Statistiques et Probabilités, L2 MIASHS, Partiel 11/01/2016, Durée : deux heures

Le barème est indicatif. L'utilisation de documents, téléphones portables, calculatrices ou tout autre appareil électronique, est interdite. Les réponses devront être soigneusement argumentées et justifiées.

Questions de cours (2 points)

Donner la définition **en formule avec les commentaires** pour les notions suivantes concernant les tests statistiques.

- 1. niveau α du test
- 2. erreur de seconde espèce β

Exercice 1. Couple de variables aléatoires discrètes (5 points)

Un militant entreprend de faire signer une pétition à l'entrée d'un supermarché. Le nombre de personnes X qu'il peut ainsi contacter est une variable aléatoire de Poisson de paramètre λ , c.a.d. $\mathbb{P}(X=x)=e^{-\lambda}\frac{\lambda^x}{x!}$. Soit p la probabilité qu'une personne ainsi sollicitée signe la pétition. On note Y le nombre total de signatures.

- 1. Soient j et k deux entiers. En distinguant les cas j > k et $j \le k$, calculer $\mathbb{P}(Y = j \mid X = k)$.
- 2. En déduire $\mathbb{P}(X = k, Y = j)$.
- 3. Déterminer la loi de Y. Les variables aléatoires X et Y sont elles indépendantes?

Exercice 2. Chaîne de Markov (4 points)

On considère une chaîne de Markov de matrice de transition

$$M = \left(\begin{array}{cc} 1 - q & p \\ q & 1 - p \end{array}\right)$$

où 0 < p, q < 1.

- 1. Calculer la mesure invariante μ en fonction de p et q.
- 2. On dispose d'une réalisation (x_1, \ldots, x_n) de (X_1, \ldots, X_n) avec X_1 qui suit la loi uniforme.
- a) Quelle est la loi de X_2 ?
- b) Calculer la probabilité de $X_1 = e_1$ sachant $X_2 = e_2$.
- c) Calculer les estimateurs du maximum de vraisemblance \hat{p} et \hat{q} de p et q.

Exercice 4. Estimation paramétrique (9 points)

On considère une suite de variables aléatoires i.i.d. X_1,\ldots,X_n dont la densité f a la forme

$$f(x) = 6(x - a)(b - x) \mathbb{1}_{[a,b]}(x), \quad x \in \mathbb{R},$$

où a et b sont des constantes réelles et a < b.

1. Vérifier que l'on a pour tout $n \in \mathbb{N}$,

$$\int_{a}^{b} (x-a)^{n} (b-x) dx = \frac{(b-a)^{n+2}}{(n+1)(n+2)}.$$

- 2. Exprimer la constante b en fonction de a.
- 3. Calculer $\mathbb{E}(X_1 a)$ et $\mathbb{E}[(X_1 a)^2]$. En déduire $\mathbb{E}X_1$ et $\operatorname{Var}X_1$.
- 4. Calculer le biais et le risque quadratique moyen de l'estimateur de a, $\hat{a} = \frac{1}{n} \sum_{i=1}^{n} X_i \frac{1}{2}$.
- 5. Montrer que \hat{a} n'est pas l'estimateur du maximum de vraisemblance de a.