Bull Braz Math Soc, New Series 34(3), 1-12
© 2003, Sociedade Brasileira de Matemdtica

Weak convergence to the fractional Brownian
sheet in Besov spaces

Ciprian A. Tudor

Abstract. In this paper we study the problem of the approximation in law of the
fractional Brownian sheet in the topology of the anisotropic Besov spaces. We prove
the convergence in law of two families of processes to the fractional Brownian sheet:
the first family is constructed from a Poisson procces in the plane and the second family
is defined by the partial sums of two sequences of real independent fractional brownian
motions.
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1 Introduction

Let T = [0, 1] the unit interval and (W;*),cr a fractional Brownian motion of
Hurst parameter o € (0, 1) on some probability space (€2, F, P). Thatis, W¢
is a centered Gaussian process, starting from zero and its covariance is given by

R(t,s) = E (B!B{) = % (2 4 52 — |t — 5.

Recall that the fractional Brownian motion of Hurst parameter « € (0, 1)
admits a Wiener integral representation with respect to W of the form

t
Wi = / Ky (t, s)dW; (1)
0
where K, is the kernel defined on the set {0 < s < ¢} and it is given by
_1 1 ! 3 S\ 2
Ko(t,$) =du(t =) 3 +du(5 —) | (=57 (1~ (—) du,
K u

)
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with d,, the following normalizing constant

4 20T (2 — @) :
T \Me+hre-20) °

Let now (W, ). ver2 @ Brownian sheet. The fractional Brownian sheet can be
also defined by a Wiener integral with respect to the Brownian sheet (see [4])

S St
wef :/ f Ko(s, u)Kg(t, v)dW,.,. (3)
0 0

where o, B € (0, 1) and the kernels K,, Kz are defined above. Note that this
process is a two-parameters centered Gaussian process, starting from (0, 0), and
its covariance is given by

F (Wi wi) =

(s/2a s s — s|2°‘) (t/zﬁ Ly — t|2ﬂ) ’

“4)

| =

1
2

and it coincides in law with the process introduced in [10] or [1].

The aim of this work is to study the weak convergence of some continuous
processes in the anisotropic Besov spaces to the fractional Brownian sheet. We
will consider two types of approximations. First, we let

t Ky 1 .y
yg(s,t)=/ f —24/_xy(—1)N(?’%)dxdy, >0,
0o Jo &

where {N (x, y), (x,y) € Ri} is a standard Poisson process in the plane. It was
proved in [3] (using the result of Stroock [11] for the one-dimensional case) that
this process converges in law in the space of continuous functions on [0, 1],
denoted by C([0, 1]%), as ¢ tends to 0, to the ordinary Brownian sheet. Using
this result and the representation (3) a natural way to obtain an approximation in
law of the fractional Brownian sheet is to put

t N 1 -
Xe(s, 1) =f / Ko(s, u)Kp(t, V)= /uv(—=DN e dudv.
0 Jo €

The weak convergence of the family of processes X, to the fractional Brownian
sheet W*# in the space of continuous functions has been showed in [4]. In our
first result we prove that the sequence X, converges also to W*# in the stronger
topology of the anisotropic Besov space lip;, ((«, B), b)). See the next Section
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for the definition of Besov spaces. To simplify the notation, we put n = Siz and
we will consider the family of processes

X" (s, 1) :nfs/ Ko(s, X)Kg(t, y)/xy (=) dxdy. (5)
0 Jo

In the last expression N, (x, y) := N(x/n, ys/n). Observe that N, is a Poisson
process with intensity 7.

On the other hand, it has been proved in [5] that if (B"),,, (C"),, are two families
of independent one dimensional Brownian motions then the process

1 Z .-
Wn(S,t)Zﬁ BSJC,]
j=1

converges weakly to the Brownian sheet in the two dimensional Besov space
li p;((%, %), b) for any p > %. Our second approximation result is an extension
of the result of [5]. That is, if we put

1 i
2.0 = =3 BlC/ (6)

j=1

where (B"%),,, (C™#), are two families of independent one dimensional frac-
tional Brownian motions, then the process Z" converges in law, as n — oo, to
the fractional Brownian sheet W*# in the space /i p;‘, (a, B), b).

For the weak convergence in Besov spaces to the one dimensional fractional
Brownian motion we refer to [9].

2 Anisotropic Besov spaces

We recall in this section some basic elements on the two-dimensional Besov
spaces. We refer to [10] for a complete presentation on this subject.

Let 72 = [0, 1]* and D = {1, 2}. For a function f: T? > R,ie D,h € R
and ¢; = (§;1, §;2) unit vectors, let

fz+he) — f(z), if z,z+ he; € T?
Ah,' = .
0, otherwise

denote the progressive difference of f in the direction e;. Let

Ay f = Dy 0 Ao f, for (hy, hy) € R%
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If A = {i}is a subset of D with one element, then we put Ay, pyyaf = Ani f
and A(hl,hz),Af = f if A= o.

Now, for f € LP(T?)if 1 < p < coor f € C(T?) (the space of continuous
functions on T?) if p = oo, we define its L” -modulus of continuity by

wpA(f, (11, 1)) = sup A moy,a fllp for (21, 1) € RE.
0<hi<t1,0<hy<tr

For b real and a = (ay, ay) , a1, a, > 0 consider the real valued application on
T? given by

b
1
ab((f1, 1), A) = B log —
wap (11, 12), A) .l_[tl ( +Z Ogg-)
i€eA i€A
forany A C D with w; ;,((t1, 1), ®) = 1.

Definition 2.1. Leta = (a1, a2), aj,a; > 0, b € Rand1 < p < oo. The
anisotropic Besov space Lip,(a, b) is defined by

L wp.a(f, (1, 12))
Lip,(a,b) =1 f € L*(T?); sup 22 6o
b ACZD ,1,12130 wz p((t1, 12), A)
and this space is endowed with the norm

a,b a)p,A(fv (tl’ IZ))
115 =3 sup LrAt LRI
Athl,t2>0 w[l,b((tl’ t2)a A)

In this way Lipp(a, b) becomes a non-separable Banach space.

We also introduce the subspace lip),(a, b) of Lipp(a, b) by

e i wp a(f, (11, 1))
lip* . b) = LP(T?):V® £ A c D, lim AL R)
ipp(a.b) {f CLITve£ACD, I et 0). A) }

where §4(t1, o) = min{t;, i € A}.
The following result on Besov spaces and fractional Brownian motion has
been proved in [10].

Theorem 2.1. For any 2 < p < o9, it holds
P (W’ ¢ Lip, (@, ),0)) = 1 and P (W** € lip} (. B), 0)) =0.

For similar results in the one parameter case we refer to [7].
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3 Weak convergence to the fractional Brownian sheet in Besov spaces

We will need the following tightness criterion in Besov spaces given by [5].

Lemma 3.1. Let (U" (s, 1)) (5.nef0.12 be a sequence of continuous adapted pro-
cesses such that there exists a = (ay, ay), ai,ay > 0 and for every p > 1 it
exists a constant C,, > 0 such that, for s, s’, t,t" € [0, 1], s <s',t < t" it holds

E ‘As’fs,t’ftUn(S, l‘)’p < Cp|s’ _S|a1p|tr _ t|a2p (7)
and

E|Ay_s 1 U"(s,0)|" < Cpls' — 5|7,

(®)
E|Av_2U"(s,0)|" < Cylt’ — 1],

Then U" is tight in the space lip}, (a, D) for any p > max; al \Y f—J.
We prove now the tightness of the approximating families X" and Z”" given
by (5) and (6).
Lemma 3.2.
1) Let (X" (s, 1)) 1e0.12 be the family of processes given by (5). Then X" is
tight in the space lip;‘J (o, B), b)) forany p > l% \Y, é \Y, %
2) Let (Z"(s,1))s ref0.12 be the family of processes given by (6). Then Z" is

tight in the space lip; (o, B), b)) forany p > % \Y, é \Y, %

Proof. Tightness of X": Note first that, since the Besov norms are increasing
in p it suffices to prove the result for p even. We will show that

ned 4 P / po g/ pB
sup E[ A0, X', 1) | = Cpts’ = )7 = 1)

for any p even. By Lemma 4.1 of [4], it suffices to check this inequality for
s >5s>0,t>r>0, —s<sandt —t <.
We will extend the kernels K, and Kz over all (0, 1] by putting

K,(s,x) ifs > x
0 ifs <x

Ko(s,x) = {

and for the sake of simplicity we will denote also by K, this extension. We
introduce also the following notations

Kypg(s,t,x,y) = Ko(s, x)Kp(t, y),
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and

As,lKot,,B(s/’ l'/,)C, )’) = (KQ(S/,)C) - Ka(S,JC))(Kﬁ(t/, )’) - Kﬂ(t’ }’))

We have that, with the notations introduced above,

P
E[AsXu(s', 1)) =nPE [ / As i Ko p(s', 1, x, y)\/_xy(—l)’v'l<x’>’>dxdy]
[{

0,172

P
=t |:-/ 1_[ (As Ko p(s' 1, i, i) /Xy (DN oy 'dyp:| .
[

2
011

We obtain now a bound for the expectation of the random part of the last
expression. First of all, we have that

(— )Xo MaGiyd) — ()X BooNaain)

and that

P p P
Z Ao oNu(xi, yi) = Z As Ny(xi, yi) + Z AsoN,(x;, 1)

i=1 i=1 i=1

P
+ D AoiNu(s, yi) + p Nals, ),

i=1
and hence
(= 1)Zizt BooNa (i) —
(_1)25):1 As,th(xi,yi)(_l)Zip:l Ax.oNn(x,'J)(_ I)Zle A0, Nu(s,yi)
Since for all x;, y;, x;, yx the three intervals ((s, t), (x;, y;)1, ((s,0), (x;,1)]
and ((0, ), (s, yx)] are disjoint sets, the three factors of the last product are

independent random variables. Moreover, if we majorize the expectation of the
first factor by 1 we will obtain

E ((_1)Z§’:1 AO,ONVL(MsY:’)) < exp{—2nt[(x(p) — X(p-1) + -+ + (¥ — X1}
x exp{—=2ns[(yp) — Yp-1) +-+ o — yaplh

where x(1), ..., x(p are the variables x; ... , x, ordered in increasing order.

Bull Braz Math Soc, Vol. 34, N. 3, 2003



WEAK CONVERGENCE TO THE FRACTIONAL BROWNIAN 7

Using now the fact that 2t > ¢'and 2s > s, the last expression can be bounded
by
exp{—nt'[(x(p) — X(p—1)) + - - + (x2) — xa) ]}
x exp{—ns'[(yp) — Yp-1) + -+ o — ya)l)
< exp{—n[(xp) — Xp-1)Yp-1 + -+ (xe) —x0)yml}
x exp{—n[(yp) — Yp-1)X(p-1) + -+ o) — Ya)xml}
Therefore,
E [As,tXn(slv t/)]p
p
< !21’/ As Ko p(s's 1, xiy yi)/Xi Vi
<(pr [ (TT (@K' 0 vEis)

i=1
x exp{—n[(xp — xp—1)yp—1 + -+ (x2 — x1)y11}
XCXP{—n[(yp = Yp—1)Xp—1 +-+ (2 —yDxl} )

X 1{x15"'§xp}I{YIS“‘Syp})d-xl N dyp

< Cp(nzf , (As,tKot,B(slv ', x1, YDA Ko p(s', 1/, x2, y2)/X1X21 72
[0,1]

4

x exp[—n(xy — x1)y1 —n(y2 — y1)x1])1{x1§x2}1{y1§y2}dx1 "'dy2> :

We now divide the region of integration in two parts: A = {x; < x; <
2x1, yVi=<y= 2y1} and A°.
The integral of expression (9) over the region A can be majorized by

2
Cpn KA&I a,ﬁ(s/7t/»xhyl)As,tKa,ﬁ(s/at/ax2sy2)xly1
[0.1]

x exp{—2n[(x; —x)y1 + (y2 — yOx1 1} (x <xp, ylgyz})dxl cedys

< Cpn? /[0 " <Ka(S/, x1) — Ky (s, Xl))2<Kﬁ(t/, ) — Kg(t, y2)>2xl)’1
X exp(—2n[(x = ¥1)31 + (32 = D0 2y )1 -y

+ C,n? /[0 . <Ka(s/, x2) — Ko (s, x2))2(Kﬁ(t/s 1) — Kg(t, y1)>2x1y1

x exp{—2n[(xs —x)y1 + (y2 = yOX1 1} {1, <0, ylgyz}) dxy---dys.

These last two summands can be treated in a similar way. In the first one we
first integrate with respect to x, and then with respect to y;, and in the second
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we integrate with respect x; and y,. In both cases we obtain the bound

Col [ (Kuls'3) = Kulso xR0 3) = Kyt )dxdy)”
(0,112

P
2\ 2
= C, (E (acwel) ) = C)(s’ =)' — )P

We consider now the integral given in (9) over the region A¢. This region is
the union of By = {x1 < x2, y1 < y2, X2 > 2x1}and B, = {x; < xp, y1 <
y2, y2 > 2y1}. We will deal with the integral over B,, the other one is analogous.
In this case we obtain the following inequalities:

2(y2 = yD)x1 +2(x2 —x)y1 = (2 — yD)x1 +x1y1 +2(x2 — x1)y

1 1 1
> 5()’2 —yDxi +xiy + E(Xz — X))y = 5()’2)61 + yi1x2).
Thus, the integral given in expression (9) over the region B; can be bounded
by
2
Can/ ) l_[ (As,,Ka’ﬁ(s’, v, xi, y,-)a/xiyl-)
R
n
X eXP[—E(yle + 02y Ly <y, yi<ympdxs - dy2
2 2
< C,,nz[/ \ (Ka(S’,xl) - Ka(s,xl)) (K,s(t’, Vi) — K,s(t,yl)) X1y
[0,1]
n
X eXP[—E()’zXl + 2901 Lxy <y, yi<yoydxr -+ -dys
2 2
[ (Kalsor) = Koo (Ra(t ) = Kp(e, 1)) 2o
[0,1]

n
X eXP[—E(yle + VD] Ly <0, yi<yn)dXy - 'dyz]-

By integrating in the first summand of the last expression with respect to x,
and y, and in the second summand with respect to x; and y;, we obtain that the
last expression is bounded by

P
cp( f (Ko (s', x) — Ko(s, x))2(Kp(t', y) — Kp(t, y))zdxdy)z
[0,1]2
N 7
=C, (E <AS’[ ;fﬁ) ) - Cp(s’ —$)P(t — t)ﬂﬁ.
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WEAK CONVERGENCE TO THE FRACTIONAL BROWNIAN 9

Using the same calculus we can prove that conditions (8) of Lemma 1 are also
verified. This finishes the proof of tightness of X".

Tightness of Z":  Concerning 2), observe that the rectangular increments of
the process Z" can be written as

1 < - , . .
MiZiy=—1 > (B - Bi*) (¢} - ci?)
j=1

ja_pia
Bs’ _B.v

) N
‘/E(B;;‘LBXJ'“>

Ct];’ﬁ — C,j A , we get, with (¢;, n;); a double sequence of i.i.d. random variables
with standard normal distribution,

and by decomposing B)* — BJ"“ = |s" — s|* and similarly for

n |P
E \As’—s,t’—t ZS’; |

P
1 n
< ' =)W —=PE| —=) &n
3
P
1 n 5 2
< C,(s' —s\P*¢t' —)PPE| - .
< Cp(s' — )P —1) [@f}

1 n
< G =M@ ==Y EGI < Cpls' =)™ = )"
i=1

and similarly (8) can be checked. O
We can state now our main result.

Theorem 3.3. Let X" and Z" be the families definied by (5) and(6). Then the
following weak convergences hold

X" —> W% in lip, ((a, B), b) asn — o0

and

Z" — W inlip% (@, ), b) asn — oo .
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Proof. We refer to [4] for the proof of the convergence of the finite dimensional
distributions of X" to those of W*#. Concerning the family Z", let N integer,
ap,...,ay € R and (s;,t1),...,(sy,ty) € [0, 1]>. We must see that the
random variables

N

N
1
Yo aZysit)=—=> a
k=1 \/ﬁ k=1
n Sk . Ik .
x> (/ Ko (st uk)dW,-jk) (/ Kp(ty, vk)dwgk>
‘o \Jo 0

converge in law, as n tends to infinity to

N , N s pit
o,
Zakak,tk = Z/ / Ko (sie, ui) Kg(t, vi)dWy oy, -
o Jo
k=1 k=1

To prove this convergence, we will prove the convergence of the associated
characteristic functions. In the sequel we will consider the extension of the
kernel K, (¢, s) on [0, 1] by putting zero if s > ¢. For the sake of simplicity we
will denoted this extension also by K, (¢, s).

Let (y*!), be a sequence of elementary functions converging, for every sy,
to Ko (sg, -) in L2(T) as I goes to oo and for every t;, let (p*!); a sequence of
elementary functions converging in L*(T),asl — oo,to K 8Tk, +).

Let us denote by

1 < /“Y" .l j Y '
A — ye (uk)dWMJ) (/ " (v)dW,
N ; ( 0 ¢ 0 ‘

and
Sk 173
Zii = f / Ko (s, u) Kg (1, v)dW, .
0o Jo

For every A real, we have the following bound

‘E (ei)» P akZ”(Ska)) — E (e“» P “kW.i'ﬁk)‘

< ‘E (eik Z,’LlakZ”(Sk,tk)> — E <eiA P “kzl':.1>|

+ ‘E <ei*21}<v=1asz,1> — E <ei)nzg/=| aka,1>|

+|E (erERazin) - (Vi) = o+ b+ 1
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By the mean value theorem we can bound the term /; by
mléix E |Z”(sk, ) — ZZ,1|

and moreover

E|Z"(sc. 1) — Z}|

n

1 1
< %E > (/0 Ka(sk,uk)dWl{k) (/0 Ks(ty, vk)dwgk)

j=1

! 1
- (/ Vk’l(uk)dWL{k> (/ pk’l(vk)dWI{;c>
0 0
1

n 1
/ (K (e, 1) — ¥ (W) dW ()
0

1
/ Kg(ty, v)dW/
0

1

1 1
f Vk,l(l/t)dwuj / (Kﬂ(tkv 1)) _ pk,l(u)) dW](U)
0 0

1
/ Kg(ty, v)dW/
0

1
<Llel> /0 (K5t ) — @) dW) )

1
/ (Kp(tr, v) — p' (v)) dW)]
0

1
k.l j
_ﬁ \E /0 Y (w)d W/ (1)

Using the independence of increments, we can majorize the last expression by

1 1
(/ (Ka(sk, u) — yk’l(u))zdu) (/ Ké(tk, v)dv)
0 0
1 1
" ( | (y"”(u))zdu) ( | Kateew - ,Ok’l(v))zdv) |
0 0

Now, since y*! and p*! are elementary functions, the convergence of I to 0 as
n — oo follows from the convergence of W” to W*#. Finally, concerning the
lasr term I3, we have

| (e Zhazir) - g (¢* XV < Cmax B |Zey — WP Gsi, 1)
: ,

=C m]ax{EI z[y“mp“(y) — Ko (st X)Kp(ti, 1AW,y |}
[0,1]

< Cm]ax IyH @ o — Ko(si, ) ® Kg(ti, )l 2qo.112)-
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This last norm in L>([0, 1]?) tends to zero, as [ — oo, independently of n. This
fact concludes the proof. U
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