Master 2 Mathématiques et Finance Mathématiques du Risque et Finance Computationnelle

Modèle de Taux, Surface de Volatilité et Introduction au Risque Crédit

6 janvier 2015 Alexis FAUTH

Questions de Cours ($\sim 5 \text{ pts}$)

- 1. Expliquer les raisons de la baisse du rouble ainsi que les actions du gouvernement russe afin de tenter de l'endiguer.
- 2. A quoi correspond le liquidity coverage ratio (LCR) dans les accords de Bâle III?
- 3. Quels sont les taux utilisés habituellement pour construire la courbe des taux en fonction des maturités?
- 4. Supposons que pour construire un portefeuille nous ayons besoin de la valeur des taux à 22ans, hors cette maturité n'existe pas sur le marché. Donner trois possibilités pour déterminer ce taux en les expliquant.

Exercice 1. Volatilité stochastique (~ 6 pts)

Soit V la valeur d'une option de payoff ϕ . La formule générique de valorisation avec un modèle à volatilité stochastique est

$$V_{SV}(t,T) = e^{-r(T-t)} \int \int \phi(x,y) d\mathbb{P}(S_T = x, \sigma_T = y).$$

Nous supposons pour toute la suite que les processus de prix S_t et de volatilité σ_t sont indépendants.

1. Montrer que

$$V_{SV}(t,T) = \int f_{\sigma_T}(y) V_{BS}(t,T,\sigma_T=y) dy$$

où f_{σ_T} est la densité de σ_T et V_{BS} le prix de l'option valorisée par Black & Scholes. Interpréter ce résultat.

2. Faire un développement limité au second ordre de $V_{BS}(\sigma_T)$ au voisinage de $\bar{\sigma}_T$ où $\bar{\sigma}_T$ est l'espérance de σ_T . Injecter ce résultat dans l'équation précédente et en déduire que

$$V_{SV} \approx V_{BS}(\bar{\sigma}_T) + 0 + \frac{1}{2} \frac{\partial^2 V_{BS}(\bar{\sigma}_T)}{\partial \sigma_T^2} \mathbb{V}ar(\sigma_T).$$

3. On assume les résultats suivants

$$V_{SV} = V_{BS}(\Sigma)$$
 et $\frac{\partial V_{BS}(\bar{\sigma}_T)}{\partial \Sigma} = \frac{\partial V_{BS}(\bar{\sigma}_T)}{\partial \sigma_T}$

où Σ est la volatilité implicite. Faire un développement limité de $V_{BS}(\Sigma)$ au voisinage de $\bar{\sigma}_T$ et en déduire que

$$\Sigma \approx \bar{\sigma}_T + \frac{1}{2} \frac{\frac{\partial^2 V_{BS}(\bar{\sigma}_T)}{\partial \sigma_T^2} \mathbb{V}ar(\sigma_T)}{\frac{\partial V_{BS}(\bar{\sigma}_T)}{\partial \sigma_T}}.$$

- 4. Reprendre les mêmes calculs pour intégrer la skewness et la kurtosis de la volatilité instantanée σ_T dans l'approximation de la volatilité implicite Σ .
- 5. Proposer un modèle à volatilité stochastique en justifiant votre choix.

Exercice 2. Modèle de taux cours ($\sim 7 \text{ pts}$)

Soit n mouvements browniens standards indépendants (\mathcal{F}_t) -adaptés sous la probabilité risque-neutre \mathbb{Q} , $(B_t^1, B_t^2, \cdots, B_t^n)_{t\geq 0}$. Le taux cours est donné par

$$r_t = \sum_{i=1}^{n} (z^i + B_t^i)^2, \qquad r_0 = \sum_{i=1}^{n} (z^i)^2$$

où les z^i , $i=1,\cdots,n$ sont des constantes réelles.

- 1. Déterminer dr_t .
- 2. Montrer que l'on peut écrire

$$\frac{\sum_{i=1}^{n} (z^i + B_t^i) dB_t^i}{\sqrt{r_t}} = dW_t$$

avec W_t est un mouvement brownien.

3. En déduire

$$dr_t = ndt + 2\sqrt{r_t}dW_t.$$

- 4. On suppose que le prix d'un zéro-coupon sur r_t à la forme $B(t,T) = A(T-t)e^{-C(T-t)r_t}$ où A et C sont des fonctions déterministes de conditions terminales C(0) = 0 et A(0) = 1. Exprimer dB(t,T) et donc $\frac{dB(t,T)}{B(t,T)}$.
- 5. En déduire que sous $\mathbb Q$ on doit avoir avec $\tau=T-t$

$$-\frac{A'(\tau)}{A(\tau)} + C'(\tau)r_t - nC(\tau) + 2C^2(\tau)r_t = r_t.$$

- 6. En déduire un système d'équations différentielles (expliquer).
- 7. Montrer que

$$C(\tau) = -\frac{1}{\sqrt{2}} \frac{e^{\tau\sqrt{2}} - e^{-\tau\sqrt{2}}}{e^{\tau\sqrt{2}} + e^{-\tau\sqrt{2}}}.$$

8. En déduire $A(\tau)$ puis le prix du zéro-coupon ainsi que la structure par termes associée.

Exercice 3. CVA (~ 6 pts)

Un CVA (Credit Valuation Adjustement) correspond à la différence entre la valorisation d'un produit dans le cas sans défaut possible de la contrepartie et avec défaut possible. Un CVA sur le produit de valeur V est donné par

$$CVA = (1 - Rec)\mathbb{E} \left[\mathbb{1}_{\tau < T} D(0, \tau) V(\tau, T) | \mathcal{G}_0 \right]$$

où Rec est le taux de recouvrement en cas de défaut, τ l'instant de défaut, \mathcal{G}_t est la filtration engendrée par le sous-jacent de V et τ , et $D(u,v)=e^{-\int_u^v r_s ds}$. On suppose que le sous-jacent est sous $\mathbb Q$ et que l'intensité λ_t du processus τ est indépendante du sous-jacent.

- 1. Justifier la forme générale du CVA.
- 2. Montrer que si $V(\tau,T)=B(\tau,T)$, c'est à dire que le produit est un zéro-coupon sur r_t

$$CVA = (1 - Rec)\mathbb{E} \left[\mathbb{1}_{\tau \leq T} D(0, T) | \mathcal{G}_0 \right].$$

3. On rappelle que $\lambda_t = \mathbb{P}(\tau < t + dt | \tau > t)/dt$. Montrer que

$$\mathbb{P}(\tau \ge t) = e^{-\int_0^t \lambda_s ds}$$

et en déduire l'expression du CVA.

- 4. On suppose que $\lambda_t = \lambda$ et $r_t = r$ pour tout $0 \le t \le T$, calculer la valeur du CVA dans ce cas.
- 5. Reprendre les mêmes calcul pour déterminer la valeur d'un CVA sur un call européen valorisé par Black & Scholes, c'est-à-dire

$$CVA = (1 - Rec)\mathbb{E}\left[\mathbb{1}_{\tau < T}D(0, \tau)\mathbb{E}[D(\tau, T)\phi(S_T)|\mathcal{F}_{\tau}]|\mathcal{G}_0\right]$$

où ϕ est le payoff d'un call européen sur le sous-jacent S_t adapté à \mathcal{F}_t de strike K et de maturité T et $\lambda_t = \lambda$ pour tout $0 \le t \le T$.