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the Enron Email dataset (2001)

Nodes + edges



Introduction

Types of networks: (→ development of statistical approaches)
I Binary + static edges
I Discrete / continuous / categorical / ...
I Covariates on vertices / edges
I Dynamic edges:

I Continous time → point processes
I Discrete time → Markov,...

Types of clusters: (→ development of statistical approaches)
I Communities (transitivity)
I Heterogeneous clusters
I Partitions, overlapping clusters, hierarchy



Introduction

Essentially, two starting points:
I The latent position model [HRH02]
I The stochastic block model [WW87, NS01]



Introduction
Networks can be observed directly or indirectly from a variety of
sources:

I social websites (Facebook, Twitter, ...),
I personal emails (from your Gmail, Clinton’s mails, ...),
I emails of a company (Enron Email data),
I digital/numeric documents (Panama papers,

co-authorships, ...),
I and even archived documents in libraries (digital

humanities).

⇒ most of these sources involve text!
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Figure: An (hypothetic) email network between a few individuals.



Introduction

1 2

3

4

6

5

7

8

9

Figure: A typical clustering result for the (directed) binary network.
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Figure: The (directed) network with textual edges.
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Figure: Expected clustering result for the (directed) network with
textual edges.



The stochastic topic block model

the stochastic topic block model (STBM) [BLZ16]:
I generalizes both SBM and LDA models
I allows to analyze (directed and undirected) networks with

textual edges.
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Context and notations
We are interesting in clustering the nodes of a (directed)
network of M vertices into Q groups:

I the network is represented by its M ×M adjacency matrix
A:

Aij =

{
1 if there is an edge between i and j
0 otherwise

I if Aij = 1, the textual edge is characterized by a set of Dij

documents:

Wij = (W 1
ij , ...,W

d
ij , ...,W

Dij

ij )

I each document W d
ij is made of Nd

ij words:

W d
ij = (W d1

ij , ...,W
dn
ij , ...,W

dNd
ij

ij ).
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Modeling of the edges

Let us assume that edges are generated according to a SBM
model:

I each node i is associated with an (unobserved) group
among Q according to:

Yi ∼M(1, ρ),

where ρ ∈ [0, 1]Q is the vector of group proportions,

I the presence of an edge Aij between i and j is drawn
according to:

Aij |YiqYjr = 1 ∼ B(πqr),

where πqr ∈ [0, 1] is the connection probability between
clusters q and r.
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Modeling of the documents
The generative model for the documents is as follows:

I each pair of clusters (q, r) is first associated to a vector of
topic proportions θqr = (θqrk)k sampled from a Dirichlet
distribution:

θqr ∼ Dir (α) ,

such that
∑K

k=1 θqrk = 1,∀(q, r).

I the nth word W dn
ij of documents d in Wij is then associated

to a latent topic vector Zdnij according to:

Zdnij | {AijYiqYjr = 1, θ} ∼ M (1, θqr) .

I then, given Zdnij , the word W dn
ij is assumed to be drawn

from a multinomial distribution:

W dn
ij |Zdnkij = 1 ∼M (1, βk = (βk1, . . . , βkV )) ,

where V is the vocabulary size.
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Inference
The full joint distribution of the STBM model is given by:

p(A,W, Y, Z, θ|ρ, π, β) = p(W,Z, θ|A, Y, β)p(A, Y |ρ, π).

A key property of the STMB model:
I let us assume that Y is observed (groups are known),

I it is then possible to reorganize the documents
D =

∑
i,j Dij documents W such that:

W = (W̃qr)qr where W̃qr =
{
W d
ij , ∀(d, i, j), YiqYjrAij = 1

}
,

I since all words in W̃qr are associated with the same pair
(q, r) of clusters, they share the same mixture distribution,

I and, simply seeing W̃qr as a document d, the sampling
scheme then corresponds to the one of a LDA model with
D = Q2 documents.
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Inference

Given the above property of the model, we propose for inference
to maximize the complete data log-likelihood:

log p(A,W, Y |ρ, π, β) = log
∑
Z

ˆ
θ
p(A,W, Y, Z, θ|ρ, π, β)dθ,

with respect to (ρ, π, β) and Y = (Y1, . . . , YM ).



Inference: the C-VEM algorithm

The C(-V)EM algorithm makes use of a variational
decomposition:

log p(A,W, Y |ρ, π, β) = L (R;Y, ρ, π, β)+KL (R ‖ p(·|A,W, Y, ρ, π, β)) ,

where

L (R(·);Y, ρ, π, β) =
∑
Z

ˆ
θ
R(Z, θ) log

p(A,W, Y, Z, θ|ρ, π, β)
R(Z, θ)

dθ,

and R(·) is assumed to factorize as follows:

R(Z, θ) = R(Z)R(θ) = R(θ)
M∏

i 6=j,Aij=1

Dij∏
d=1

Nd
ij∏

n=1

R(Zdnij ).
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The HAL Paris Descartes co-authorship network

The Paris Descartes co-authorship network:
I the last 10 000 articles published on HAL,
I with at least one author from University Paris Descartes,
I the network has 13 101 authors and 91 074 edges.

The analysis with Linkage.fr:
I the whole analysis process took 38 min on the server,
I which includes 3 steps:

I retrieving the data from HAL,
I formatting and pre-processing the data,
I the choice of (Q,K) and the clustering (app. 20% of the

whole process).



The Paris Descartes co-authorship network

Figure: The HAL Paris Descartes co-authorship network
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The Paris Descartes co-authorship network
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Conclusion

I STBM : allows to model networks with textual edges
I C-VEM algorithm for inference
I Model selection criterion
I Find clusters of nodes and topics of discussions
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