b_1(a_0 + a_1|X_{t-2}| + b_1\sigma_{t-2}) = a_0(1+b_1) + a_1(|X_{t-1}| + b_1|X_{t-2}|) + b_1^2\sigma_{t-2}$. By iteration, we obtain for any $k \in \mathbb{N}$:

$$\sigma_t = a_0 (1 + b_1 + \dots + b_1^k) + a_1 (|X_{t-1}| + b_1 |X_{t-2}| + \dots + b_1^k |X_{t-k-1}|) + b_1^{k+1} \sigma_{t-k-1}.$$

As (σ_t) is stationary sequence, and $0 < b_1 < 1$ implies $b_1^{k+1} \xrightarrow[n \to \infty]{} 0$, $1 + b_1 + \cdots + b_1^k = (1 - b_1)^{-1}$ and $|X_{t-1}| + b_1|X_{t-2}| + \cdots + b_1^k|X_{t-k-1}|$ converges almost surely as a linear combination of $(|X_t|)$ with $\sum |b_1^j| < \infty$, we finally obtain the relation.

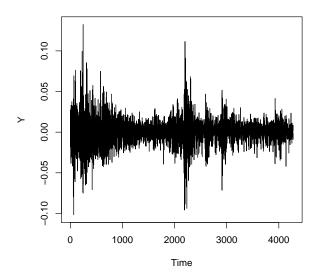
We obtain $\mathbb{E}(X_t \mid X_{t-1}, \dots) = \mathbb{E}(\varepsilon_t)\mathbb{E}(\sigma_t) = 0$ and $\operatorname{var}(X_t \mid X_{t-1}, \dots) = \mathbb{E}(X_t^2 \mid X_{t-1}, \dots) = \sigma_t^2$. This implies that (X_t) is a conditionally heteroskedastic process (APARCH process).

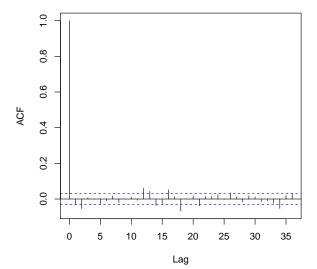
(g) Since σ_t^2 is the volatility of (X_t) , the conditional log-density of X_t with respect to X_{t-1}, X_{t-2}, \ldots is $-\frac{1}{2}(\log(2\pi) + \log(\sigma_t^2) + X_t^2/\sigma_t^2)$. As a consequence, since (X_1, \ldots, X_N) is observed, we replace in this formula X_t by 0 for $t \leq 0$. Moreover as $\hat{\theta}$ is supposed to be a maximizer of the quasi-log-likelihood, this is equivalent to minimize it multiplied by (-2). Finally $\Theta = (0, \infty) \times \{a_1 \geq 0, b_1 > 0, \mathbb{E}[|\log(a_1 + b_1|\varepsilon_0)|] < \infty\}$.

- (h) If we consider the relation $X_t = \varepsilon_t \left(\frac{a_0}{1-b_1} + a_1 \sum_{j=0}^{\infty} b_j^j | X_{t-j-1}| \right)$ it could be written as a causal affine model $X_t = M_{\theta}^t \varepsilon_t + f_{\theta}^t$ with $f_{\theta}^t = 0$ and $M_{\theta}^t = \sigma_t = G(X_{t-1}, X_{t-2}, \ldots)$. But the function G is Lipshitzian with coefficients $\alpha_j^{(0)}(M) = a_1 b_1^j$ and therefore $\sum_j \alpha_j^{(0)}(M) < \infty$. Moreover, $M_{\theta}^t = M_{\theta'}^t$ implies $\theta = \theta'$ almost surely. It is also possible to compute $\alpha_j^{(1)}(M)$ and $\alpha_j^{(2)}(M)$ and we conclude that $\widehat{\theta}$ is a consistent estimator of θ and there exists a definite positive matrix Σ_{θ} such as $\sqrt{n}(\widehat{\theta} \theta) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, \Sigma_{\theta})$.
- (i) From prévious computations, $\widehat{X}_{N+1}=0$ and $\widehat{X}_{N+1}^2=\left(\frac{\widehat{a}_0}{1-\widehat{b}_1}+\widehat{a}_1\sum_{j=0}^{\infty}\widehat{b}_1^j|X_{t-j-1}|\right)^2$.
- 2. We study with R software the Nasdaq index from January 11st 2000 to January 11 2016.
 - (a) First the following commands have been executed with figures exhibited below:

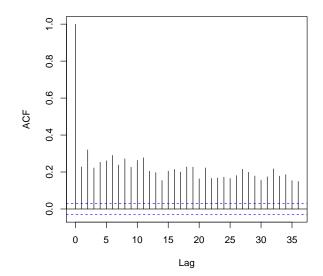
 $acf(Y^2)$

Nas=read.csv("C:/Users/Admin/Dropbox/Enseignement/M2 MMMEF/TP/Nasdaq.csv")
X=Nas\$Closing
n=length(X)
Y=log(X[2:n]/X[1:(n-1)])
ts.plot(Y)
acf(Y)





Series Y^2



Question II.1: Explain what is done. Which conclusions could you obtain from both the last commands? Are they compatible with a GARCH modelling?

(b) New commands are then executed:

```
library(fGarch)
QMLE=garchFit(~ garch(1,1), data = Y, trace = FALSE)
QMLE
```

Here there are the numerical results:

Call:

```
garchFit(formula = ~garch(1, 1), data = Y, trace = FALSE)
```

Coefficient(s):

mu omega alpha1 beta1 6.4040e-04 2.1146e-06 8.6732e-02 9.0314e-01

Estimate Std. Error t value Pr(>|t|)
mu 6.404e-04 1.617e-04 3.961 7.46e-05 ***
omega 2.115e-06 4.052e-07 5.219 1.80e-07 ***
alpha1 8.673e-02 8.639e-03 10.039 < 2e-16 ***
beta1 9.031e-01 9.165e-03 98.544 < 2e-16 ***

Statistic p-Value

Jarque-Bera Test	R	Chi^2	168.5587	0
Shapiro-Wilk Test	R	W	0.9923722	2.300106e-14
Ljung-Box Test	R	Q(10)	10.64455	0.3858725
Ljung-Box Test	R	Q(15)	17.2698	0.3029932
Ljung-Box Test	R	Q(20)	26.26701	0.1571734
Ljung-Box Test	R^2	Q(10)	20.02718	0.02899662
Ljung-Box Test	R^2	Q(15)	31.17497	0.008323147
Ljung-Box Test	R^2	Q(20)	35.92566	0.01569342
LM Arch Test	R	TR^2	20.11987	0.06485208

Information Criterion Statistics:

AIC BIC SIC HQIC -5.886147 -5.880197 -5.886149 -5.884045

Question II.2: Explain what is done and explain which conclusions you deduce.

(c) Finally the following sequence of commands are executed:

```
M=matrix(0,3,4)
NAS10=garchFit(~ garch(1,0), data = Y, trace = FALSE)
M[1,1]=NAS10@fit$ics[2]
NAS11=garchFit(~ garch(1,1), data = Y, trace = FALSE)
M[1,2]=NAS11@fit$ics[2]
NAS12=garchFit(~ garch(1,2), data = Y, trace = FALSE)
M[1,3]=NAS12@fit$ics[2]
NAS13=garchFit(~ garch(1,3), data = Y, trace = FALSE)
M[1,4]=NAS13@fit$ics[2]
NAS20=garchFit(~ garch(2,0), data = Y, trace = FALSE)
M[2,1]=NAS20@fit$ics[2]
NAS21=garchFit(~ garch(2,1), data = Y, trace = FALSE)
M[2,2]=NAS21@fit$ics[2]
NAS22=garchFit(~ garch(2,2), data = Y, trace = FALSE)
.....
NAS33=garchFit(~ garch(3,3), data = Y, trace = FALSE)
M[3,4]=NAS33@fit$ics[2]
(Gop=which(M==min(M),2))
summary(NAS21)
The resuts are the following:
> M
                   [,2]
                             [,3]
                                       [,4]
          [,1]
[1,] -5.501540 -5.880197 -5.878215 -5.876146
[2,] -5.665021 -5.881333 -5.879577 -5.877575
[3,] -5.717491 -5.879332 -5.877748 -5.875797
> (Gop=which(M==min(M),2))
    row col
[1,]
      2
```

Question II.3: What is done here and what are your conclusions?