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COMPLEMENTS on STOCHASTIC CALCULUS (1).

Conditional expectation:

1. Recall that two processes X and Y on (Ω,F , P ) ont the same finite dimensional distributions if

∀ 0 ≤ t1 < t2 < . . . < tn < ∞, (Xt1 , . . . , Xtn
) et (Yt1 , . . . , Ytn

)

have the same law.

Show that if two processes are modifications one of the other one, then they have the same finite
dimensional distributions.

2. If (X, Y ) is a random vector with density f(X,Y ) such that ∀x, y ∈ R : f(X,Y )(x, y) > 0, and if B := σ(Y );

1. Show that E[X|B] = g(Y ), où

g : y → g(y) :=

∫
R xf(X,Y )(x, y)dx∫
R f(X,Y )(x, y)dx

2. If (X, Y ) is a Gaussian vector such that E[X] = E[Y ] = 0, var[X] = 1 = var[Y ] et cov[X, Y ] = ρ ∈
[0, 1], calculate E[X|B].

3. If B ⊂ C ⊂ F and X ∈ L2(Ω,F , P )

1. Prove that E[X|B] = E[(E[X|C])|B].

2. Prove that the above relation is not true when B is not included in C by using the point 2 in the
previous exercise with B := σ(X) and C := σ(Y ).

4. The law of the random vector X = (X1, . . . , Xn) is called exchangeable if for any permutation π of
{1, . . . , n} the vectors X et Xπ ont the same law, where Xπ := (Xπ(1), . . . , Xπ(n)).

If the law of X is exchangeable , and if S := X1 + . . . + Xn, calculate E[X1|S] (E[X1|S] is a notation
for E[X1|σ(S)]).

5. If Z1, Z2, . . . is a i.i.d. sequence of random variables in N (0, 1), if Fn := σ(Z1, . . . , Zn) and if Xn :=
Z1 + . . . + Zn,

1. Show that ∀n ≥ m : E[Xn|Fm] = Xm.

2. Show that ∀n ≥ m : E[Yn|Fm] = Ym, where Yn := X2
n − n.

3. Show that ∀n ≥ m : E[Mn|Fm] = Mm, where Mn := exp(Xn − n/2).

(that means that X, Y and M are martingales.)

Brownian motion and related topics:

1. Prove that if B is a Brownian motion, then cov(Bs, Bt) = s ∧ t, where s ∧ t denotes min(s, t).

Prove that if X is a continuous centered Gaussian process and if ∀s, t ≥ 0 : cov(Xs, Xt) = s ∧ t, then
B is a Brownian motion for its natural filtration. If X is a centered Gaussian process with covariance
cov(Xs, Xt) = s ∧ t then it is a.s. a Brownian motion.
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2. Let (Xt)t≥0 be a continuous adapted process. Show that if

lim
|∆|→0

T∆,p
t (X) = Lt

in probability, where Lt is a r.v. with values in [0,∞[ then

∀q > p, lim
|∆|→0

T∆,q
t (X) = 0

in probability and
∀0 < q < p, lim

|∆|→0
T∆,q

t (X) = ∞

in probability on the set (Lt > 0).

Deduce (from the quadratic variation) that the trajectories of the Brownian motion are not with bounded
variation.

3. The fractional Brownian motion is a centered Gaussian process BH with covariance

E(BH
t BH

s ) =
1
2

(
t2H + s2H − |t− s|2H

)

where H ∈ (0, 1) is called the Hurst index . Show that if H = 1
2 we retrieve the Brownian motion. Prove

that BH is H -self-similar, i.e. for every c > 0, cHBct, t ≥ 0 is again a fractional Brownian motion. Prove
that this process has a.s. continuous paths.

4. (Stopping times)

a. Prove that the sum of two stopping times is a stopping time.

b. If (τn)n≥1 is a sequence of stopping times for a right-continuous filtration, then

sup
n≥1

τn, inf
n≥1

τn

are stopping times.

5. Let T be a Ft stopping time. Consider the sequence (Tn)n≥1 defined by Tn(ω) = k
2n on the set

{ω/k−1
2n ≤ T (ω) < k

2n } et T (ω) = T (ω) on {T = ∞} for n ≥ 1, k ≥ 1.

a. Show that Tn ≥ Tn+1 ≥ T for every n.

b. Show that Tn is a Ft stopping time for every n.

c. Show that limn→∞ Tn = T .

6. Let B be a Brownian motion. We define

L = {(t, ω) ∈ [0,∞[×Ω; Bt(ω) = 0}.

For fixed ω we set
Lω = {0 ≤ t < ∞;Bt(ω) = 0}.

a. Show that L is included in the σ algebra B[0,∞[ ⊗F .

b. Show that Lω is of zero Lebesque measure.

7. (Exam December 2006) Consider the centered Gaussian process (SH
t )t≥0 with covariance

R(t, s) = sH + tH − 1
2

(
(s + t)H + |t− s|H)

, s, t ≥ 0

avec H ∈]0, 2[.

a. Show that if H = 1 the process SH is a.s. a BM for its natural filtration.

b. Show that SH is a self-similar process of order H
2 .
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c. Calculate E
(
SH

t − SH
s

)2. Show that

E
(
SH

t − SH
s

)2 ≤ |t− s|H , si H > 1

and
E

(
SH

t − SH
s

)2 ≤ (2− 2H−1)|t− s|H , si H < 1.

d. Show that the trajectories of the process SH are almost surely continuous. Are these trajectories
holderian? with which order?

e. Compute the quadratic variation of the process SH , i.e. for every t ≥ 0 find the limit in probability
when |∆| → 0 , of the sequence

T∆
t (SH) =

n−1∑

i=0

(
SH

ti+1
− SH

ti

)2

where ∆ : 0 = t0 < t1 < . . . < tn = t is a partition of [0, t]. Distinguish the cases H > 1, H = 1 and
H < 1.

f. Deduce that if H > 1 the process SH is not a martingale.

Martingales and Itô integral

1. (the Poisson process) A Poisson process with parameter (intensity) λ > 0 is an adapted cadlag stochastic
process (Nt)t≥0 such that N0 = 0 a.s. and for every 0 ≤ s ≤ t, Nt−Ns is independent by Fs and follows
a Poisson law with parameter λ(t− s). The compensated Poisson process is given by, for every t ≥ 0

Ñt = Nt − λt.

a. Prove that Ñ is a martingale.

b. Prove that Ñ2
t − λt is a martingale.

2. Show that, if X is a Ft -adapted process in L1, then X is a martingale if and only if for every stopping
time T , we have

E(XT ) = E(X0).

3. Prove the following properties of the semimartingale’s bracket:

i. if Y =
∫ .

0
bsds where b ∈ H loc

1 , then 〈Y, Y 〉 = 0.

i. if X =
∫ .

0
asdBs where a ∈ H loc

2 , then T∆(X, Y ) → 0 in probability. (i.e. 〈X,Y 〉 = 0).

iii. if X = X0 +
∫ .

0
atdBt +

∫ .

0
btdt is a semi-martingale, then 〈X, X〉t =

∫ t

0
a2

sds.

iv. We have 〈X, Y 〉 = 1
4 (〈X + Y,X + Y 〉 + 〈X − Y, X − Y 〉) and the angle bracket 〈X,Y 〉 of two

semi-martingales X = X0+
∫ .

0
atdBt +

∫ .

0
btdt and Y = Y0+

∫ .

0
a′tdBt +

∫ .

0
b′tdt is given by the bracket

of the ”two martingale parts”

〈X,Y 〉t =
∫ t

0

asa
′
sds.

v. Suppose that B1 et B2 are two {Ft}-independent Brownian motions. Compute 〈B1 + B2, B1 + B2〉,
〈B1 −B2, B1 −B2〉 and finnally show that 〈B1, B2〉 = 0.

4. (exam december 2007) Let T > 0 and let (Bt)t∈[0,T ] be a Ft Brownian motion.

a. Express the process (tBt)t∈[0,T ] as the sum of an Itô integral and a finite variation stochastic
process.

b. Show that the stochastic process (Xt)t∈[0,T ] given by

Xt = B3
t − 3tBt, t ∈ [0, T ]

is a Ft martingale. Write, for every t ∈ [0, T ], Xt in the form Xt =
∫ t

0
αsdBs, for every t ∈ [0, T ],

where the process (αt)t∈[0,T ] will be written.

3



c. Consider the stochastic process (Yt)t∈[0,T ] given by

Y u
t = Xt +

∫ t

0

usds, t ∈ [0, T ].

where the stochastic process (ut)t∈[0,T ] is such that E
∫ T

0
|us|ds < ∞. Show that Y is a martingale

if and only if ut(ω) = 0 for almost all (t, ω).

d. Consider the process (Zt)t∈[0,T ] defined by Zt = e−Bt− t
2 . Show that Z is a martingale.

e. Prove that the process (Y α
t Zt)t∈[0,T ] is a martingale, where α is the stochastic process appearing in

point 2. above.

f. Show that the process (B4
t − 6tB2

t + 3t2)t∈[0,T ] is also a martingale and it can be written as
B4

t − 6tB2
t + 3t2 = 4

∫ t

0
XsdBs, for every t ∈ [0, T ].

5. (exam december 2007)For fixed a, b ∈ R and for fixed 0 < T < 1 we define the stochastic process (Yt)t∈[0,T ]

by

Yt = a(1− t) + bt + (1− t)
∫ t

0

1
1− s

dBs, t ∈ [0, T ]

where (Bt)t∈[0,1] is a standard Brownian motion on a probability space (Ω,F , P ).

a. Show that for every 0 ≤ t ≤ T the random variable
∫ t

0
1

1−sdBs is well-defined and it is Gaussian.

b. Show that the process (Xt)t∈[0,T ] is Hölder continuous of order δ for any 0 < δ < 1
2 .

c. Prove that the following convergences holds in L2(Ω):

YT →T→1 b and YT →T→0 a.

d. By using Doob’s inequality, show that for any n integer

E

(
sup

t∈[1−2−n,1−2−n−1]

|Mt|
)2

≤ 4
(
2n+1 − 1

)

e. Show that for every ε > 0,

P{ sup
t∈[1−2−n,1−2−n−1]

|Mt| > ε} ≤ 2−2nε−24
(
2n+1 − 1

)
.

f. Use the Borel-Cantelli Lemma to deduce that YT →T→1 b almost surely.

6. (exam juin 2008) Let (Wt)t≥0 be a standard Brownian motion and define for every t ≥ 0

Yt = cos(Bt).

a. Explain why the integral
∫ t

0
sin(Bs)dBs exists. Is the process

(∫ t

0
sin(Bs)dBs

)
t≥0

a martingale?

b. Show that for every t ≥ 0 we have

Yt = 1− 1
2

∫ t

0

Ysds−
∫ t

0

sin(Bs)dBs. (1)

c. We define the function u : [0,∞) → R by u(t) = E(cos(Bt)). Deduce from the above question that
u is differentiable and that for every t ≥ 0

u′(t) = −1
2
u(t). (2)

d. Prove the relation (2) by direct calculation.

7. We defined the application J : H2
2 → M2 as the stochastic integral with respect to a Brownian motion B

arbitrary.
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a. If B1 and B2 are two independent Brownian motions, show that B3 := 1√
2
(B1 + B2) is still a

Brownian motion.

b. To each of these Brownian motion, one can associate a different application J : H2
2 → M2 that we

will denote by J1, J2 et J3 respectively. Show that J3(φ) = 1√
2
(J1(φ) + J2(φ)). Using the integral

notation ∫ ·

0

φtdB3
t =

1√
2
(
∫ ·

0

φtdB1
t +

∫ ·

0

φtdB2
t ).

8. (exam January 2006) Let (Xt)t≥0 a stochastic process on a probability space (Ω,F , P ). We define for
every α ∈ R

Xα(t) = eαXt−α2
2 t, ∀t ≥ 0.

a. Show that if Xt ∼ N(0, t) for every t > 0 then E (Xα(t)) = 1 for every t > 0.

In the following we will assume that X = B is a Ft Brownian motion.

b. Prove that the process (Xα(t))t≥0 is a Ft martingale.

c. We will accept that t →∞ Xα(t) converges almost surely to a r.v. xα. Show that xα = 0 a.s. .

d. Show why Xα(t) does not converge in L1(Ω) when t →∞.

e. Show that the family (Xα(t))t≥0 is bounded in L1. In this family uniformly integrable ?

9. (exam January 2006) Let B = (Bt)t≥0 be a Brownian motion on the probability space (Ω,F , P ) et a ∈ R.

a. May we apply the Itô formula to B for f(x) = max(x, 0) ?

b. Let us consider the function

ρ(x) = c exp
[

1
(x− 1)2 − 1

]
, pour 0 < x < 2

and ρ(x) = 0 otherwise. The constant c is chosen such that
∫
R ρ(s)ds = 1. We define for every

n ≥ 1,
ρn(x) = nρ(nx)

and
un(x) =

∫ x

−∞

∫ y

−∞
ρn(z − a)dzdy, x ∈ R.

Show that the functions ρ and ρn are continuous and that the function un id of class C2.

c. Write the Itô formula for un(Bt).

We will admit in the following that x ∈ R,

lim
n→∞

u′n(x) = 1]a,∞[(x) et lim
n→∞

un(x) = max(x− a, 0).

d. Show that when n → ∞, the sequence
∫ t

0
u′n(Bs)dBs converges in L2(Ω) to

∫ t

0
1]a,∞[(Bs)dBs for

every t ≥ 0.

e. We suppose that for every t ≥ 0, when n → ∞ the sequence
∫ t

0
ρn(Bs − a)ds converges almost

surely to a limit Lt(a). For every t ≥ 0, show that a.s.

max(Bt − a, 0) = max(−a, 0) +
∫ t

0

1]a,∞[(Bs)dBs +
1
2
Lt(a).

10. (exam June 2006) Let T > 0 and (Wt)t∈[0,T ] a Ft-Brownian motion.

a. Explain why

At =
∫ t

0

WsdWs (3)

exists for every t ∈ [0, T ]. Which property is satisfied fby (At)t∈[0,T ]?
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b. May we have

At =
∫ t

0

usds, ∀t ∈ [0, T ]

where (us)s∈[0,T ] is a process L1? Justify.

let ∆n, n ≥ 1 be the sequence of simple stochastic processes

∆n(t) =
n−1∑

k=0

W (
k

n
T )1[ k

n T, k+1
n T [(t), ∀t ∈ [0, T [.

and ∆n(T ) = WT . We admit that

E

∫ T

0

|∆n(t)−Wt|2 dt = 0.

c. Fix n ≥ 1 and denote by Wj = W j
n T , j = 0, 1, . . . n. Prove that

1
2

n−1∑

j=0

(Wj+1 −Wj)2 =
1
2
W 2

n +
n−1∑

j=0

Wj(Wj −Wj+1).

d. Deduce another expression for the integral At given by (3).

e. Write the Itô formula for A2
t .

11. (exam June 2006)

a. Recall the Itô formula of the type f(t,Xt) where (Xt)t≥0 is a semimartingale.

Let (Wt)∈[0,1] a Ft Brownian motion and Z the process given by

Zt =
1√

1− t
exp

(
− W 2

t

2(1− t)

)
, t ∈ [0, 1[.

b. Show that Z is a martingale. Calculate E(Zt) for every t ∈ [0, 1[.

c. Show that Zt tends to 0 when t tends to 1. Discuss in which sense this convergence holds.

d. Write Zt of the form

Zt = exp
(∫ t

0

g(s)dWs − 1
2

∫ t

0

g(s)2ds

)

where the process g is to be written.
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