COMPLEMENTS on STOCHASTIC CALCULUS (1).

Conditional expectation:

1. Recall that two processes X and Y on (Ω, \mathcal{F}, P) on the same finite dimensional distributions if

$$\forall \ 0 \le t_1 < t_2 < \ldots < t_n < \infty, (X_{t_1}, \ldots, X_{t_n}) \ et \ (Y_{t_1}, \ldots, Y_{t_n})$$

have the same law.

Show that if two processes are modifications one of the other one, then they have the same finite dimensional distributions.

- 2. If (X, Y) is a random vector with density $f_{(X,Y)}$ such that $\forall x, y \in R : f_{(X,Y)}(x,y) > 0$, and if $\mathcal{B} := \sigma(Y)$;
 - 1. Show that $E[X|\mathcal{B}] = g(Y)$, où

$$g: y \to g(y) := \frac{\int_{\mathbb{R}} x f_{(X,Y)}(x,y) dx}{\int_{\mathbb{R}} f_{(X,Y)}(x,y) dx}$$

- 2. If (X, Y) is a Gaussian vector such that E[X] = E[Y] = 0, var[X] = 1 = var[Y] et $cov[X, Y] = \rho \in [0, 1]$, calculate $E[X|\mathcal{B}]$.
- 3. If $\mathcal{B} \subset \mathcal{C} \subset \mathcal{F}$ and $X \in L^2(\Omega, \mathcal{F}, P)$
 - 1. Prove that $E[X|\mathcal{B}] = E[(E[X|\mathcal{C}])|\mathcal{B}].$
 - 2. Prove that the above relation is not true when \mathcal{B} is not included in \mathcal{C} by using the point 2 in the previous exercise with $\mathcal{B} := \sigma(X)$ and $\mathcal{C} := \sigma(Y)$.
- 4. The law of the random vector $X = (X_1, \ldots, X_n)$ is called exchangeable if for any permutation π of $\{1, \ldots, n\}$ the vectors X et X_{π} ont the same law, where $X_{\pi} := (X_{\pi(1)}, \ldots, X_{\pi(n)})$.

If the law of X is exchangeable, and if $S := X_1 + \ldots + X_n$, calculate $E[X_1|S]$ $(E[X_1|S])$ is a notation for $E[X_1|\sigma(S)]$.

- 5. If Z_1, Z_2, \ldots is a i.i.d. sequence of random variables in $\mathcal{N}(0,1)$, if $\mathcal{F}_n := \sigma(Z_1, \ldots, Z_n)$ and if $X_n := Z_1 + \ldots + Z_n$,
 - 1. Show that $\forall n \geq m : E[X_n | \mathcal{F}_m] = X_m$.
 - 2. Show that $\forall n \geq m : E[Y_n | \mathcal{F}_m] = Y_m$, where $Y_n := X_n^2 n$.
 - 3. Show that $\forall n \geq m : E[M_n | \mathcal{F}_m] = M_m$, where $M_n := \exp(X_n n/2)$.

(that means that X, Y and M are martingales.)

Brownian motion and related topics:

1. Prove that if B is a Brownian motion, then $cov(B_s, B_t) = s \wedge t$, where $s \wedge t$ denotes min(s, t).

Prove that if X is a continuous centered Gaussian process and if $\forall s, t \geq 0 : cov(X_s, X_t) = s \wedge t$, then B is a Brownian motion for its natural filtration. If X is a centered Gaussian process with covariance $cov(X_s, X_t) = s \wedge t$ then it is a.s. a Brownian motion. 2. Let $(X_t)_{t\geq 0}$ be a continuous adapted process. Show that if

$$\lim_{|\Delta| \to 0} T_t^{\Delta, p}(X) = L_t$$

in probability, where L_t is a r.v. with values in $[0, \infty]$ then

$$\forall q > p, \lim_{|\Delta| \to 0} T_t^{\Delta, q}(X) = 0$$

in probability and

$$\forall 0 < q < p, \lim_{|\Delta| \to 0} T_t^{\Delta,q}(X) = \infty$$

in probability on the set $(L_t > 0)$.

Deduce (from the quadratic variation) that the trajectories of the Brownian motion are not with bounded variation.

3. The fractional Brownian motion is a centered Gaussian process B^H with covariance

$$E(B_t^H B_s^H) = \frac{1}{2} \left(t^{2H} + s^{2H} - |t - s|^{2H} \right)$$

where $H \in (0, 1)$ is called the Hurst index. Show that if $H = \frac{1}{2}$ we retrieve the Brownian motion. Prove that B^H is H-self-similar, i.e. for every c > 0, $c^H B_{ct}$, $t \ge 0$ is again a fractional Brownian motion. Prove that this process has a.s. continuous paths.

- 4. (Stopping times)
 - a. Prove that the sum of two stopping times is a stopping time.
 - b. If $(\tau_n)_{n\geq 1}$ is a sequence of stopping times for a right-continuous filtration, then

$$\sup_{n\geq 1}\tau_n, \inf_{n\geq 1}\tau_n$$

are stopping times.

- 5. Let T be a \mathcal{F}_t stopping time. Consider the sequence $(T_n)_{n\geq 1}$ defined by $T_n(\omega) = \frac{k}{2^n}$ on the set $\{\omega/\frac{k-1}{2^n} \leq T(\omega) < \frac{k}{2^n}\}$ et $T(\omega) = T(\omega)$ on $\{T = \infty\}$ for $n \geq 1, k \geq 1$.
 - a. Show that $T_n \ge T_{n+1} \ge T$ for every n.
 - b. Show that T_n is a \mathcal{F}_t stopping time for every n.
 - c. Show that $\lim_{n\to\infty} T_n = T$.
- 6. Let B be a Brownian motion. We define

$$L = \{(t, \omega) \in [0, \infty[\times \Omega; B_t(\omega) = 0]\}.$$

For fixed ω we set

$$L_{\omega} = \{ 0 \le t < \infty; B_t(\omega) = 0 \}.$$

- a. Show that L is included in the σ algebra $\mathcal{B}_{[0,\infty[}\otimes \mathcal{F}.$
- b. Show that L_{ω} is of zero Lebesque measure.
- 7. (Exam December 2006) Consider the centered Gaussian process $(S_t^H)_{t\geq 0}$ with covariance

$$R(t,s) = s^{H} + t^{H} - \frac{1}{2} \left((s+t)^{H} + |t-s|^{H} \right), \quad s,t \ge 0$$

avec $H \in]0, 2[.$

- a. Show that if H = 1 the process S^H is a.s. a BM for its natural filtration.
- b. Show that S^H is a self-similar process of order $\frac{H}{2}$.

c. Calculate $E\left(S_t^H - S_s^H\right)^2$. Show that

$$E\left(S_t^H - S_s^H\right)^2 \le |t - s|^H, \quad \text{si } H > 1$$

and

$$E\left(S_{t}^{H}-S_{s}^{H}\right)^{2} \leq (2-2^{H-1})|t-s|^{H}, \quad \text{si } H < 1.$$

- d. Show that the trajectories of the process S^H are almost surely continuous. Are these trajectories holderian? with which order?
- e. Compute the quadratic variation of the process S^H , i.e. for every $t \ge 0$ find the limit in probability when $|\Delta| \to 0$, of the sequence

$$T_t^{\Delta}(S^H) = \sum_{i=0}^{n-1} \left(S_{t_{i+1}}^H - S_{t_i}^H \right)^2$$

where $\Delta : 0 = t_0 < t_1 < \ldots < t_n = t$ is a partition of [0, t]. Distinguish the cases H > 1, H = 1 and H < 1.

f. Deduce that if H > 1 the process S^H is not a martingale.

Martingales and Itô integral

1. (the Poisson process) A Poisson process with parameter (intensity) $\lambda > 0$ is an adapted cadlag stochastic process $(N_t)_{t\geq 0}$ such that $N_0 = 0$ a.s. and for every $0 \leq s \leq t$, $N_t - N_s$ is independent by \mathcal{F}_s and follows a Poisson law with parameter $\lambda(t-s)$. The compensated Poisson process is given by, for every $t \geq 0$

$$\tilde{N}_t = N_t - \lambda t.$$

- a. Prove that \tilde{N} is a martingale.
- b. Prove that $\tilde{N}_t^2 \lambda t$ is a martingale.
- 2. Show that, if X is a \mathcal{F}_t -adapted process in L^1 , then X is a martingale if and only if for every stopping time T, we have

$$E(X_T) = E(X_0).$$

- 3. Prove the following properties of the semimartingale's bracket:
 - i. if $Y = \int_0^{\cdot} b_s ds$ where $b \in H_1^{loc}$, then $\langle Y, Y \rangle = 0$.
 - i. if $X = \int_0^{\cdot} a_s dB_s$ where $a \in H_2^{loc}$, then $T^{\Delta}(X, Y) \to 0$ in probability. (i.e. $\langle X, Y \rangle = 0$).
 - iii. if $X = X_0 + \int_0^t a_t dB_t + \int_0^t b_t dt$ is a semi-martingale, then $\langle X, X \rangle_t = \int_0^t a_s^2 ds$.
 - iv. We have $\langle X, Y \rangle = \frac{1}{4} (\langle X + Y, X + Y \rangle + \langle X Y, X Y \rangle)$ and the angle bracket $\langle X, Y \rangle$ of two semi-martingales $X = X_0 + \int_0^{\cdot} a_t dB_t + \int_0^{\cdot} b_t dt$ and $Y = Y_0 + \int_0^{\cdot} a_t' dB_t + \int_0^{\cdot} b_t' dt$ is given by the bracket of the "two martingale parts"

$$\langle X, Y \rangle_t = \int_0^t a_s a'_s ds.$$

- v. Suppose that B_1 et B_2 are two $\{\mathcal{F}_t\}$ -independent Brownian motions. Compute $\langle B_1 + B_2, B_1 + B_2 \rangle$, $\langle B_1 B_2, B_1 B_2 \rangle$ and finnally show that $\langle B_1, B_2 \rangle = 0$.
- 4. (exam december 2007) Let T > 0 and let $(B_t)_{t \in [0,T]}$ be a \mathcal{F}_t Brownian motion.
 - a. Express the process $(tB_t)_{t \in [0,T]}$ as the sum of an Itô integral and a finite variation stochastic process.
 - b. Show that the stochastic process $(X_t)_{t \in [0,T]}$ given by

$$X_t = B_t^3 - 3tB_t, \quad t \in [0, T]$$

is a \mathcal{F}_t martingale. Write, for every $t \in [0,T]$, X_t in the form $X_t = \int_0^t \alpha_s dB_s$, for every $t \in [0,T]$, where the process $(\alpha_t)_{t \in [0,T]}$ will be written.

c. Consider the stochastic process $(Y_t)_{t \in [0,T]}$ given by

$$Y_t^u = X_t + \int_0^t u_s ds, \quad t \in [0, T].$$

where the stochastic process $(u_t)_{t \in [0,T]}$ is such that $E \int_0^T |u_s| ds < \infty$. Show that Y is a martingale if and only if $u_t(\omega) = 0$ for almost all (t, ω) .

- d. Consider the process $(Z_t)_{t \in [0,T]}$ defined by $Z_t = e^{-B_t \frac{t}{2}}$. Show that Z is a martingale.
- e. Prove that the process $(Y_t^{\alpha}Z_t)_{t\in[0,T]}$ is a martingale, where α is the stochastic process appearing in point 2. above.
- f. Show that the process $(B_t^4 6tB_t^2 + 3t^2)_{t \in [0,T]}$ is also a martingale and it can be written as $B_t^4 6tB_t^2 + 3t^2 = 4\int_0^t X_s dB_s$, for every $t \in [0,T]$.
- 5. (exam december 2007) For fixed $a, b \in \mathbb{R}$ and for fixed 0 < T < 1 we define the stochastic process $(Y_t)_{t \in [0,T]}$ by

$$Y_t = a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s, \quad t \in [0,T]$$

where $(B_t)_{t \in [0,1]}$ is a standard Brownian motion on a probability space (Ω, \mathcal{F}, P) .

- a. Show that for every $0 \le t \le T$ the random variable $\int_0^t \frac{1}{1-s} dB_s$ is well-defined and it is Gaussian.
- b. Show that the process $(X_t)_{t \in [0,T]}$ is Hölder continuous of order δ for any $0 < \delta < \frac{1}{2}$.
- c. Prove that the following convergences holds in $L^2(\Omega)$:

$$Y_T \to_{T \to 1} b$$
 and $Y_T \to_{T \to 0} a$.

d. By using Doob's inequality, show that for any n integer

$$E\left(\sup_{t\in[1-2^{-n},1-2^{-n-1}]}|M_t|\right)^2 \le 4\left(2^{n+1}-1\right)$$

e. Show that for every $\varepsilon > 0$,

$$P\{\sup_{t\in[1-2^{-n},1-2^{-n-1}]}|M_t|>\varepsilon\}\le 2^{-2n}\varepsilon^{-2}4\left(2^{n+1}-1\right).$$

- f. Use the Borel-Cantelli Lemma to deduce that $Y_T \rightarrow_{T \rightarrow 1} b$ almost surely.
- 6. (exam juin 2008) Let $(W_t)_{t>0}$ be a standard Brownian motion and define for every $t \ge 0$

$$Y_t = \cos(B_t).$$

- a. Explain why the integral $\int_0^t \sin(B_s) dB_s$ exists. Is the process $\left(\int_0^t \sin(B_s) dB_s\right)_{t>0}$ a martingale?
- b. Show that for every $t \ge 0$ we have

$$Y_t = 1 - \frac{1}{2} \int_0^t Y_s ds - \int_0^t \sin(B_s) dB_s.$$
 (1)

c. We define the function $u : [0, \infty) \to \mathbf{R}$ by $u(t) = E(\cos(B_t))$. Deduce from the above question that u is differentiable and that for every $t \ge 0$

$$u'(t) = -\frac{1}{2}u(t).$$
 (2)

- d. Prove the relation (2) by direct calculation.
- 7. We defined the application $J: H_2^2 \to M^2$ as the stochastic integral with respect to a Brownian motion B arbitrary.

- a. If B^1 and B^2 are two independent Brownian motions, show that $B^3 := \frac{1}{\sqrt{2}}(B^1 + B^2)$ is still a Brownian motion.
- b. To each of these Brownian motion, one can associate a different application $J: H_2^2 \to M^2$ that we will denote by J_1, J_2 et J_3 respectively. Show that $J_3(\phi) = \frac{1}{\sqrt{2}}(J_1(\phi) + J_2(\phi))$. Using the integral notation

$$\int_{0}^{\cdot} \phi_t dB_t^3 = \frac{1}{\sqrt{2}} \left(\int_{0}^{\cdot} \phi_t dB_t^1 + \int_{0}^{\cdot} \phi_t dB_t^2 \right)$$

8. (exam January 2006) Let $(X_t)_{t\geq 0}$ a stochastic process on a probability space (Ω, \mathcal{F}, P) . We define for every $\alpha \in \mathbb{R}$

$$X_{\alpha}(t) = e^{\alpha X_t - \frac{\alpha^2}{2}t}, \quad \forall t \ge 0$$

a. Show that if $X_t \sim N(0, t)$ for every t > 0 then $E(X_{\alpha}(t)) = 1$ for every t > 0.

In the following we will assume that X = B is a \mathcal{F}_t Brownian motion.

- b. Prove that the process $(X_{\alpha}(t))_{t\geq 0}$ is a \mathcal{F}_t martingale.
- c. We will accept that $t \to \infty X_{\alpha}(t)$ converges almost surely to a r.v. x_{α} . Show that $x_{\alpha} = 0$ a.s.
- d. Show why $X_{\alpha}(t)$ does not converge in $L^{1}(\Omega)$ when $t \to \infty$.
- e. Show that the family $(X_{\alpha}(t))_{t>0}$ is bounded in L^1 . In this family uniformly integrable?
- 9. (exam January 2006) Let $B = (B_t)_{t \ge 0}$ be a Brownian motion on the probability space (Ω, \mathcal{F}, P) et $a \in \mathbb{R}$.
 - a. May we apply the Itô formula to B for $f(x) = \max(x, 0)$?
 - b. Let us consider the function

$$\rho(x) = c \exp\left[\frac{1}{(x-1)^2 - 1}\right], \quad \text{ pour } 0 < x < 2$$

and $\rho(x) = 0$ otherwise. The constant c is chosen such that $\int_{\mathbb{R}} \rho(s) ds = 1$. We define for every $n \ge 1$,

$$\rho_n(x) = n\rho(nx)$$

and

$$u_n(x) = \int_{-\infty}^x \int_{-\infty}^y \rho_n(z-a)dzdy, \quad x \in \mathbb{R}.$$

Show that the functions ρ and ρ_n are continuous and that the function u_n id of class C^2 .

c. Write the Itô formula for $u_n(B_t)$.

We will admit in the following that $x \in \mathbb{R}$,

$$\lim_{n \to \infty} u'_n(x) = 1_{]a,\infty[}(x) \text{ et } \lim_{n \to \infty} u_n(x) = \max(x-a,0).$$

- d. Show that when $n \to \infty$, the sequence $\int_0^t u'_n(B_s) dB_s$ converges in $L^2(\Omega)$ to $\int_0^t 1_{]a,\infty[}(B_s) dB_s$ for every $t \ge 0$.
- e. We suppose that for every $t \ge 0$, when $n \to \infty$ the sequence $\int_0^t \rho_n(B_s a)ds$ converges almost surely to a limit $L_t(a)$. For every $t \ge 0$, show that a.s.

$$\max(B_t - a, 0) = \max(-a, 0) + \int_0^t 1_{]a, \infty[}(B_s) dB_s + \frac{1}{2} L_t(a).$$

- 10. (exam June 2006) Let T > 0 and $(W_t)_{t \in [0,T]}$ a \mathcal{F}_t -Brownian motion.
 - a. Explain why

$$A_t = \int_0^t W_s dW_s \tag{3}$$

exists for every $t \in [0, T]$. Which property is satisfied fby $(A_t)_{t \in [0, T]}$?

b. May we have

$$A_t = \int_0^t u_s ds, \quad \forall t \in [0, T]$$

where $(u_s)_{s \in [0,T]}$ is a process L^1 ? Justify.

let $\Delta_n, n \ge 1$ be the sequence of simple stochastic processes

$$\Delta_n(t) = \sum_{k=0}^{n-1} W(\frac{k}{n}T) \mathbb{1}_{\left[\frac{k}{n}T, \frac{k+1}{n}T\right]}(t), \quad \forall t \in [0, T[.$$

and $\Delta_n(T) = W_T$. We admit that

$$E\int_0^T \left|\Delta_n(t) - W_t\right|^2 dt = 0.$$

c. Fix $n \ge 1$ and denote by $W_j = W_{\frac{j}{n}T}, j = 0, 1, \dots n$. Prove that

$$\frac{1}{2}\sum_{j=0}^{n-1}(W_{j+1}-W_j)^2 = \frac{1}{2}W_n^2 + \sum_{j=0}^{n-1}W_j(W_j-W_{j+1}).$$

- d. Deduce another expression for the integral A_t given by (3).
- e. Write the Itô formula for A_t^2 .
- 11. (exam June 2006)
 - a. Recall the Itô formula of the type $f(t, X_t)$ where $(X_t)_{t\geq 0}$ is a semimartingale.

Let $(W_t)_{\in [0,1]}$ a \mathcal{F}_t Brownian motion and Z the process given by

$$Z_t = \frac{1}{\sqrt{1-t}} \exp\left(-\frac{W_t^2}{2(1-t)}\right), \quad t \in [0,1[.$$

- b. Show that Z is a martingale. Calculate $E(Z_t)$ for every $t \in [0, 1[$.
- c. Show that Z_t tends to 0 when t tends to 1. Discuss in which sense this convergence holds.
- d. Write Z_t of the form

$$Z_t = \exp\left(\int_0^t g(s)dW_s - \frac{1}{2}\int_0^t g(s)^2 ds\right)$$

where the process g is to be written.