COMPLEMENTS on STOCHASTIC CALCULUS (1).

Conditional expectation:

1. Recall that two processes X and Y on (Ω, \mathcal{F}, P) ont the same finite dimensional distributions if

$$
\forall 0 \leq t_{1}<t_{2}<\ldots<t_{n}<\infty,\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) \text { et }\left(Y_{t_{1}}, \ldots, Y_{t_{n}}\right)
$$

have the same law.
Show that if two processes are modifications one of the other one, then they have the same finite dimensional distributions.
2. If (X, Y) is a random vector with density $f_{(X, Y)}$ such that $\forall x, y \in R: f_{(X, Y)}(x, y)>0$, and if $\mathcal{B}:=\sigma(Y)$;

1. Show that $E[X \mid \mathcal{B}]=g(Y)$, où

$$
g: y \rightarrow g(y):=\frac{\int_{\mathbb{R}} x f_{(X, Y)}(x, y) d x}{\int_{\mathbb{R}} f_{(X, Y)}(x, y) d x}
$$

2. If (X, Y) is a Gaussian vector such that $E[X]=E[Y]=0, \operatorname{var}[X]=1=\operatorname{var}[Y]$ et $\operatorname{cov}[X, Y]=\rho \in$ $[0,1]$, calculate $E[X \mid \mathcal{B}]$.
3. If $\mathcal{B} \subset \mathcal{C} \subset \mathcal{F}$ and $X \in L^{2}(\Omega, \mathcal{F}, P)$
4. Prove that $E[X \mid \mathcal{B}]=E[(E[X \mid \mathcal{C}]) \mid \mathcal{B}]$.
5. Prove that the above relation is not true when \mathcal{B} is not included in \mathcal{C} by using the point 2 in the previous exercise with $\mathcal{B}:=\sigma(X)$ and $\mathcal{C}:=\sigma(Y)$.
6. The law of the random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ is called exchangeable if for any permutation π of $\{1, \ldots, n\}$ the vectors X et X_{π} ont the same law, where $X_{\pi}:=\left(X_{\pi(1)}, \ldots, X_{\pi(n)}\right)$.
If the law of X is exchangeable, and if $S:=X_{1}+\ldots+X_{n}$, calculate $E\left[X_{1} \mid S\right]\left(E\left[X_{1} \mid S\right]\right.$ is a notation for $\left.E\left[X_{1} \mid \sigma(S)\right]\right)$.
7. If Z_{1}, Z_{2}, \ldots is a i.i.d. sequence of random variables in $\mathcal{N}(0,1)$, if $\mathcal{F}_{n}:=\sigma\left(Z_{1}, \ldots, Z_{n}\right)$ and if $X_{n}:=$ $Z_{1}+\ldots+Z_{n}$,
8. Show that $\forall n \geq m: E\left[X_{n} \mid \mathcal{F}_{m}\right]=X_{m}$.
9. Show that $\forall n \geq m: E\left[Y_{n} \mid \mathcal{F}_{m}\right]=Y_{m}$, where $Y_{n}:=X_{n}^{2}-n$.
10. Show that $\forall n \geq m: E\left[M_{n} \mid \mathcal{F}_{m}\right]=M_{m}$, where $M_{n}:=\exp \left(X_{n}-n / 2\right)$.
(that means that X, Y and M are martingales.)

Brownian motion and related topics:

1. Prove that if B is a Brownian motion, then $\operatorname{cov}\left(B_{s}, B_{t}\right)=s \wedge t$, where $s \wedge t$ denotes $\min (s, t)$.

Prove that if X is a continuous centered Gaussian process and if $\forall s, t \geq 0: \operatorname{cov}\left(X_{s}, X_{t}\right)=s \wedge t$, then B is a Brownian motion for its natural filtration. If X is a centered Gaussian process with covariance $\operatorname{cov}\left(X_{s}, X_{t}\right)=s \wedge t$ then it is a.s. a Brownian motion.
2. Let $\left(X_{t}\right)_{t \geq 0}$ be a continuous adapted process. Show that if

$$
\lim _{|\Delta| \rightarrow 0} T_{t}^{\Delta, p}(X)=L_{t}
$$

in probability, where L_{t} is a r.v. with values in $[0, \infty[$ then

$$
\forall q>p, \lim _{|\Delta| \rightarrow 0} T_{t}^{\Delta, q}(X)=0
$$

in probability and

$$
\forall 0<q<p, \lim _{|\Delta| \rightarrow 0} T_{t}^{\Delta, q}(X)=\infty
$$

in probability on the set $\left(L_{t}>0\right)$.
Deduce (from the quadratic variation) that the trajectories of the Brownian motion are not with bounded variation.
3. The fractional Brownian motion is a centered Gaussian process B^{H} with covariance

$$
E\left(B_{t}^{H} B_{s}^{H}\right)=\frac{1}{2}\left(t^{2 H}+s^{2 H}-|t-s|^{2 H}\right)
$$

where $H \in(0,1)$ is called the Hurst index. Show that if $H=\frac{1}{2}$ we retrieve the Brownian motion. Prove that B^{H} is H-self-similar, i.e. for every $c>0, c^{H} B_{c t}, t \geq 0$ is again a fractional Brownian motion. Prove that this process has a.s. continuous paths.
4. (Stopping times)
a. Prove that the sum of two stopping times is a stopping time.
b. If $\left(\tau_{n}\right)_{n \geq 1}$ is a sequence of stopping times for a right-continuous filtration, then

$$
\sup _{n \geq 1} \tau_{n}, \inf _{n \geq 1} \tau_{n}
$$

are stopping times.
5. Let T be a \mathcal{F}_{t} stopping time. Consider the sequence $\left(T_{n}\right)_{n \geq 1}$ defined by $T_{n}(\omega)=\frac{k}{2^{n}}$ on the set $\left\{\omega / \frac{k-1}{2^{n}} \leq T(\omega)<\frac{k}{2^{n}}\right\}$ et $T(\omega)=T(\omega)$ on $\{T=\infty\}$ for $n \geq 1, k \geq 1$.
a. Show that $T_{n} \geq T_{n+1} \geq T$ for every n.
b. Show that T_{n} is a \mathcal{F}_{t} stopping time for every n.
c. Show that $\lim _{n \rightarrow \infty} T_{n}=T$.
6. Let B be a Brownian motion. We define

$$
L=\left\{(t , \omega) \in \left[0, \infty\left[\times \Omega ; B_{t}(\omega)=0\right\} .\right.\right.
$$

For fixed ω we set

$$
L_{\omega}=\left\{0 \leq t<\infty ; B_{t}(\omega)=0\right\} .
$$

a. Show that L is included in the σ algebra $\mathcal{B}_{[0, \infty[} \otimes \mathcal{F}$.
b. Show that L_{ω} is of zero Lebesque measure.
7. (Exam December 2006) Consider the centered Gaussian process $\left(S_{t}^{H}\right)_{t \geq 0}$ with covariance

$$
R(t, s)=s^{H}+t^{H}-\frac{1}{2}\left((s+t)^{H}+|t-s|^{H}\right), \quad s, t \geq 0
$$

avec $H \in] 0,2[$.
a. Show that if $H=1$ the process S^{H} is a.s. a BM for its natural filtration.
b. Show that S^{H} is a self-similar process of order $\frac{H}{2}$.
c. Calculate $E\left(S_{t}^{H}-S_{s}^{H}\right)^{2}$. Show that

$$
E\left(S_{t}^{H}-S_{s}^{H}\right)^{2} \leq|t-s|^{H}, \quad \text { si } H>1
$$

and

$$
E\left(S_{t}^{H}-S_{s}^{H}\right)^{2} \leq\left(2-2^{H-1}\right)|t-s|^{H}, \quad \text { si } H<1
$$

d. Show that the trajectories of the process S^{H} are almost surely continuous. Are these trajectories holderian? with which order?
e. Compute the quadratic variation of the process S^{H}, i.e. for every $t \geq 0$ find the limit in probability when $|\Delta| \rightarrow 0$, of the sequence

$$
T_{t}^{\Delta}\left(S^{H}\right)=\sum_{i=0}^{n-1}\left(S_{t_{i+1}}^{H}-S_{t_{i}}^{H}\right)^{2}
$$

where $\Delta: 0=t_{0}<t_{1}<\ldots<t_{n}=t$ is a partition of $[0, t]$. Distinguish the cases $H>1, H=1$ and $H<1$.
f. Deduce that if $H>1$ the process S^{H} is not a martingale.

Martingales and Itô integral

1. (the Poisson process) A Poisson process with parameter (intensity) $\lambda>0$ is an adapted cadlag stochastic process $\left(N_{t}\right)_{t \geq 0}$ such that $N_{0}=0$ a.s. and for every $0 \leq s \leq t, N_{t}-N_{s}$ is independent by \mathcal{F}_{s} and follows a Poisson law with parameter $\lambda(t-s)$. The compensated Poisson process is given by, for every $t \geq 0$

$$
\tilde{N}_{t}=N_{t}-\lambda t
$$

a. Prove that \tilde{N} is a martingale.
b. Prove that $\tilde{N}_{t}^{2}-\lambda t$ is a martingale.
2. Show that, if X is a \mathcal{F}_{t}-adapted process in L^{1}, then X is a martingale if and only if for every stopping time T, we have

$$
E\left(X_{T}\right)=E\left(X_{0}\right)
$$

3. Prove the following properties of the semimartingale's bracket:
i. if $Y=\int_{0}^{0} b_{s} d s$ where $b \in H_{1}^{l o c}$, then $\langle Y, Y\rangle=0$.
i. if $X=\int_{0}^{s} a_{s} d B_{s}$ where $a \in H_{2}^{\text {loc }}$, then $T^{\Delta}(X, Y) \rightarrow 0$ in probability. (i.e. $\langle X, Y\rangle=0$).
iii. if $X=X_{0}+\int_{0}^{r} a_{t} d B_{t}+\int_{0}^{r} b_{t} d t$ is a semi-martingale, then $\langle X, X\rangle_{t}=\int_{0}^{t} a_{s}^{2} d s$.
iv. We have $\langle X, Y\rangle=\frac{1}{4}(\langle X+Y, X+Y\rangle+\langle X-Y, X-Y\rangle)$ and the angle bracket $\langle X, Y\rangle$ of two semi-martingales $X=X_{0}+\int_{0}^{\cdot} a_{t} d B_{t}+\int_{0}^{\cdot} b_{t} d t$ and $Y=Y_{0}+\int_{0}^{\cdot} a_{t}^{\prime} d B_{t}+\int_{0}^{c} b_{t}^{\prime} d t$ is given by the bracket of the "two martingale parts"

$$
\langle X, Y\rangle_{t}=\int_{0}^{t} a_{s} a_{s}^{\prime} d s
$$

v. Suppose that B_{1} et B_{2} are two $\left\{\mathcal{F}_{t}\right\}$-independent Brownian motions. Compute $\left\langle B_{1}+B_{2}, B_{1}+B_{2}\right\rangle$, $\left\langle B_{1}-B_{2}, B_{1}-B_{2}\right\rangle$ and finnally show that $\left\langle B_{1}, B_{2}\right\rangle=0$.
4. (exam december 2007) Let $T>0$ and let $\left(B_{t}\right)_{t \in[0, T]}$ be a \mathcal{F}_{t} Brownian motion.
a. Express the process $\left(t B_{t}\right)_{t \in[0, T]}$ as the sum of an Itô integral and a finite variation stochastic process.
b. Show that the stochastic process $\left(X_{t}\right)_{t \in[0, T]}$ given by

$$
X_{t}=B_{t}^{3}-3 t B_{t}, \quad t \in[0, T]
$$

is a \mathcal{F}_{t} martingale. Write, for every $t \in[0, T], X_{t}$ in the form $X_{t}=\int_{0}^{t} \alpha_{s} d B_{s}$, for every $t \in[0, T]$, where the process $\left(\alpha_{t}\right)_{t \in[0, T]}$ will be written.
c. Consider the stochastic process $\left(Y_{t}\right)_{t \in[0, T]}$ given by

$$
Y_{t}^{u}=X_{t}+\int_{0}^{t} u_{s} d s, \quad t \in[0, T] .
$$

where the stochastic process $\left(u_{t}\right)_{t \in[0, T]}$ is such that $E \int_{0}^{T}\left|u_{s}\right| d s<\infty$. Show that Y is a martingale if and only if $u_{t}(\omega)=0$ for almost all (t, ω).
d. Consider the process $\left(Z_{t}\right)_{t \in[0, T]}$ defined by $Z_{t}=e^{-B_{t}-\frac{t}{2}}$. Show that Z is a martingale.
e. Prove that the process $\left(Y_{t}^{\alpha} Z_{t}\right)_{t \in[0, T]}$ is a martingale, where α is the stochastic process appearing in point 2. above.
f. Show that the process $\left(B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}\right)_{t \in[0, T]}$ is also a martingale and it can be written as $B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}=4 \int_{0}^{t} X_{s} d B_{s}$, for every $t \in[0, T]$.
5. (exam december 2007)For fixed $a, b \in \mathbb{R}$ and for fixed $0<T<1$ we define the stochastic process $\left(Y_{t}\right)_{t \in[0, T]}$ by

$$
Y_{t}=a(1-t)+b t+(1-t) \int_{0}^{t} \frac{1}{1-s} d B_{s}, \quad t \in[0, T]
$$

where $\left(B_{t}\right)_{t \in[0,1]}$ is a standard Brownian motion on a probability space (Ω, \mathcal{F}, P).
a. Show that for every $0 \leq t \leq T$ the random variable $\int_{0}^{t} \frac{1}{1-s} d B_{s}$ is well-defined and it is Gaussian.
b. Show that the process $\left(X_{t}\right)_{t \in[0, T]}$ is Hölder continuous of order δ for any $0<\delta<\frac{1}{2}$.
c. Prove that the following convergences holds in $L^{2}(\Omega)$:

$$
Y_{T} \rightarrow_{T \rightarrow 1} b \text { and } Y_{T} \rightarrow_{T \rightarrow 0} a
$$

d. By using Doob's inequality, show that for any n integer

$$
E\left(\sup _{t \in\left[1-2^{-n}, 1-2^{-n-1}\right]}\left|M_{t}\right|\right)^{2} \leq 4\left(2^{n+1}-1\right)
$$

e. Show that for every $\varepsilon>0$,

$$
P\left\{\sup _{t \in\left[1-2^{-n}, 1-2^{-n-1}\right]}\left|M_{t}\right|>\varepsilon\right\} \leq 2^{-2 n} \varepsilon^{-2} 4\left(2^{n+1}-1\right) .
$$

f. Use the Borel-Cantelli Lemma to deduce that $Y_{T} \rightarrow_{T \rightarrow 1} b$ almost surely.
6. (exam juin 2008) Let $\left(W_{t}\right)_{t \geq 0}$ be a standard Brownian motion and define for every $t \geq 0$

$$
Y_{t}=\cos \left(B_{t}\right)
$$

a. Explain why the integral $\int_{0}^{t} \sin \left(B_{s}\right) d B_{s}$ exists. Is the process $\left(\int_{0}^{t} \sin \left(B_{s}\right) d B_{s}\right)_{t \geq 0}$ a martingale?
b. Show that for every $t \geq 0$ we have

$$
\begin{equation*}
Y_{t}=1-\frac{1}{2} \int_{0}^{t} Y_{s} d s-\int_{0}^{t} \sin \left(B_{s}\right) d B_{s} \tag{1}
\end{equation*}
$$

c. We define the function $u:[0, \infty) \rightarrow \mathbf{R}$ by $u(t)=E\left(\cos \left(B_{t}\right)\right)$. Deduce from the above question that u is differentiable and that for every $t \geq 0$

$$
\begin{equation*}
u^{\prime}(t)=-\frac{1}{2} u(t) . \tag{2}
\end{equation*}
$$

d. Prove the relation (2) by direct calculation.
7. We defined the application $J: H_{2}^{2} \rightarrow M^{2}$ as the stochastic integral with respect to a Brownian motion B arbitrary.
a. If B^{1} and B^{2} are two independent Brownian motions, show that $B^{3}:=\frac{1}{\sqrt{2}}\left(B^{1}+B^{2}\right)$ is still a Brownian motion.
b. To each of these Brownian motion, one can associate a different application $J: H_{2}^{2} \rightarrow M^{2}$ that we will denote by J_{1}, J_{2} et J_{3} respectively. Show that $J_{3}(\phi)=\frac{1}{\sqrt{2}}\left(J_{1}(\phi)+J_{2}(\phi)\right)$. Using the integral notation

$$
\int_{0}^{.} \phi_{t} d B_{t}^{3}=\frac{1}{\sqrt{2}}\left(\int_{0}^{.} \phi_{t} d B_{t}^{1}+\int_{0} \phi_{t} d B_{t}^{2}\right) .
$$

8. (exam January 2006) Let $\left(X_{t}\right)_{t \geq 0}$ a stochastic process on a probability space (Ω, \mathcal{F}, P). We define for every $\alpha \in \mathbb{R}$

$$
X_{\alpha}(t)=e^{\alpha X_{t}-\frac{\alpha^{2}}{2} t}, \quad \forall t \geq 0
$$

a. Show that if $X_{t} \sim N(0, t)$ for every $t>0$ then $E\left(X_{\alpha}(t)\right)=1$ for every $t>0$.

In the following we will assume that $X=B$ is a \mathcal{F}_{t} Brownian motion.
b. Prove that the process $\left(X_{\alpha}(t)\right)_{t \geq 0}$ is a \mathcal{F}_{t} martingale.
c. We will accept that $t \rightarrow \infty X_{\alpha}(t)$ converges almost surely to a r.v. x_{α}. Show that $x_{\alpha}=0$ a.s. .
d. Show why $X_{\alpha}(t)$ does not converge in $L^{1}(\Omega)$ when $t \rightarrow \infty$.
e. Show that the family $\left(X_{\alpha}(t)\right)_{t \geq 0}$ is bounded in L^{1}. In this family uniformly integrable ?
9. (exam January 2006) Let $B=\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion on the probability space (Ω, \mathcal{F}, P) et $a \in \mathbb{R}$.
a. May we apply the Itô formula to B for $f(x)=\max (x, 0)$?
b. Let us consider the function

$$
\rho(x)=c \exp \left[\frac{1}{(x-1)^{2}-1}\right], \quad \text { pour } 0<x<2
$$

and $\rho(x)=0$ otherwise. The constant c is chosen such that $\int_{\mathbb{R}} \rho(s) d s=1$. We define for every $n \geq 1$,

$$
\rho_{n}(x)=n \rho(n x)
$$

and

$$
u_{n}(x)=\int_{-\infty}^{x} \int_{-\infty}^{y} \rho_{n}(z-a) d z d y, \quad x \in \mathbb{R}
$$

Show that the functions ρ and ρ_{n} are continuous and that the function u_{n} id of class C^{2}.
c. Write the Itô formula for $u_{n}\left(B_{t}\right)$.

We will admit in the following that $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} u_{n}^{\prime}(x)=1_{] a, \infty[}(x) \text { et } \lim _{n \rightarrow \infty} u_{n}(x)=\max (x-a, 0)
$$

d. Show that when $n \rightarrow \infty$, the sequence $\int_{0}^{t} u_{n}^{\prime}\left(B_{s}\right) d B_{s}$ converges in $L^{2}(\Omega)$ to $\int_{0}^{t} 1_{] a, \infty[}\left(B_{s}\right) d B_{s}$ for every $t \geq 0$.
e. We suppose that for every $t \geq 0$, when $n \rightarrow \infty$ the sequence $\int_{0}^{t} \rho_{n}\left(B_{s}-a\right) d s$ converges almost surely to a limit $L_{t}(a)$. For every $t \geq 0$, show that a.s.

$$
\max \left(B_{t}-a, 0\right)=\max (-a, 0)+\int_{0}^{t} 1_{] a, \infty[}\left(B_{s}\right) d B_{s}+\frac{1}{2} L_{t}(a)
$$

10. (exam June 2006) Let $T>0$ and $\left(W_{t}\right)_{t \in[0, T]}$ a \mathcal{F}_{t}-Brownian motion.
a. Explain why

$$
\begin{equation*}
A_{t}=\int_{0}^{t} W_{s} d W_{s} \tag{3}
\end{equation*}
$$

exists for every $t \in[0, T]$. Which property is satisfied fby $\left(A_{t}\right)_{t \in[0, T]}$?
b. May we have

$$
A_{t}=\int_{0}^{t} u_{s} d s, \quad \forall t \in[0, T]
$$

where $\left(u_{s}\right)_{s \in[0, T]}$ is a process L^{1} ? Justify.
let $\Delta_{n}, n \geq 1$ be the sequence of simple stochastic processes

$$
\Delta_{n}(t)=\sum_{k=0}^{n-1} W\left(\frac{k}{n} T\right) 1_{\left[\frac{k}{n} T, \frac{k+1}{n} T[\right.}(t), \quad \forall t \in[0, T[.
$$

and $\Delta_{n}(T)=W_{T}$. We admit that

$$
E \int_{0}^{T}\left|\Delta_{n}(t)-W_{t}\right|^{2} d t=0
$$

c. Fix $n \geq 1$ and denote by $W_{j}=W_{\frac{j}{n} T}, j=0,1, \ldots n$. Prove that

$$
\frac{1}{2} \sum_{j=0}^{n-1}\left(W_{j+1}-W_{j}\right)^{2}=\frac{1}{2} W_{n}^{2}+\sum_{j=0}^{n-1} W_{j}\left(W_{j}-W_{j+1}\right)
$$

d. Deduce another expression for the integral A_{t} given by (3).
e. Write the Itô formula for A_{t}^{2}.
11. (exam June 2006)
a. Recall the Itoo formula of the type $f\left(t, X_{t}\right)$ where $\left(X_{t}\right)_{t \geq 0}$ is a semimartingale.

Let $\left(W_{t}\right)_{\in[0,1]}$ a \mathcal{F}_{t} Brownian motion and Z the process given by

$$
Z_{t}=\frac{1}{\sqrt{1-t}} \exp \left(-\frac{W_{t}^{2}}{2(1-t)}\right), \quad t \in[0,1[
$$

b. Show that Z is a martingale. Calculate $E\left(Z_{t}\right)$ for every $t \in[0,1[$.
c. Show that Z_{t} tends to 0 when t tends to 1 . Discuss in which sense this convergence holds.
d. Write Z_{t} of the form

$$
Z_{t}=\exp \left(\int_{0}^{t} g(s) d W_{s}-\frac{1}{2} \int_{0}^{t} g(s)^{2} d s\right)
$$

where the process g is to be written.

