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Université de Panthéon-Sorbonne Paris 1,

90, rue de Tolbiac, 75634 Paris Cedex 13, France.
tudor@univ-paris1.fr

March 2, 2007

Abstract

In this paper, we prove a Donsker type approximation theorem for the Rosenblatt
process, which is a selfsimilar stochastic process exhibiting long range dependence. By
using numerical results and simulated data, we show that this approximation performs
very well. We use this result to construct a binary market model driven by this process
and we show that the model admits arbitrage opportunities.

2000 AMS Classification Numbers: 60F17, 91B70.

Key words: Rosenblatt process, random walk, stock price model, binary
market model

1 Introduction

Long range dependence stochastic processes have been intensively used as models for different
physical phenomena. First, these properties appeared in empirical studies in areas like hydrol-
ogy and geophysics; more recently, they appeared to play an important role in network traffic
analysis and telecommunications. As a consequence, efficient mathematical models based on
long range dependence (or long memory) processes have been proposed in these directions.

The notions of long range dependence and selfsimilarity have also been considered
in mathematical finance. An excellent survey on the different aspects of the appearance of
the long range dependence in practice is the paper [3]. The debate on the presence of long
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memory in stock prices is actually not new. The idea that asset returns could exhibit long
range dependence comes from Mandelbrot ([11]) and then observed in several empirical studies.
We refer, among others, to [26] for concrete examples and for interesting comments on this
question. We also mention that some other authors rejected the idea of the presence of long
memory in asset returns (see e.g. [10]).

A rather general opinion is that long range dependence in financial models is strongly
related to the presence of arbitrage. For example, in the case of market models driven by the
fractional Brownian motion, this has been explicitly shown by Rogers ([17]) or Sottinen ([22]).
In special situations, for example under transaction costs, arbitrage could be eliminated (see [7]
or [20]). Different approaches, based on Wick-Itô calculus, have been developed in e.g. [2], [9].
Models driven by long range dependence processes others than the fractional Brownian motion
have been, from the stochastic calculus point of view, less considered. This is actually one
of the motivations of our work: we propose a binary market model driven by a non-Gaussian
selfsimilar process (called the Rosenblatt process) which exhibits long range dependence and
we show that this type of model admits arbitrage opportunities. It is actually known that in
general arbitrage-free models imply the fact that the price process is a semimartingale ([5])
but it has been recently proved in [4] that by modifying the class of admissible strategies, one
can also consider arbitrage-free models driven by non-martingales.

To construct our binary market model based on the Rosenblatt process we need a
Donsker type theorem to approximate in law this process by some disturbed two-dimensional
random walks; this results could be useful by itself. In fact, this theorem extends a result by
Sottinen [22] and represents a variant of the so-called Non Central Limit Theorem proved in
[6] and [24]. We mention that, since we are now in a non-Gaussian context, the proof of this
result demands different techniques.

Our paper is organized as follows. In Section 2 we describe the basic properties of
the Rosenblatt process. Section 3 contains the proof of the Donsker theorem to approximate
weakly, in the Skorohod topology, the Rosenblatt process by walks. In Section 4, we introduce
our binary market model which is showed to converge to the Black and Scholes model with
Rosenblatt noise. We show that the model admits arbitrage opportunities and we construct a
such opportunity.

Finally, in Appendix we present numerical results based on simulated data which show
that the approximation method performs very well. Related numerical results can be found in
[1] or [16].

2 Preliminaries

The Rosenblatt process appears as a limit in the so called Non Central Limit Theorem (see [6]
or [24]). We recall the general context. Consider (ξn)n∈Z a stationary Gaussian sequence with
mean zero and covariance 1 such that its correlation function satisfies

r(n) := E (ξ0ξn) = n
2H−2

k L(n), (1)
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with k ≥ 1 integer, H ∈ (1
2 , 1) and L is a slowly varying function at infinity . Denote by

Hm(x) the Hermite polynomial of degree m given by Hm(x) = (−1)me
x2

2
dm

dxm e−
x2

2 . Let g be a
function such that E(g(ξ0)) = 0 and E(g(ξ0)2) < ∞. Suppose that g has Hermite rank equal
to k; that is, if g admits the following expansion in Hermite polynomials

g(x) =
∑

j≥0

cjHj(x), cj =
1
j!

E (g(ξ0Hj(ξ0))) ,

then
k = min{j; cj 6= 0}.

Since E [g(ξ0)] = 0, we have k ≥ 1. The Non Central Limit Theorem ([6], [24]) says that the
sequence of stochastic processes

1
nH

[nt]∑

j=1

g(ξj)

converges as n →∞, in the sense of finite dimensional distributions, to the process (called the
Hermite process)

Zk
H(t) = c(H, k)

∫

Rk

∫ t

0




k∏

j=1

(s− yi)
−( 1

2
+ 1−H

k )
+


 dsdB(y1) . . . dB(yk), (2)

where x+ = max(x, 0) and the above integral is a multiple Wiener-Itô stochastic integral with
respect to a Brownian motion B(y))y∈R (see [15]) .

Let us list some basic properties of the Hermite processes.

• it exhibits long-range dependence (the covariance function decay at a power function at
zero -”Joseph effect”)

• it is H-selfsimilar in the sense that for any c > 0, (Zk
H(ct)) =(d) (cHZk

H(t)), where ” =(d) ”
means equivalence of all finite dimensional distributions

• it has stationary increments, that is, the joint distribution of (Zk
H(t+h)−Zk

H(h), t ∈ [0, T ])
is independent of h > 0.

• the covariance function is

E(Zk
H(t)Zk

H(s)) =
1
2

(
t2H + s2H − |t− s|2H

)
, s, t ∈ [0, T ]

and consequently, for every s, t ∈ [0, T ]

E
∣∣∣Zk

H(t)− Zk
H(s)

∣∣∣
2

= |t− s|2H (3)
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• the Hermite process is Holdër continuous of order δ < H

• if k ≥ 2, then Zk
H is non-Gaussian.

When k = 1 the process given by (2) is nothing else that the fractional Brownian
motion (fBm) with Hurst parameter H ∈ (0, 1

2). For k ≥ 2 the process is not Gaussian. If
k = 2 then the process (2) is known as the Rosenblatt process (it has been actually named by
M. Taqqu).

We focus here our attention on the case k = 2. We will work with the representation
of this processes as integral with respect to a Wiener process on a finite interval. Recall that
the fBm BH with Hurst parameter H > 1

2 can be written as

BH
t =

∫ t

0
KH(t, s)dWs, t ∈ [0, T ] (4)

with (Wt, t ∈ [0, T ]) a standard Wiener process and

KH(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du (5)

where t > s and cH =
(

H(2H−1)

β(2−2H,H− 1
2
)

) 1
2
. From (5) we obtain that for t > s,

∂K

∂t
(t, s) = cH

(s

t

) 1
2
−H

(t− s)H− 3
2 . (6)

Aa analogous representation for the Rosenblatt process has been given in [25]. We have

Z2
H(t) := Zt =(d) d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]
dWy1dWy2 (7)

where (Wt, t ∈ [0, T ]) is a Brownian motion,

H ′ =
H + 1

2
(8)

and d(H) = 1
H+1

(
H

2(2H−1)

)− 1
2
. Note that H > 1

2 implies H ′ > 3
4 .

3 Convergence in law to the Rosenblatt process

This part in consecrated to a Donsker invariance principle for the Rosenblatt process. From
now on, we will consider the Rosenblatt process to be given by the formula (7). We will denote,
for every t ∈ [0, T ]

F (t, y1, y2) = d(H)1[0,t](y1)1[0,t](y2)
∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du
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and then

Zt =
∫ T

0

∫ T

0
F (t, y1, y2)dW (y1)dW (y2), t ∈ [0, T ]. (9)

The kernel KH′
(denoted simply by K in the sequel) is the standard kernel of the fractional

Brownian motion (5).

Let us first recall some known facts. Consider (ξi)i≥1 a sequence of i.i.d random vari-
ables with E(ξi) = 0 and E(ξ2

i ) = 1. The Donsker Invariance Principle says that the sequence
of processes

Wn
t =

1√
n

[nt]∑

i=1

ξi (10)

converges weakly, in the Skorohod topology, to a standard Brownian motion. Here [x] denotes
the biggest integer smaller than x.

This result has been extended in [22] to the fractional Brownian motion (see also [12]).
Define

Kn(t, s) := n

∫ s

s− 1
n

K(
[nt]
n

, u)du, n ≥ 1

and put

Bn
t =

∫ t

0
Kn(t, s)dWn

s =
[nt]∑

i=1

n

∫ i
n

i−1
n

K(
[nt]
n

, s)ds
ξi√
n

, n ≥ 1.

Then it has been proved in [22] that the disturbed random walk Bn converges weakly to the
fractional Brownian motion.

From the above results and the representation (9) it is quite natural to define the
following approximation for the Rosenblatt process

Zn
t =

[nt]∑

i,j=1;i 6=j

n2

∫ i
n

i−1
n

∫ j
n

j−1
n

F

(
[nt]
n

, u, v

)
dvdu

ξi√
n

ξj√
n

, t ∈ [0, T ]. (11)

Remark 1 We eliminate the diagonal ”i=j” because the Rosenblatt process is defined as a
double Wiener-Itô integral and as a consequence it has zero mean. When the diagonal i = j is
included in the sum (11) then the limit is in general a double Stratonovich integral (see [8] or
[21]).

Proposition 1 The family of stochastic processes (Zn
t )t∈[0,T ] converges in the sense of finite

dimensional distributions to the process (Zt)t∈[0,T ] (9).

Proof: We will proof this result in several steps.
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Step 1: Let us consider an arbitrary sequence of partitions of the interval [0, T ] of the
form

πm : 0 = tm0 < tm1 < . . . < tmm = T

with |πm| → 0 as m →∞. Define

Zπm

t =
m∑

i,j=1;i6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, u, v)dvdu

)
W (∆m

i )W (∆m
j ) (12)

where we denoted by ∆m
i = [tmi−1, t

m
i ) and by

W (∆m
i ) = Wtmi

−Wtmi−1
.

Then it follows from [21], Theorem 3.4, or [8] that for fixed t the sequence Zπm

t converges in
L2(Ω) as |πm| → 0 to the multiple Wiener-Itô integral of F (t, ·) with respect to the Brownian
motion W ∫ T

0

∫ T

0
F (t, u, v)dWudWv = Zt.

Step 2: Secondly, define the process

Zπm,n
t =

m∑

i,j=1;i6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, u, v)dvdu

)
Wn(∆m

i )Wn(∆m
j ) (13)

where Wn is the random walk given by (10). Then clearly, for fixed m, as n goes to ∞, the
finite dimensional distributions of Zπm,n converges to the finite dimensional distributions of
Zπm

(this comes from the weak convergence of Wn to the Wiener process W ).

Step 3: We prove now that for every t ∈ [0, T ], the sequence Zπm,n
t converges in L2(Ω)

to Z
′,n
t as m →∞, where

Z
′,n
t =

[nt]∑

i,j=1;i6=j

n2

∫ i
n

i−1
n

∫ j
n

j−1
n

F (t, u, v) dvdu
ξi√
n

ξj√
n

, t ∈ [0, T ]. (14)

Consider the sequence

F πm
(t, u, v) =

m∑

i,j=1;i6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, u, v)dvdu

)
1∆m

i
(u)1∆m

j
(v).

Then F πm
(t, ·) converges to F (t, ·) in L2([0, T ]2) as m →∞ (see [21], [8]).

First note that Z
′,n
t can be approximated in L2(Ω) as m →∞ by

Z
′,πm,n
t =

[nt]∑

k,l=1;k 6=l

n2

∫ k
n

k−1
n

∫ l
n

l−1
n

F πm
(t, u, v)dvdu

ξk√
n

ξl√
n

.
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Indeed,

E
∣∣∣Z ′,πm,n

t − Z
′,n
t

∣∣∣
2

=
[nt]∑

k,l=1;k 6=l

n2

(∫ k
n

k−1
n

∫ l
n

l−1
n

(
F πm

(t, u, v)− F (t, u, v)
)
dvdu

)2

E(ξ2
k)E(ξ2

l )

≤
[nt]∑

k,l=1;k 6=l

∫ k
n

k−1
n

∫ l
n

l−1
n

(F πm
(t, u, v)− F (t, u, v))2dvdu

≤
∫ T

0

∫ T

0
(F πm

(t, u, v)− F (t, u, v))2dvdu

and this clearly goes to zero as m →∞.
It remains to observe that Z

′,πm,n
t is equal to Zπm

t for every t, m, n. We can write, if λ
denotes the Lebesque measure,

Z
′,πm,n
t =

[nt]∑

k,l=1;k 6=l

n2

∫ k
n

k−1
n

∫ l
n

l−1
n

dvdu

×



m∑

i,j=1;i6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, x, y)dydx

)
1∆m

i
(u)1∆m

j
(v)


 ξk√

n

ξl√
n

=
m∑

i,j=1;i 6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, x, y)dydx

)

×
[nt]∑

k,l=1;k 6=l

n2 ξk√
n

ξl√
n

∫ k
n

k−1
n

∫ l
n

l−1
n

1∆m
i

(u)1∆m
j

(v)dvdu

=
m∑

i,j=1;i 6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, x, y)dydx

)

×
[nt]∑

k,l=1;k 6=l

n2 ξk√
n

ξl√
n

λ

(
[
k − 1

n
,
k

n
)
⋂

∆m
i

)
λ

(
[
l − 1

n
,

l

n
)
⋂

∆m
j

)

=
m∑

i,j=1;i 6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, x, y)dydx

)

×
∑

k;[ k−1
n

, k
n

)⊂∆m
i

∑

l 6=k;[ l−1
n

, l
n

)⊂∆m
j

ξk√
n

ξl√
n
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and on the other hand by using (12) and (10), one has

Zπm,n
t =

m∑

i,j=1;i 6=j

1
|∆m

i ||∆m
j |

(∫

∆m
i

∫

∆m
j

F (t, x, y)dydx

) [ntmi ]∑

k=[ntmi−1]+1

[ntmj ]∑

l=[ntmj−1]+1

ξk√
n

ξl√
n

and it is not difficult to see that Zπm,n
t and Z

′,πm,n
t coincide.

Step 4: At this point we conclude that the family of processes Z
′,n converges in the

sense of finite dimensional distributions to the Rosenblatt process Zt. Let h be a function
defined on Rp and consider s1, . . . , sp ∈ [0, T ]. We will show that

E
(
h(Z

′,n
s1

, . . . , Z
′,n
sp

)
)
− E (

h(Zs1 , . . . , Zsp)
)

converges to zero as n →∞. This can be bounded by A + B + C where

A =
∣∣∣E

(
h(Zs1 , . . . , Zsp)

)− E
(
h(Zπm

s1
, . . . , Zπm

sp
)
)∣∣∣

B =
∣∣∣E

(
h(Zπm,n

s1
, . . . , Zπm,n

sp
)
)
− E

(
h(Zπm

s1
, . . . , Zπm

sp
)
)∣∣∣

and
C =

∣∣∣E
(
h(Zπm,n

s1
, . . . , Zπm,n

sp
)
)
− E

(
h(Z

′,n
s1

, . . . , Z
′,n
sp

)
)∣∣∣ .

By Step 1 and Step 3 we have that for fixed c > 0 the terms A and C are bounded (uniformly
in n) by c when m is large enough. the term B tends to zero as n →∞ from Step 2.

Step 5: Clearly the family Z
′,n can be replaced by the family Zn(11) because their

difference goes to zero in L2(Ω) as n →∞.

Next, we show the tightness.

Proposition 2 The family Zn given by (11) is tight.

Proof: Let s < t, s, t ∈ [0, T ]. It holds, since the kernel F (s, u, v) vanishes when u or v are
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bigger that s,

E |Zn
t − Zn

s |2

= E




[nt]∑

i,j=1;i6=j

n2

∫ i
n

i−1
n

∫ j
n

j−1
n

[
F

(
[nt]
n

, u, v

)
− F

(
[ns]
n

, u, v

)]
dvdu

ξi√
n

ξj√
n




2

=
[nt]∑

i,j=1;i6=j

n2

(∫ i
n

i−1
n

∫ j
n

j−1
n

[
F

(
[nt]
n

, u, v

)
− F

(
[ns]
n

, u, v

)]
dvdu

)2

≤
[nt]∑

i,j=1;i6=j

∫ i
n

i−1
n

∫ j
n

j−1
n

[
F

(
[nt]
n

, u, v

)
− F

(
[ns]
n

, u, v

)]2

dvdu

≤
∫ T

0

∫ T

0

[
F

(
[nt]
n

, u, v

)
− F

(
[ns]
n

, u, v

)]2

dvdu

=
∣∣∣∣
[nt]
n
− [ns]

n

∣∣∣∣
2

.

Now the conclusion follows by using exactly the same arguments as in [22], end of the proof
of Theorem 1.

The main result of this section is a consequence of Proposition 1 and Proposition 2.

Theorem 1 The family of stochastic processes (11) converges weakly, in the Skorohod topol-
ogy, to the Rosenblatt process.

4 Binary market model based on the Rosenblatt process

The binary market constitutes a financial model where the asset are traded at discrete times.
In classical cases (for example when the driven process is the Wiener process) the binary model
approximates the Black and Scholes model.

Let us start by introducing the Black and Scholes model driven by the Rosenblatt
process. As usually, we will consider two assets: a safe investment satisfying

Bt =
∫ t

0
rsBsds, (15)

where r is a differentiable deterministic function and a risky asset with price dynamic following
the stochastic equation

St = S0 +
∫ t

0
asSsds + σ

∫ t

0
SsdZs, (16)

where Z is a Rosenblatt process, σ > 0 and a is a differentiable deterministic function. The
integral with respect to Z is understood here in a pathwise sense. Since the trajectories of
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the Rosenblatt process are enough regular (in fact, they are Hölder continuous of order δ < H
and H > 1

2) it is possible to consider pathwise integrals with respect to it and to solve some
stochastic equations in the pathwise sense. We refer, among others, to [13], [27] or [18]. In
particular, the solution of (16) is given by (see [14], [27], [13]

St = S0e
R t
0 asds+σZt , t ∈ [0, T ]. (17)

Clearly the solution of (15) is

Bt = B0e
R t
0 rsds, t ∈ [0, T ]. (18)

Moreover, we will assume in the sequel that the interest rates a and r are deterministic bounded
functions.

Let us describe now the binary market model with Rosenblatt influence. The two assets
are traded now at successive times periods t1 < t2 < . . . < ... and their dynamics are given by

Bn = (1 + rn)Bn−1

and
Sn = (an + (1 + Xn))Sn−1;

That means that Bn and Sn represent the prices of the bond and of the stock in the period
between tn and tn+1 and rn and an are the interest rates valuable in this period. The stochastic
process X is binary, that is, given Xn−1 it can takes at time n two possible values denoted by
dn(”down”) and un (”up”). The binary market excludes arbitrage opportunities if for every n
it holds that (see [22])

dn < rn − an < un. (19)

In the following we will choose our binary model to be determined by

Xn = ∆ZN
n
N

(20)

where ZN is defined by (11) and

rn =
1
N

r n
N

and an =
1
N

a n
N

(21)

where a and r are the interest rates appearing in (15) and (16).

We have

Proposition 3 The binary market model with X a and r given by (20) and (21) converges as
N →∞ to the Black and Scholes model given by (15) and (16).
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Proof: Let us consider the jump

∆ZN
t = ZN

t − ZN
t−

and the quadratic variation

[ZN ]t =
∑

s≤t

(∆ZN
s )2.

We will show that the process [ZN ] converges in L1([0, T ] × Ω) to zero. Then the conclusion
will follow exactly as in [22], proof of Lemma 1.

We have, since the jumps are at times k
N , k integer,

E
∣∣∆ZN

t

∣∣2 ≤ E
∣∣∣Zt − Zt− 1

N

∣∣∣
2
≤ 1

N2H

and then
E[ZN ]t ≤ Nt

1
N2H

= tN1−2H .

This implies that ∫ T

0
[ZN ]sds ≤ c(T )N1−2H

which goes to 0 as N goes to ∞.

The next step is to show that the market admits arbitrage opportunities. Clearly, we
have

Xn = σN
n∑

i,j=1;i6=j

(∫ i
N

i−1
N

∫ j
N

j−1
N

(
F

( n

N
, u, v

)
− F

(
n− 1

N
,u, v

))
dvdu

)
ξiξj

and we will take the random variables ξ to be binary, that is

P (ξ = 1) = P (ξi = −1) =
1
2

for every i ≥ 1. We can write, by isolating the part involving ξn,

Xn = fn−1(ξ1, . . . , ξn−1) + ξngn−1(ξ1, . . . , ξn−1)

where for every n ≥ 2

fn−1(x1, . . . , xn−1) = σN
n−1∑

i,j=1;i6=j

(∫ i
N

i−1
N

∫ j
N

j−1
N

(
F

( n

N
, u, v

)
− F

(
n− 1

N
,u, v

))
dvdu

)
xixj
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and

gn−1(x1, . . . , xn−1) = 2σN

n−1∑

i=1

(∫ i
N

i−1
N

∫ n
N

n−1
N

F
( n

N
, u, v

)
dvdu

)
xi.

Then obviously
un = fn−1(ξ1, . . . , ξn−1) + gn−1(ξ1, . . . , ξn−1) (22)

and
dn = fn−1(ξ1, . . . , ξn−1)− gn−1(ξ1, . . . , ξn−1). (23)

The last result of our paper is the following.

Proposition 4 The binary market model with (21) and (20) admits arbitrage.

Proof: Throughout this proof, we will denote by c(H) a generic constant depending only on
H. Let us show now that the condition (19) fails for some n ≥ 2. We will actually prove that
the sequence

fn−1(1, 1, . . . , 1)− gn−1(1, 1, . . . 1) →n→∞ ∞ (24)

and then clearly (19) does not hold because rn and an are assumed to be bounded.
We have

fn−1(1, 1, . . . , 1) = σN
n−1∑

i,j=1;i6=j

(∫ i
N

i−1
N

∫ j
N

j−1
N

(
F

( n

N
, u, v

)
− F

(
n− 1

N
, u, v

))
dvdu

)

= σN
n−1∑

i,j=1;i

(∫ i
N

i−1
N

∫ j
N

j−1
N

(
F

( n

N
, u, v

)
− F

(
n− 1

N
,u, v

))
dvdu

)

−
n−1∑

i=1

(∫ i
N

i−1
N

∫ i
N

i−1
N

(
F

( n

N
, u, v

)
− F

(
n− 1

N
,u, v

))
dvdu

)

:= σN(A−B).
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Using the expression of the kernel F and (6), the term A can be minorized as follows

A = c(H)
∫ n−1

N

0

∫ n−1
N

0

∫ n
N

n−1
N

(a− u)H′− 3
2 (a− v)H′− 3

2 a2H′−1u
1
2
−H′

v
1
2
−H′

dadvdu

≥ c(H)
(

n− 1
N

)1−2H′ ∫ n−1
N

0

∫ n−1
N

0

∫ n
N

n−1
N

(a− u)H′− 3
2 (a− v)H′− 3

2 a2H′−1dadvdu

≥ c(H)
(

n− 1
N

)1−2H′ ∫ n
N

n−1
N

da

(
aH′− 1

2 − (a− n− 1
N

)H′− 1
2

)2

a2H′−1

≥ c(H)
(

n− 1
N

)1−2H′ ∫ n
N

n−1
N

da

(
(n− 1)H′− 1

2 − 1

NH′− 1
2

)2

a2H′−1

≥ c(H)
1

N2H′ (n− 1)1−2H′
((n− 1)H′− 1

2 − 1)2(n2H′ − (n− 1)2H′
)

= c(H)
1

N2H′ o(n2H′−1).

We majorize now the term B. We can write

B ≤ c(H)
n−1∑

i=1

∫ i
N

i−1
N

∫ i
N

i−1
N

∫ n
N

n−1
N

(a− u)H′− 3
2 (a− v)H′− 3

2 a2H′−1u
1
2
−H′

v
1
2
−H′

dadvdu

≤ c(H)
( n

N

)2H′−1
n−1∑

i=1

∫ i
N

i−1
N

∫ i
N

i−1
N

∫ n
N

n−1
N

(a− i

N
)2H′−3u

1
2
−H′

v
1
2
−H′

dadvdu

≤ c(H)
( n

N

)2H′−1
n−1∑

i=1

∫ i
N

i−1
N

∫ i
N

i−1
N

u
1
2
−H′

v
1
2
−H′ (n− i)2H′−2 − (n− (i− 1))2H′−2

N2H′−2
dvdu

≤ c(H)
( n

N

)2H′−1
n−1∑

i=1

((
i

N

) 3
2
−H′

−
(

i− 1
N

) 3
2
−H′)2

(n− i)2H′−2 − (n− (i− 1))2H′−2

N2H′−2

≤ c(H)
( n

N

)2H′−1 1
N3−2H′

(
n− 1

N

)2H′−2

≤ c(H)
1

N2H′ o(n4H′−3).

From the above computations we obtain that fn−1(1, . . . , 1) converges to ∞ as n →∞ because
2H ′ − 1 > 4H ′ − 3. Let us estimate the term gn−1(1, . . . , 1).

13



gn−1(1, . . . , 1)

≤ 2σN
n−1∑

i=1

(∫ i
N

i−1
N

∫ n
N

n−1
N

F
( n

N
, u, v

)
dvdu

)

≤ 2σNc(H)
( n

N

)2H′−1
n−1∑

i=1

∫ i
N

i−1
N

∫ n
N

n−1
N

∫ n
N

v
u

1
2
−H′

v
1
2
−H′

(
n− 1

N
− u)H′− 3

2 (a− v)H′− 3
2 dadvdu

≤ 2σNc(H)
( n

N

)2H′−1
(

n− 1
N

) 1
2
−H′ n−1∑

i=1

∫ i
N

i−1
N

∫ n
N

n−1
N

u
1
2
−H′

(
n− 1

N
− u)H′− 3

2 (
n

N
− v)H′− 1

2 dvdu

≤ 2σNc(H)
( n

N

)2H′−1
(

n− 1
N

) 1
2
−H′ ∫ n−1

N

0
u

1
2
−H′

(
n− 1

N
− u)H′− 3

2 du

≤ 2σNc(H)
1

N2H′−1
o(nH′− 1

2 )

because the integral
∫ n−1

N
0 u

1
2
−H′

(n−1
N −u)H′− 3

2 du is equal to β(3
2−H ′,H ′− 1

2). We then obtain
(24).

Comments: i) A concrete arbitrage opportunity can be easily described. For exam-
ple, suppose that a > r. Ar a certain time n0 we have dn0 > 0 because of (24); suppose that
the stock price was increasing up to this time n0. Then, buy M stocks and your wealth at
time n0 + 1 will be positive since MSn0+1 > MSn0 .

ii) We cannot expect to have no-arbitrage when H ∈ 1
2 as in the fractional Brownian

motion case because now the limit process at H = 1
2 is not necessarily a martingale.
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5 Appendix: Monte Carlo Simulation

This simulation study is intended to show our proposed model using simulated data. We
simulate data using different values for H. Below, we describe the procedure used in generating
the data to be used in the simulation study.

We have implemented this simulation on a standard personal computing platform (PC),
and have observed that it performs very well using simulated data as can be seen from the
simulated data in the figures 1 and 2 below. Despite the apparent algebraic complexity of
the equations (11), the problem poses no difficulty for standard symbolic algebra packages.
Using Matlab’s simulations and algebra capabilities yielded the best computing times. In our
implementation, which performs an iteration of the algorithm from i = 0 to i = n. Figure 1
shows the histogram for a fixed time t for the marginal density of the Rosenblatt process. We
can see the skew structure of the distribution.
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Figure 1: Marginal distributions for H = 0.5; H = 0.8 and H = 0.9.

Figure 2 shows the some paths of the discretization for the Rosenblatt process. We use
the values for the parameter H (H = 0.8 and H = 0.9).
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Figure 2: Simulations of the Trajectory for the Rosenblatt process with H = 0.8 and H = 0.9.
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par une fonction höldérienne; cas du mouvement brownien fractionnaire. C.R. Acad. Sci.
Paris, Ser. I 340 (8), pag. 611-614.

16



[14] I. Nourdin and C.A. Tudor (2006): Some linear fractional stochastic equations. pag.
Stochastics 78 (2), 51-65.

[15] D. Nualart (1995): Malliavin Calculus and Related Topics. Springer.

[16] V. Pipiras (2004): Wavelet type expansion of the Rosenblatt process. The Journal of
Fourier Analysis and Applications, 10(6), pag. 599-634.

[17] C. Rogers (1997): Arbitrage with fractional Brownian motion. Math. Finance, 7, pag.
95-105.

[18] F. Russo and P. Vallois (1993): Forward backward and symmetric stochastic integration.
Prob. Theory Rel. Fields, 97, pag. 403-421.

[19] F. Russo and P. Vallois (2000): Stochastic calculus with respect to a finite quadratic vari-
ation process. Stochastics and Stochastics Reports, 70, pag. 1-40.

[20] D. M. Salopek (1998): Tolerance to Arbitrage. Stochastic Proc. Applic., 76(2), pag. 217-
230.

[21] J.L. Sole and F. Utzet (1990): Stratonovich integral and trace. Stochastics and Stochastics
Reports, 29 (2), pag. 203-220.

[22] T. Sottinen (2001): Fractional Brownian m!otion, random walks and binary market mod-
els. Finance and Stochastics, 5, pag. 343-355.

[23] M. Taqqu (1975): Weak convergence to the fractional Brownian motion and to the Rosen-
blatt process. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 31, pag. 287-302.

[24] M. Taqqu (1979): Convergence of integrated processes of arbitrary Hermite rank. Z.
Wahrscheinlichkeitstheorie verw. Gebiete, 50, pag. 53-83.

[25] C.A. Tudor (2006): Analysis of the Rosenblatt process. Preprint, SAMOS, Université de
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