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1 Introduction

The purpose of this work is to study the Euler Scheme in order to approximate solutions
for a class of anticipating stochastic differential equation (in short ASDE).

The anticipating, or Skorohod, integral introduced in [7] represents an extension of the
standard Itô integral for non-adapted integrands and coincides with this one if the integrand
is adapted. The need of studying ASDE was followed in a natural way.

The existence and uniqueness of the solution of stochastic differential equation with
the stochastic integral taken in the anticipating sense are not known in the general case. The
difficulty with these equations is notorious: the Picard iterations method involves Malliavin
derivative of successive orders and the procedure cannot be closed. Nevertheless, in particular
linear cases, existence and unique are given. We refer to [1], [2] and [3] for anticipating
equations in the Skorohod sense and to [6] for Stratonovich anticipating equations.

On the other hand, it was proved in [8] that the class of Skorohod integral processes
X = (X(t))t∈[0,1], X(t) =

∫ t
0 usdW (s), coincides, for smooth enough integrands, with the class

of processes Y of the form Yt =
∫ t
0 E

[
us/F[s,t]c

]
dW (s). The last integral is an anticipating

integral, it is not a martingale, but it enjoys similar properties with the classical Itô integrals.
This fact leads to the introduction of the class of stochastic equations (6) as an intermediary
step between the theory of Itô stochastic equations and ASDE. Moreover, in the particular
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case of linear coefficients, the solution of the equation can be explicitly obtained and a Black-
Scholes market model with price dynamic following a such equation can be introduced (see
[9]). Standard arguments give the existence and uniqueness of the solution of the equation
(6) and the basic properties of the solution (see [8]).

Our aim is to give an Euler scheme to approximate the solution of (6). We combine
standard Itô methods and techniques of the Malliavin calculus. Using this scheme, simulations
for a special type of anticipating integral can be done.

Our paper is organized as follows: Section 2 contains some preliminaries on the Malli-
avin calculus and in Section 3 we give the Euler scheme to approximate the non-adapted
solution of the equation (6). The speed of convergence of the Euler scheme is estimated in
the cases of linear and non-linear coefficients.

2 Preliminaries

We start with some elements of the Malliavin calculus. We refer to [4] for a complete presen-
tation of this topic. Let (W (t))t∈[0,T ] be a standard Wiener process on the canonical Wiener
space (Ω,F, P ) and let (Ft)t∈[0,T ] the filtration generated by W . A functional of the Brownian
motion of the form

F = f (W (t1), . . . ,W (tn)) (1)

with t1, . . . , tn ∈ [0, T ] and f ∈ C∞
b (Rn), is called a smooth random variable and this class is

denoted by S. The Malliavin derivative is defined on S as

DtF =
n∑

i=1

∂f

∂xi
(W (t1), . . . , W (tn)) 1[0,ti](t), t ∈ [0, T ]

if F has the form (1). The operator D is closable and it can be extended to the closure of S
with respect to the seminorm

‖F‖p
k,p = E |F |p +

k∑

j=1

E‖D(j)F‖p
L2(T )

where D(i) denotes the i th iterated derivative. The adjoint of D is denoted by δ and it is
called the Skorohod integral. That is, δ is defined on its domain

Dom(δ) =
{

u ∈ L2([0, T ]× Ω)/
∣∣∣∣E

∫ T

0
usDsFds

∣∣∣∣ ≤ C‖F‖L2(Ω)

}

and it is given by the duality relationship

E(Fδ(u)) = E
∫ T

0
usDsFds, u ∈ Dom(δ), F ∈ S.

Recall that the variance of the Skorohod integral is

E(δ2(u)) = E
∫ T

0
uαvαdα + E

∫ T

0

∫ T

0
DβuαDαuβdαdβ (2)
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By Lk,p we denote the set L2([0, T ];Dk,p), for k ≥ 1 and p ≥ 2 and we note that Lk,p is a
subset of the domain of δ. The following generalized version of the Ocone-Clark formula was
given in [5].

F = E
(
F/F[s,t]c

)
+

∫ t

s
E

(
DαF/F[α,t]c

)
dW (α) , for F ∈ D1,2. (3)

We will need the commutativity relationship between the derivative operator and the Skoro-
hod integral

Dtδ(u) = ut + δ(Dtu) (4)

if all above terms are defined. Recall also that, if F is random variable Malliavin differentiable,
measurable with respect to a σ-algebra FA, A ∈ B([0, T ]), then

DF = 0, on Ac × Ω. (5)

Consider now the stochastic differential equation

X(t) = X(0) +
∫ t

0
σ

(
s,E

(
X(s)/F[s,t]c

))
dW (s) +

∫ t

0
b
(
s,E

(
X(s)/F[s,t]c

))
ds. (6)

Using the method of Picard’s iterations and taking account that, by (2) and (5) it holds that

E
∣∣∣∣
∫ t

0
σ

(
s,E

(
X(s)/F[s,t]c

))
dW (s)

∣∣∣∣
2

= E
∫ t

0

∣∣σ (
s,E

(
X(s)/F[s,t]c

))∣∣2 ds, (7)

the existence and uniqueness of the solution of (6) can be obtained if we assume the functions
σ and b satisfy the regularity conditions (A1), (A3)-(A5) below.

Remark 1 1. Suppose that the initial condition X(0) = x ∈ R (or X0 is adapted). In this
case it is easy to see that the standard Picard iterations Xn

t are adapted to the filtration
Ft. Then the equation (6) is nothing else that the classical Itô equation.

2. If the initial value X(0) is anticipating in this case the solution of (6) is also anticipating.

3. In (6) we can replace the deterministic integral by
∫ t
0 b(s,X(s)) and we will have again

the existence and the uniqueness of the solution under usual conditions on b.

4. Using the identity
∫ t
0 E

(
v(s)/F[s,t]c

)
dW (s) =

∫ t
0 (v(s) − r(s))dW (s), where r(s) =

δ
(
E

(
Dsv(·)/F[·,s]c

)
1[0,s](·)

)
, assuming that the coefficient σ is linear, we can write

(6) as

X(t) = X(0) +
∫ t

0
σ(s)X(s)dW (s)−

∫ t

0
δ
(
σ(·)E (

DsX(·)/F[·,s]c
)
1[0,s](·)

)
dW (s)

+
∫ t

0
b
(
s,E

(
X(s)/F[s,t]c

))
ds

and it can be seen that the above stochastic integrals are anticipating.
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3 The Euler Scheme

Let 0 = t0 ≤ t1 . . . ≤ tn = T be a discretization of [0, T ] and δ the time step such that

δ = δn =
T

n
. The process Y δ = {Y δ(t), 0 ≤ t ≤ T} defined below will be considered to

approximate the solution X. First we define Y δ at tk recursively as follows: Y δ(0) = Y (0) ∈
mathbbR,

Y δ(tk+1) = Y δ(tk)+b(tk,E
(
Y δ(tk))/F[tk,tk+1]c

)
δ+σ(tk,E

(
Y δ(tk)/F[tk,tk+1]c

)
(W (tk+1)−W (tk))

for k = 0, ..., n − 1. Next, Y δ(t) can be defined for each t ∈ [tk, tk+1[, k = 0, 1, . . . , n − 1 as
the following linear interpolation

Y δ(t) = Y δ(tk) +
∫ t

tk

b(tk,E
(
Y δ(tk)/F[tk,t]c

)
ds +

∫ t

tk

σ(tk,E
(
Y δ(tk)/F[tk,t]c

)
dW (s). (8)

We will make use of the following standing assumptions throughout the paper.

(A1) E|X(0)|2 < ∞
(A2) E|X(0)− Y δ(0)|2 ≤ K1 · δ
(A3) |σ(t, x)− σ(t, y)|2 + |b(t, x)− b(t, y)|2 ≤ K2 · |x− y|2

(A4) |σ(t, x)|2 + |b(t, x)|2 ≤ K3 · (1 + |x|2)
(A5) |σ(s, x) − σ(t, x)|2 + |b(s, x) − b(t, x)|2 ≤ K4 · (1 + |x|2)· | s − t | for all x, y ∈
R, s, t ∈ [0, T ] where the constants K1, . . . ,K4 do not depend on δ.

Theorem 1 Assume (A1)-(A5) hold. Then there exists two positive constants A and B not
depending on δ such that

E

(
sup

0≤t≤T
|X(t)− Y δ(t)|2

)
≤ δA · eBT .

Proofs: The proof of Theorem 1 is based upon the following lemmas 1-7.

Lemma 1 Let X(t) be the process satisfying equation (6). Then under (A1)-(A5) there
exists two positive constants C1 and C2 such that

E

(
sup

0≤t≤T
|X(t)|2

)
≤ C1(1 + |X(0)|2)eC2T .
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Proof: Since X(t) satisfies the equation (6) we have

E |X(t)|2 ≤ 3

(
E |X(0)|2 + E

(∫ t

0
σ

(
s,E

(
X(s)/F[s,t]c

))
dW (s)

)2

+ E
(∫ t

0
b
(
s,E

(
X(s)/F[s,t]c

))
ds

)2
)

.

From hypothesis (A1) and growth bound (A4) the following inequality holds.

E |X(t)|2 ≤ 3

(
E |X0|2 + E

(∫ t

0
σ

(
s,E

(
X(s)/F[s,t]c

))
dW (s)

)2

+ E
(∫ t

0
b
(
s,E

(
X(s)/F[s,t]c

))
ds

)2
)

≤ 3
(
E |X0|2 +

∫ t

0
E

(
σ

(
s,E

(
X(s)/F[s,t]c

)))2
ds + t

∫ t

0
E

(
b
(
s,E

(
X(s)/F[s,t]c

)))2
ds

)

≤ 3
(
|X(0)|2 + K3t(1 + t) + K3(1 + t)

∫ t

0
E |X(s)|2 ds

)
.

By applying Gronwall’s inequality we conclude that

E

(
sup

0≤t≤T
|X(t)|2

)
≤ C1(1 + |X(0)|2)eC2T ,

where C1 = max {3, 3K3T (1 + T )} and C2 = 3K3 (1 + T ).

The following lemma is proved in the same way, which proof is left to the reader.

Lemma 2 Under (A1)-(A5), there exists two positive constants C3 and C4 such that

E

(
sup

0≤t≤T

∣∣∣Y δ(t)
∣∣∣
2
)
≤ C3(1 + |Y δ(0)|2)eC4T .

The next step is to prove a bound for the increment of the solution X(t)−X(s). We
will treat two cases; first we will consider the case when the coefficients of (6) are linear
and is this situation the estimation follows easier assuming the boundnesss of the Malliavin
derivative of the initial value. Then, under supplementary conditions, we will treat the case
of nonlinear coefficients.

Lemma 3 Suppose that the coefficients of (6) are linear functions and assume that

(A6) There exists K6 > 0 such that E |DαX(0)|2 ≤ K6, for every α ∈ [0, T ].

Under (A1)-(A6), there exists a positive constant C5 such that the solution X(t) of (6)
satisfies

E |X(t)−X(s)|2 ≤ C5(t− s).
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Proof: Since X satisfies the equation (6) we have

E |X(t)−X(s)|2 ≤ 4

(
E

(∫ s

0
b
(
u,E

(
X(u)/F[u,t]c

))− b
(
u,E

(
X(u)/F[u,s]c

))
du

)2

+E
(∫ t

s
b
(
u,E

(
X(u)/F[u,s]c

))
du

)2

+E
(∫ s

0
σ

(
u,E

(
X(u)/F[u,t]c

))− σ
(
u,E

(
X(u)/F[u,s]c

))
dW (u)

)2

+ E
(∫ t

s
σ

(
u,E

(
X(u)/F[u,s]c

))
dW (u)

)2
)

.

From hypothesis (A1), the Lipschitz condition (A3) and growth bound (A4) the following
inequality holds

E |X(t)−X(s)|2 ≤ 4
(

K2(1 + s)
∫ s

0
E

(
E

(
X(u)/F[u,t]c

)− E (
X(u)/F[u,s]c

))2
du

+ (1 + t− s)K3

∫ t

s

(
1 + E |X(u)|2

)
du

)
. (9)

By applying Lemma 1 we get that

E |X(t)−X(s)|2 ≤ 4
(

K2(1 + s)
∫ s

0
E

(
E

(
X(u)/F[u,s]c

)− E (
X(u)/F[u,t]c

))2
du

+ (t− s)(1 + t− s)K3

(
1 + C1

(
1 + E|X(0)|2) eC2T

))
. (10)

Let now for simplicity σ(x) = σx and b(x) = bx where σ and b are real numbers. In this case
it is easy to see that

E
(
X(r)/F[r,t]c

)

= E
(
X(0)/F[r,t]c

)
+ σE

(∫ r

0
E

(
X(α)/F[α,r]c

)
dW (α)/F[r,t]c

)
+ bE

(∫ r

0
E

(
X(α)/F[α,r]c

)
dα/F[r,t]c

)

= E
(
X(0)/F[r,t]c

)
+ σ

∫ r

0
E

(
X(α)/F[α,t]c

)
dW (α) + b

∫ r

0
E

(
X(α)/F[α,t]c

)
dα

and

E
(
X(u)/F[u,s]c

)− E (
X(u)/F[u,t]c

)
(11)

= E
(
X(0)/F[u,s]c

)− E (
X(0)/F[u,t]c

)
+ σ

∫ u

0

(
E

(
X(α)/F[α,s]c

)− E (
X(α)/F[α,t]c

))
dW (α)

+b

∫ u

0

(
E

(
X(α)/F[α,s]c

)− E (
X(α)/F[α,t]c

))
dα. (12)
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But, by (3) we have

E
(
X(0)/F[u,s]c

)− E (
X(0)/F[u,t]c

)
= E

(
X(0)/F[u,s]c

)− E (
E

(
X(0)/F[u,s]c

)
/F[u,t]c

)

=
∫ t

u
E

(
DαE

(
X(0)/F[u,s]c

)
/F[α,t]c

)
dW (α) =

∫ t

s
E

(
E

(
DαX(0)/F[u,s]c

)
/F[α,t]c

)
dW (α)

and that implies, by (A6),

E
∣∣E (

X(0)/F[u,s]c
)− E (

X(0)/F[u,t]c
)∣∣2 ≤

∫ t

s
E |DαX(0)|2 dα ≤ K6(t− s). (13)

Denote by As,t(u) =
∣∣E (

X(u)/F[u,s]c
)− E (

X(u)/F[u,t]c
)∣∣2 . By (12) and (13) we have

As,t(u) ≤ 3E
∣∣E (

X(0)/F[u,s]c
)− E (

X(0)/F[u,t]c
)∣∣2 + 3(1 + u)

∫ u

0
As,t(α)dα

≤ 3K6(t− s) + 3(1 + T )
∫ u

0
As,t(α)dα

and we conclude by Gronwall that for every u, s, t

As,t(u) ≤ 3K6e
3T (1+T )(t− s). (14)

By combining (10) and (14) we obtain

E |X(t)−X(s)|2 ≤ 4(t− s)(1 + T )
(
K23K6e

3T (1+T ) + K3

(
1 + C1

(
1 + E|X(0)|2) eC2T

))
.

(15)

Our next goal is to prove the above lemma for nonlinear coefficients. But in this we
need case we need to make to supplementary hypothesis. That is, there exist two positive
constants K7 and K8 such that for every t, x, y

(A7) |∂2σ(t, x)− ∂2σ(t, y)|2 + |∂2b(t, x)− ∂2b(t, y)|2 ≤ K7|x− y|,
(A8) |∂2σ(t, x)|+ |∂2b(t, x)| ≤ K8.

Note that (A8) implies obviously (A2).

We need first two Lemmas who study the Malliavin differentiability of the solution.

Lemma 4 Assume that (A1)-(A8) hold and define, for every t ≤ T , the processes

Xn(t) = X(0) +
∫ t

0
σ

(
s,E

(
Xn−1(s)/F[s,t]c

))
dW (s) +

∫ t

0
b
(
s,E

(
Xn−1(s)/F[s,t]c

))
ds (16)

with X0(t) = X(0). Then for every t ∈ [0, T ] and n ≥ 1 the process Xn is Malliavin
differentiable and there exists a constant C6 = C6(n) > 0 such that

E |DβXn(t)|2 ≤ C6 for every β, t ∈ [0, T ] , β ≤ t, ∀n ≥ 1. (17)
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Proof: We will use the induction on n. We have, by (4), that for β ≤ t,

DβX1(t) = DβX(0) + σ
(
β,E

(
X(0)/F[β,t]c

))

+
∫ t

0
Dβσ

(
s,E

(
X(0)/F[s,t]c

))
dW (s) +

∫ t

0
Dβb

(
s,E

(
X(0)/F[s,t]c

))
ds

= DβX(0) + σ
(
β,E

(
X(0)/F[β,t]c

))

+
∫ t

β
∂2σ

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
dW (s)

+
∫ t

β
∂2b

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
ds

and thus

E
∣∣DβX1(t)

∣∣2 ≤ 4
(
E |DβX(0)|2 +

∣∣σ (
β,E

(
X(0)/F[β,t]c

))∣∣2

+ E
∣∣∣∣
∫ t

β
∂2σ

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
dW (s)

∣∣∣∣
2

+ E
∣∣∣∣
∫ t

β
∂2b

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
ds

∣∣∣∣
2
)

.

Using the properties (2), (5) and hypothesis (A6) , (A8) we get

E
∣∣DβX1(t)

∣∣2 ≤ 4
(
K6 + K3(1 + E |X0|2) + K8K6(t− β)(1 + t− β)

)
.

The induction step is similar with the case n = 1.

Lemma 5 Let Xn be the processes given by (16). Then, for every t ∈ [0, T ], the sequence of
random variables Xn(t) converges to X(t) in the Sobolev space D1,2.

Proof: Throughout this proof C will denotes a generic constant, its value can be different
from a line to another. Note first that

DβX1(t)−DβX(0) = σ
(
β,E

(
X(0)/F[β,t]c

))
1[0,t](β)

+
(∫ t

β
∂2σ

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
dW (s)

)
1[0,t](β)

+
(∫ t

0
∂2σ

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
dW (s)

)
1[t,T ](β)

+
(∫ t

β
∂2b

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
ds

)
1[0,t](β)

+
(∫ t

0
∂2b

(
s,E

(
X(0)/F[s,t]c

))
E

(
DβX(0)/F[s,t]c

)
ds

)
1[t,T ](β).
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Therefore
E

∣∣DβX1(t)−DβX(0)
∣∣2 ≤ C

(
1 + E |X(0)|2

)
1[0,t](β) + Ct

where we used the set of conditions (A1)-(A8) and the properties of the Skorohod integral.
We obtain

E
∫ T

0

∣∣DβX1(t)−DβX(0)
∣∣2 dβ ≤ Ct. (18)

The relation (4) gives

DβXn+1(t) = DβX(0) + σ
(
β,E

(
Xn(β)/F[β,t]c

))
1[0,t](β)

+
(∫ t

β
∂2σ

(
s,E

(
Xn(s)/F[s,t]c

))
E

(
DβXn(s)/F[s,t]c

)
dW (s)

)
1[0,t](β)

+
(∫ t

0
∂2σ

(
s,E

(
Xn(s)/F[s,t]c

))
E

(
DβXn(s)/F[s,t]c

)
dW (s)

)
1[t,T ](β)

+
(∫ t

β
∂2b

(
s,E

(
Xn(s)/F[s,t]c

))
E

(
DβXn(s)/F[s,t]c

)
ds

)
1[0,t](β)

+
(∫ t

0
∂2b

(
s,E

(
Xn(s)/F[s,t]c

))
E

(
DβXn(s)/F[s,t]c

)
ds

)
1[t,T ](β).

We will have, using Lemma 4 and the conditions imposed on the coefficients, that

E
∣∣DβXn+1(t)−DβXn(t)

∣∣2 ≤ C
(
E

∣∣Xn(β)−Xn−1(β)
∣∣2 1[0,t](β)

+
∫ t

0
E

∣∣Xn(s)−Xn−1(s)
∣∣2 ds +

∫ t

0
E

∣∣DβXn(s)−DβXn−1(s)
∣∣2 ds.

)

We refer to [8] for the following bound

E
∣∣Xn(t)−Xn−1(t)

∣∣2 ≤ (Ct)n

n!
for every t ∈ [0, T ] (19)

and (19) implies

E
∣∣DβXn+1(t)−DβXn(t)

∣∣2 ≤ (Ct)n+1

(n + 1)!
+

∫ t

0
E

∣∣DβXn(s)−DβXn−1(s)
∣∣2 ds. (20)

Combining (18) and (20) it not difficult to prove by induction that

E
∣∣DβXn+1(t)−DβXn(t)

∣∣2 ≤ (Ct)n+1

(n + 1)!
. (21)

Consequently, by (19) and (21), we get

‖Xn+1(t)−Xn(t)‖2
1,2 = E

∣∣Xn+1(t)−Xn(t)
∣∣2+E

∫ T

0

(
Dα(Xn+1(t)−Xn(t))

)2
dα ≤ (CT )(n+1)

(n + 1)!

and the sequence X(0) +
∑∞

n=0

(
Xn+1(t)−Xn(t)

)
converges in the Hilbert space D1,2 to a

limit which cannot be anything else that X(t).
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Lemma 6 For every β, t ∈ [0, T ] with β ≤ t we have that

E |DβX(t)|2 ≤ C7 (22)

where C7 is a positive constant not depending on β, t.

Proof: The prior Lemma shows that X(t) is differentiable in the Malliavin sense for every
t. Let β ≤ t. We have

DβX(t) = DβX(0) + σ
(
β,E

(
X(β)/F[β,t]c

))

+
∫ t

β
∂2σ

(
s,E

(
X(s)/F[s,t]c

))
E

(
DβX(s)/F[s,t]c

)
dW (s)

+
∫ t

β
∂2b

(
s,E

(
X(s)/F[s,t]c

))
E

(
DβX(s)/F[s,t]c

)
ds.

Therefore, applying (A3) and (A8)

E |DβX(t)|2 ≤ 4(E |DβX(0)|2 + K3(1 + sup
β
E |Xβ|2) + K8(1 + t− β)

∫ t

0
E |DβX(s)|2 ds.

An usual application of Gronwall lemma and condition (A6) will give the conclusion.

Lemma 7 Let X = (X(t))t∈[0,T ] be the solution of equation (6) and assume that hypothesis
(A1)-(A8) are satisfied. Then

E |X(t)−X(s)| ≤ C8|t− s| (23)

where C8 denotes a positive constant.

Proof: The increments of the process X can be written as

X(t)−X(s) =
∫ t

s
σ

(
r,E

(
X(r)/F[r,t]c

))
dW (r) +

∫ t

s
b
(
r,E

(
X(r)/F[r,t]c

))
dr

+
∫ s

0

(
σ

(
r,E

(
X(r)/F[r,t]c

))− σ
(
r,E

(
X(r)/F[r,s]c

)))
dW (r)

+
∫ s

0

(
b
(
r,E

(
X(r)/F[r,t]c

))− b
(
r,E

(
X(r)/F[r,s]c

)))
dr

and its square mean can be majorized by

E |X(t)−X(s)|2

≤ CE
∫ t

s

∣∣σ (
r,E

(
X(r)/F[r,t]c

))∣∣2 ds + C(t− s)E
∫ t

s

∣∣b (
r,E

(
X(r)/F[r,t]c

))∣∣2 ds

+C

∫ s

0
E

∣∣σ (
r,E

(
X(r)/F[r,t]c

))− σ
(
r,E

(
X(r)/F[r,s]c

))∣∣2 dr

+C(
∫ s

0
E

∣∣b (
r,E

(
X(r)/F[r,t]c

))− b
(
r,E

(
X(r)/F[r,s]c

))∣∣2 dr. (24)
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The first two terms of the right side are bounded by C(t − s) by hypothesis and Jensen
inequality. The last two expressions from above can be treated in a similar way. First, note
that
∣∣σ (

r,E
(
X(r)/F[r,t]c

))− σ
(
r,E

(
X(r)/F[r,s]c

))∣∣2 ≤ K2

∣∣E (
X(r)/F[r,t]c

)− E (
X(r)/F[r,s]c

)∣∣2

and by Ocone-Clark formula (3)

E
(
X(r)/F[r,s]c

)− E (
X(r)/F[r,t]c

)
= E

(
X(r)/F[r,s]c

)− E (
E

(
X(r)/F[r,s]c

)
/F[r,t]c

)

=
∫ t

r
E

(
DβE

(
X(r)/F[r,s]c

)
/F[β,t]c

)
dW (β) =

∫ t

s
E

(
E

(
DβX(r)/F[r,s]c

)
/F[β,t]c

)
dW (β)

where at the last line we used the property (5) of the Malliavin derivative. Therefore we
obtain by using Lemma 6

E
∣∣E (

X(r)/F[r,s]c
)− E (

X(r)/F[r,t]c
)∣∣2 ≤ C

∫ t

s
E(DβX(r))2dβ ≤ C(t− s)

and combining the last relation and (24) we finish the proof.

Proof of Theorem 1 Let Z(T ) = E

{
sup

0≤t≤T

(
|X(t)− Y δ(t)|2

)}
and c(s) =

[sn]
n

, s ∈
[0, T ]. By (6) and (8) we can write

Z(T ) ≤ 4E

(
|X(0)− Y δ(0)|2 + sup

0≤t≤T
(I(t)) + sup

0≤t≤T
(J (t)) + sup

0≤t≤T
(K(t)) + sup

0≤t≤T
(L(t))

)

where

I(t) =
∣∣∣∣
∫ t

0

(
σ

(
c(s),E

(
X(c(s))/F[s,t]c

))− σ
(
c(s),E

(
Y δ(c(s))/F[s,t]c

))
W (s)

)

+
∫ t

0

(
b
(
c(s),E

(
X(c(s))/F[s,t]c

))− b
(
c(s),E

(
Y δ(c(s))/F[s,t]c

))
ds

)∣∣∣∣
2

,

J (t) =
∣∣∣∣
∫ t

0

(
σ

(
c(s),E

(
X(s)/F[s,t]c

))− σ
(
c(s),E

(
X(c(s))/F[s,t]c

))
dW (s)

)

+
∫ t

0

(
b
(
c(s),E

(
X(s)/F[s,t]c

))− b
(
c(s),E

(
X(c(s))/F[s,t]c

))
ds

)∣∣∣∣
2

,

K(t) =
∣∣∣∣
∫ t

0

(
σ

(
s,E

(
X(s)/F[s,t]c

))− σ
(
c(s),E

(
X(s)/F[s,t]c

))
dW (s)

)

+
∫ t

0

(
b
(
s,E

(
X(s)/F[s,t]c

))− b
(
c(s),E

(
X(s)/F[s,t]c

))
ds

)∣∣∣∣
2
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and

L(t) =
∣∣∣∣
∫ t

0

(
σ

(
c(s),E

(
Y δ(c(s))/F[s,t]c

))
− σ

(
c(s),E

(
Y δ(c(s))/F[c(s),t]c

)))
dW (s)

+
∫ t

0

(
b
(
c(s),E

(
Y δ(c(s))/F[s,t]c

))
− b

(
c(s),E

(
Y δ(c(s))/F[c(s),t]c

)))
ds

∣∣∣∣
2

.

We have the following estimates

E

(
sup

0≤t≤T
(I(t))

)
≤ 2(T + 1)K2

∫ T

0
Z(s)ds , E

(
sup

0≤t≤T
(J (t))

)
≤ δ2(T + 1)TK2C5,

E

(
sup

0≤t≤T
(K(t))

)
≤ δ2(T + 1)TK4

(
1 + C1

(
1 + |X(0)|2) eC2T

)

and using the techniques used in the proof of Lemma 3, together with Lemmas 6 and 7, we

get E

(
sup

0≤t≤T
(I(t))

)
≤ K9δ. By combining these estimates and using hypothesis (A2) we

obtain

Z(T ) ≤ Aδ + B

∫ T

0
Z(s)ds, (25)

where A = 4K1 + 8 (T + 1)K2C5T + 8 (T + 1)K4T
(
1 + C1

(
1 + E|X(0)|2) eC2T

)
and B =

8(T + 1)K2. Applying Gronwall inequality to (25) we have Z(T ) ≤ δABT .

Remark 2 In some particular situation, the approximations Y δ can be explicitly computed.
Suppose σ = 1, b = 0 and let the initial value be W (1)−W (t). Then Y δ(0) = W (1) and

Y δ(t1) = W (1) + E
(
W (1)/F[0,t1]c

)
W (1) = W (1) + (W (1)−W (t1))W (1).

Using the independence of increments of the Wiener process, it’s clear that at any step the
process Y δ can be concretely found without any conditional expectation appearing in its ex-
pression. Therefore, numerical solution of the equation can be obtained.
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