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Abstract

We introduce the stochastic integration with respect to the infinite-dimensional frac-
tional Brownian motion. Using the techniques of the anticipating stochastic calculus, we
derive an It6 formula for Hurst parameter bigger than %

1 Introduction

The fractional Brownian motion (fBm) B" = (Bth)te[o,l] is a centered Gaussian process,
starting from zero, with covariance

R(t,s) = %(t% FCT VRN
for every s,t € [0,1]. The parameter h belongs to (0,1) and it is called Hurst parameter. If
h = % the associated process is the classical Brownian motion. The process (B?)te[o,l} has
stationary increments and it is self similar, that is, B, and o B! have the same distribution
for all @ > 0. These properties make the fBm a candidate as a model in different applications
(like network traffic analysis or mathematical finance). Therefore a stochastic calculus with
respect to the fractional Brownian motion was needed. Let us briefly recall the two principal

directions considered in the fractional stochastic integration.

e a first approach is the anticipating (Skorohod) stochastic calculus and the white noise
theory. This approach has been used in e.g. [2], [5] or [6] among others. An Itd’s
formula involving the Skorohod (divergence) integral has been proved. Note that for
small Hurst parameters one need an extended divergence integral (see [4]).

e the pathwise integration theory has been considered in e.g. [8], [18] or [1]. An It6 formula
has been proved also in this case and stochastic equations in the Stratonovich sense
driven by the fBm has been considered. Again, a generalized integral was needed for
small Hurst parameters.



A natural extension of this problems is to develop a stochastic calculus with respect
to a Hilbert space-valued fBm. Recently, the infinite dimensional fBm has been considered
by several authors as a driving noise in the study of stochastic evolution equations. We refer,
among others, to [7], [9] or [16]. Note that the stochastic integrals with respect to the infinite
dimensional fBm appearing in these papers are only Wiener integrals. Our aim is to introduce
the stochastic integration of non-deterministic integrands with respect to a Hilbert-valued
fBm and to obtain an It6 formula in the Skorohod sense. Our work is motivated, on one side,
by the recent development of the stochastic integration with respect to Gaussian (and even
more general) processes and on the other side, by practical aspects. For example, we believe
that a such stochastic integration could open the door to a further study of the connection
between the ordinary and stochastic fractional calculus. Let us recall that, in the case of
the infinite dimensional Wiener process, the last term appearing in the It6 formula (the
"trace” term, see e.g. [15]) corresponds to the Kolmogorov equation associated to the infinite
dimensional Ornstein-Uhlenbech process. See Section 9 in [15] for details. This provides
an intimated connection between the theory of the infinite dimensional diffusions and the
theory of partial differential equations with concrete practical applications such that e.g. the
wavefront propagation. In the case of the Hilbert space-valued fBm the last term is the one we
could expect (see Section 4 below) and this seems to be related to the fractional Kolmogorov
equation which is a reaction-diffusion equation with a fractional diffusion operator (see [3]
and [12] for the definition and applications). We plan a separate study of all this relations;
we just observe that trace class operators appear also in the study of the stochastic evolution
equations with fBm (see Theorem 1 in [16]).

Our approach extends, on one hand, the results of [10] in the case h = % and, on
the other hand, the results of [2] in the one-dimensional fBm case. We mention that the
passage from the one-dimensional to the infinite dimensional case needs new techniques; for
example the methods used in [2] to prove the Itd’s formula are not directly applicable to the
Hilbert-valued situation; the difficulty comes from the fact that the proof in [2] is based on
a specific one-dimensional duality relation between the Skorohod integral and the Malliavin
derivative. We prove here that, in the Wiener case, the approach of [15] to define stochastic
integrals on Hilbert spaces and the method of [10] lead to the same integral and we take
advantage from this fact. The method that we use to prove the It6’s formula for h > % is the
classical Taylor expansion.

Our paper is organized as follows: Section 2 is devoted to recall the basic notions of the
stochastic calculus of variations with respect to the Wiener process and fractional Brownian
motion. In Section 3 we present the construction of the adapted and non-adapted infinite-
dimensional stochastic analysis and we study the relation between different approaches. In
Section 4 we introduce a fBm B" in a Hilbert space and we obtain an It formula.



2 Preliminaries

2.1 Malliavin Calculus

Let T' = [0, 1] the unit interval and (W;);er the standard Wiener process on the canonical
Wiener space (2, F, P) . We will denote by S the class of Brownian functionals of the form

F:f(Wtw""th) (1)

where f : R®” — R is an infinitely differentiable function such that f and all its derivatives
are bounded and ¢1,--- ,t, € T. The elements of S are called smooth random variables and
form a dense subspace of L?(Q).

The Malliavin derivative of a smooth functional F' of the form (1) is the stochastic
process {D;F';t € T'} given by

"0
DtF:Zan(th“- W)l (t), t€T
i=1 v

More generally, we can introduce the k-th derivative of F' € S by D,Ef)th =Dy Dy, - Dy F.

Consider now V a real and separable Hilbert space and Sy the class of the smooth
V-valued random variables that can be written as ' =37 | Fjv; where F; € S and v; € V.
We shall introduce the derivative of F' € Sy as

n
D,F =Y D.,Fj@u; ,VscT. (2)
j=1

This operator is closeable from LP(2; V) into LP(T x Q; V) for any p > 1 and it can be
extended to the completion of Sy, denoted D¥P(V), with respect to the norm

k
IFIZ,y =EIFIE + 3 EIDYF|L, 0, .
j=1

The adjoint of D, called the Skorohod integral and denoted by 4, is characterized by
the duality relationship
]E((S(’U,), F>V = E<DF’ u>L2(T)®V
)

for all F' € Sy, if u belongs to Dom(d) (the domain of the operator §), where
Dom(8) = {u € L*(T x & V)/|E(DF,u) 2(ryev| < ClIF || 2 }-
We will need the following property of the Malliavin derivation in Hilbert spaces (see [13])
(DaF)(x) = Da(F(x)) 3)

if U,V are two Hilbert spaces, F' is a random variable taking values in L(U,V), z € U and
ael.



2.2 Fractional Brownian motion

Let B = (By)ier be the fractional Brownian motion (fBm) with Hurst parameter h € (0, 1).
We will omit in this section the superlndex h. We know that B admits a representation as
Wiener integral of the form B; = fo (t,s)dWs, where W = (W})ier is a Wiener process,
and K(t,s) is the kernel (see [2, 5])

t
K(to) =t F st b (1)
s
¢y, being a constant and Fy (2) = cp, (3 — h) Ozfl oh—32 <1 — (04 l)h_%) df. This kernel sat-

isfies the condition
0K 1

S (ts) = enlh = 5)(5)2 7t — )" 5 (4)

We consider the canonical Hilbert space of the fBm H as the closure of the linear space
generated by the function {1[0,t],t € T} with respect to the scalar product <1[07ﬂ, 1[075])71 =
R(t,s). Then the mapping 1jp; — B gives an isometry between H and the first chaos
generated by {B;,t € T} and B(¢) denotes the image of a element ¢ € H.

We recall that , if ¢, x € H are such that [ [ 6(s)||x(¢)[t — s|*'~2dsdt < oo, their
scalar product in H is given , when h > 2, by

(¢, X)3 = h(2h — 1) / / b(s — s[*""2dsdt. (5)

We can introduce a derivation and a Skorohod integration with respect to B. For
a smooth H-valued functionals F' = f(B(¢1), - ,B(¢n)) withn > 1, f € Cp°(R"™) and
©1,° - ,on € H we put

DE(F) =) 88;;(3(901)7 5 Blen))gj-

and DB F will be closable from LP(€)) into LP(Q;H) for any p > 1. Therefore, we can extend
D?® to the closure of smooth functionals ]D)gp with respect to the norm

k

11 = EIEP + D I(DP)DEIL, 00
j=1

Consider the adjoint 6% of DB. Its domain is the class of u € L?(£2; H) such that
E[(DBF,u)y| < C||F||z for all F € Dy
and 6% is the element of L?(2) given by
E(68(u)F) = E(DPF,u)y for every F smooth.

The following relations will relate the derivation and the Skorohod integration with
respect to W and B.



(i) D*? = D%P and KiDBF = DF, for any F € DFP.

(i) Dom(68) = (K¥)~' (Dom(8), and 65 (u) = §(K¥u) for any H-valued random variable
u in Dom(67), where

1
(K1) = [ o5 s)ar (©

We have the integration by parts formula, provided that all terms have sense,

F&6B(u) = 6B (Fu) + (DB F, u)y. (7)
Throughout this paper, we denote by || - ||gs the Hilbert-Schmidt norm.

3 Infinite-dimensional stochastic analysis

Consider T the unit interval and let U be a real separable Hilbert space. We consider @)
a nuclear, self-adjoint and positive operator on U (Q € L1(U),Q = Q* > 0). It is well-
known that ) admits a sequence (\;);>1 of eigenvalues with 0 < A; \, 0 and ijl Aj < oo.
Moreover, the corresponding eigenvectors (e;);>1 form an orthonormal basis in U.

A process (X¢)ier with values in U is called Gaussian if for every t1,--- ,t, € T and
uy, -+ ,up € U the real random variable 37, (u;, Xi;)y has a normal distribution.

We define the expectation mx of X as mx : T'— U, mx(t) = E[X;] and the covari-
ance Cx : T? — L1(U) by, for every s,t € T, (Cx(t,s)u,v)y = E[(X; — mx(t),v)p(Xs —

mx(s),u)y].

Definition 1 We call (Wy)ier a Q-Wiener process for the filtration Fs if Wis a U -valued
process and the following properties hold:

i) Wo =0 and W has continuous trajectories.
ii) For every s < t, Wy — Wy is independent of Fs and Wy — W5 € N(0, (t — 5)Q@).

We have equivalent definitions for a @-Wiener process(see [17]).

Theorem 1 Let (Wy)ier a U-valued process such that Wy = 0 and W has continuous
trajectories. The following are equivalent:

i) Wy is a Q-Wiener process.

ii) Wy is a centered Gaussian process with covariance

Cw(t,s) = min(t, s)Q.

iii) There exist real and independent Brownian motions {(B;(t))ter)}j>1 such that

Wi =Y /Ai85(t)e;. (8)

Jj=z1



Let H be another real separable Hilbert space with (hg); an orthonormal system in H and
put Up = Q%(U) C U. We endow Uj with the norm

lullo = 1Q™ )llv-
Then (Up, || - [lo) is a separable Hilbert space and (/A;e;j)j>1 is a orthonormal basis in Up.
For a Ly(Up; H)-valued, adapted process with E (fol ||<I>S||]2gsds) < 00, the Ito sto-
chastic integral of ® with respect to W is defined as being the H-valued process (I®(t))ier

given by
=Y VNP )
j>1
with ‘
IHOEDY (/0 (Dsey, hk)dﬁj(S)) h

k>1

and the two series above are convergent in L?(Q; H), uniformly on 7. Note that I® is a
martingale on H (see [15] or [17] for the definition).

We will also recall some notions of the non-adapted stochastic calculus with respect
to W following [10]. A different construction, based on chaos expansion, was given in [11].
A Malliavin type derivative operator and a Skorohod integral with respect to the infinite-
dimensional Brownian motlon (Wt)teT has been introduced in [10] as follows Denote, for
h e L3(T;U), by W(h fo s)dW € L%(Q) the Wiener integral fo ), dW )y, (which
isequal to } .~ \/>f0 ), e5) U, dB;i(s) if W is given by (8)) and con81der Sy the subspace
of L?(; H) of smooth functlonals

= Z fp(W(hpl), ce ,W(hpnp)>kp
p=1

where m,ni, -,y € N, ky,--+ [k € H, fp € C°(R™) for all p = 1,--- ,m and hy; €
L*(T;Up) for all i = 1,---,n,. Then the derivative of F is the L?*(Up; H)-valued process
{D:F;t € T} with

D, F = ZZ 8fp o W (hpn, ) Vep @ By (t).

p=1i=1

The operator D can be extended to the closure of S with respect to the norm

1
2, = E|F|% +E /0 IDLFI2, iy

We define the Skorohod integral §(®) of a process ® € L*(T x Q; Lo(Up; H)) as being the
H-valued random variable §(®) characterized by the following duality

E(F, 8(®)) 5 — E/l(DSF, B,) s (10)

6



and this operator is well-defined on the set of processes ® € L?(T x Q; Lo(Up; H)) such that

1
E / (D.F, ®,) ysds| < C||F || 2cum).

When W is a real one-dimensional Brownian motion, the operators D and & coincide with
the ones defined in Section 2.1.

We denote by L12Q(H) the Hilbert space of processes ® belonging to L?(T x€; Ly(Ug; H))
with the norm

1 1,1
91800 = [ 19:Fisds +E [ | 10,9 Frsdads
By Prop. 3.2. of [10], this space is included in the domain of 4.
Remark 1 Observe that LY2Q(H) can be defined also as the class of stochastic processes
(®s)ser with values in Ly(Ug, H) such that ®5 € DY2 (La(Uy, H)) for every s € T and
S IE/ 1Dye;]%ds < o0 (1)
j>1

and

>N E/ / (Do ®s)e;|| % dads < oo. (12)

j>1

The next result shows that the Skorohod integral of [10] can be defined, for enough
regular non-adapted integrands, in the same way as the It integral (9).

Proposition 1 Let ® € Ll’Q’Q(H).The following properties hold:
i) For every j > 1, the following series converge in L*(%; H)

1
s=3" ( / <q>sej,hk>Hd6j(s>> hi and S =" \/A;87; (13)

E>1 N0 i>1
ii) S® coincides with the Skorohod integral §(®) given by (10).

Proof: i) We note first that the real Skorohod integral exists. Indeed,

1 t 1 1
IE/ (Dej, hp)hds < | || @sej|]ds < E/ D Al ®sejFds < oo
0 0 AiJo i>1

1 1
IE// o(®sej, hy))idads = E // o(®se;), hi) 3y dads
0 JO

1l
IE/ / (Da®s) e],hk>Hdads<E/ / [(Da®s)e;||3dads < oo.
0o Jo

and

7



We will use the notation (®se;, hg) g = ®;(s). The series (13) converges in L?(§2) because

EHZ/ 1 (5)dB () 2 ZE(/ (5)d8;(s >)2
< ;E /O q>j,k(s)2ds+zk:1@ /0 /0 (Do®;4(s))?dads.

and this is finite since

ZE/ ik(s)ds = /|]<I>ej||Hd5<oo

k>1

ZE// (Do®jx(s))*dads = E //HD@ JeillHdads < oo.

k>1

Concerning the second sum in (13), we observe first that, for j # I, E[Sf(t)S;b(t)] =0 and
then, due to the nuclearity of @

EI Y VASTOIE =Y NESE(1))? < 0] 0 < oo
J J

and

i7) The next step is to prove that, for ¢ € L'2Q and F € Sy, S® and F satisfy the
duality relation

1
E(S® F)y = E/ (By, D F) pgds. (14)
0

For simplicity, take F' = f(W(h))u, with h € L?(T;Up) and u € H. We have

DF = f/(W(h)h @ u. (15)
Therefore it holds
(Do, @) Ly (o) = D Ai{(DsF)(es), @seshn
J
D N (W (R) (hs @ u)(eg), ®sej)ir = Y X ' (W (h)) (s, € vy (1, Do) -
i j
On the other hand
BS™ i = 3 VAR / (@ udiad3y(s)) SOW () s P

7,k>1

- Z VAE (/ DI f(W(h))(® ej,hk>d3> (u, hyg) i

7,k>1

= Zfﬂ-«:(/ DIf(W @ej,u>Hds>,

7>1



where D7 denotes the Malliavin derivative with respect to the Brownian motion Bj. Thus
the duality follows observing that

DIf(W(h)) = f'(W(h) DLW (h)) = f'(W(h)\/Ashs, €5t

The relation (14), implies that ® belongs to Dom(8) and thus LY?Q c Dom(8) and S®
coincides with §(®). [ |

4 Infinite-dimensional fBm and Ito formula

With the notation of Section 3 we introduce a fBm B” on U as follows.

Definition 2 We say that the U-valued process (B?)teT is an infinite-dimensional fractional
Brownian motion (or a Q — fbm ) if B" is a centered Gaussian process with covariance

Cgn(t,s) = R(t, s)Q.

Proposition 2 B" is a Q — fBm if and only if there exists a sequence (ﬁ]}-‘)jzl of real and
independent fBm such that
Bl =) VA8 (t)e (16)
Jj=1

where the series converges in L*(Q;U).

Proof: We refer to [7] or [9] for the fact that >, w/)\]ﬂjh(t)ej is a fBm in the sense

of Definition 2. Conversely, let B" be a centered Gaussian process on U with covariance

R(t,s)Q. Put ﬁ]’?(t) = ﬁ(Biﬂ ej)u. Then ﬂjh is a Gaussian process since

" ) =SB Y,
lz;alﬁj (tl) - 2;<Btl’ \/)Tje]>

1=

for every aq, -+ ,an, € R and ty,--- ,t, € T. Moreover, for every i,j > 1 ,s,t € T, we have
1
E (81()8}(1)) = —==E (Bl eu (B e;)u ) = Rit,5)d;

DY

and it implies that E (8(s)38!(t)) = R(t,s) and for i # j, the random variables 3(s)
and 5]}-‘(t) are uncorrelated, thus independent. We finish the proof by noting that the sum

2oi>1 \/)\jﬂjh(t)ej converges in L2(Q;U). ]

Remark 2 Note that the process B" always has a continuous version (see [15], Prop. 3.15.)



Remark 3 When the covariance operator Q is not nuclear we can still introduce an infinite
dimensional fBm with covariance Q. As before, let U real separable Hilbert space and @ €
L(U), Q@ = Q" > 0 (Q is not necessary nuclear, in particular Q may be the identity operator).
Let Uy D Up be an other real and separable Hilbert space and (g;); an orthonormal basis in
Uy such that the mapping J : (U, | - |lo) — (U1, || - |l1) is a Hilbert-Schmidt operator, i.e.
dois1 |Jg;|I3 < oo. Consider the operator Q = JJ* : Uy — Uy which is nuclear, positive and

self-adjoint and let (ﬁ]h)jzl be real and independent fBm with h € (0,1). Then the U;- valued
process

B = (Jg;)0}(t) (17)

i>1
is an Q1 — fBm, provided that the series (17 ) converges in L?(f2).

Let us fix h € (0,1) and consider ]D)}f’Q(H ) the class of processes ® with values in
Ly(Uy; H) such that

> NE|[[®ejllall7, < oo

Jj=1

and

2
Z)‘jE [(D®)e; | r g < o0
j>1

Definition 3 If B" is an infinite dimensional fBm in the form (16) and ® is a process in
the space ID)}%Z’Q(H), then we define

[ wam: =3 yxre) (18)
0 iz1

where

TI(@) =) (/Ot@sej, hk)dﬁf) hy. (19)

k>1

As in the proof of Proposition 1, one can show that the sums (18) and (19) are finite for
® e DY (H).
We prove now the It6 formula for the U-valued fBm with nuclear covariance Q.

Theorem 2 Let (B}')icr a U-valued fBm with h € (3,1) and let F: U — R, F € C3(U)
such that F', F" are uniformly continuous. Then it holds

t t
F(B?):F(O)—i—/o F’(BQ)dBQJrH/O F"(BMs*H~1ds

where the last term is defined as

/t F"(BY)s*1=1ds .= Z)\j /t F"(BZ)(ej)(ej)52H_1d8.

0 j>1 0

10



Proof: Let m: 0 =ty < t; < --- < t, =t denote a partition of the interval [0,t]. We write
the following version of the Taylor formula in the differential calculus

n—1
F(B}) = F(0)+) F/(B!)B!  —B}')
=0
1 —
+3 3 FBh) (B, - BL)BL,, - BY)

where P;hti is located between BZ and BZ+ .- Using the definition (16) of B" and the linearity
of F'(x), we obtain

n—1
F(BY) = FO)+Y F®B) [ Y VA (tirr) = 8] (t:))e;
=0

j>1

+5 2 F(B")(BY,, ~ BB

lit1

—-B})

= +Z\FZ H(tir1) = B (8:)F' (BL)(e;)

j>1

1 —
+§ Z F// (Bhtz)( t; i+1 Bh )(Bh;+1 BZ)
By the integration by parts formula (7), it holds

F(B)) = F0)+> V% Zw( (ot )V F'(BE ) (e))

j>1

+Z\FZ DMIF (B (€5): Lgs o111 ()t

7>1

~B})

i+1

1 —
+§ Z F”(Bhti)(BZ+1 - BZ)(Bt

where 6™ and D™J denotes respectively the Skorohod integral and the Malliavin derivative
with respect to the real fractional Brownian motion ﬁ]h. Since, by (3)

DM F/(B!)(e;) = F'(BE) DB (e;),

DZ’ng = Z \/7Dh’3ﬂk ek = \/71[01/ ]

k>1

11



we will have

F(BY) = FO0)+> V% Zw (10t OF (BL)(ey))

j>1
n—1
DA (L0 Lt E " (BE) (e5) (e5)
7>1 1=0
1 — _
+5 > F'(B",)(B,, - BB}, - Bp).

Notice that, if R(t) := R(t,1),
1 1
(Lot Lito o)t = R(tis tiv1) — R(t;) = 5(&1 —t7") — 5 (tiv1 = ti)>"

and, therefore, the last sum becomes

FB}) = FO)+> V% Zw( ot (VE'(BE)(e))

j>1
1
52 Z F"(BY)(e;)(¢j) (Reiyy — Re)
7>1 =0
1 n—1
—5 2N D F (B (e) (et — 1)
7>1 =0

1 — —
LY PBh ) B, - BB, - B))
= l?(O)%—jHV+-1§ + T35+ Ty.

Step 1: We regard the stochastic integral term

> VA Z 6" (1,101 (VF'(BE ) (e)) (20)
ji>1
and we will show its convergence to

Z\FW( (B")(e)10.0() Z\F/ F'(B)(e;)dp; (s)

j>1 7>1

in L?(Q2) as |r| — 0. First, we prove the L?(Q) ® H-convergence to 0, as || — 0 of the sum

Z ot (5) (F/(BL) = F/(BY)) (e)).

12



We compute

n—1
BN Y Lot (s) (F/(BR) — F/(BL)) (el =
=0

n—1 n—1
(" 1 t)() (F/(BE) = F/BY) (e3), D 1sa () (F/(BE) = F/(BY)) ().
1=0 =0

Since
[(FBL) — F(BY) (e))] < | F||IBE, — Bl
using the form of the scalar product (5), the last sum will be lesser than

n—1

2 h hy2
||F//Hoo sup ||Bb - B(LHU Z <1(ti,ti+1}) 1(tl,tl+1]>H
a—b|<|n| i,1=0
and that goes to 0 using the continuity of B and Z’Zl_:lo<]‘(ti7ti+1]’ Lty = t2h,
Now, let’s regard the convergence of the derivative of the sum

n—1

> Lt (5) (F/(BE) — F'(BY)) (e))

=0

in L2(Q) ® H ® H-convergence to 0, as || — 0. We have, by (3)

D (Zlml )F'(BIL)( ) VA lel $) 10, (@) F" (BY)(e5)(e),

DT (F/(BE)(e;)) = VA 0.0(@) F"(BY)(e)(e)).

Therefore

=0
n—1
< 2NEN Y L) 100 (@) (F/(BE) = F"(BE)) (e)) () B
1=0

n—1
E”Dh’j <Z 1(ti7ti+1](8) (F/(BZ) - FI(BZ)) (6]‘)> H’?—[@H

n—1
FREI D 1o, (9 (@) (F7BE)) (e3)(e5) B = Ar + As.
=0

The first summand A; goes to 0 from the following bounds

n—1
A = 2M||F")% sup |BE-BYF Z Lttstin]s Lt )L 0,7 Lo,
la—bl<m] =
<2X M| P2, sup  ||By —BLZ

a—b|<|w

13



since (1(0,4,), L(o,4)) < 1 and ZZZ_:10<1(ti,ti+1}> L)) H = t?h. For the second summand As,
using the definition of the scalar product in H ® H, we have

n—1

2
A2 < 2)\ Z (ti,tit1]) 1(tl tl+1] < 2)\ (Z ’tl-i-l - tz ) — 0.

1,0=0
Step 2: Clearly the term T, converges in L*(Q) to
/ F'(B})dRs =Y ) / F"(B")(e;)(e;)dRs.
0 j>1
Step 3: Recall that h > % It is easy to observe that T3 converges to 0 since

n—1

BTy < S (TrQ)F" oo 3 (111 — 1) <
1=0

(TrQ)| F"|oolm "~

[\DM—A

We finally study the term Ty. We can write, since by hypothesis for every z € U, F'(z) is a
bounded continuous operator in Ly(U?;R),

h
E|Ta < *HF”HooEZHBZH—BtiH%

1
< ST Z tiv1 = t:)*" =20 0
1=0

This finishes the proof. |

Remark 4 The proof of Theorem 2 can be also applied to the one-dimensional case and it
is an alternative proof to the one given in [2]. The study of the indefinite integral process
(continuity of the paths, Ité formula) can be done in the Hilbert space-valued situation with-
out difficulty, following the lines of the one-dimensional case. Recently, in [4], the authors
extended the divergence integral with respect to fBm for any parameter H € (0,1). We think
that their approach can be used in the infinite-dimensional context.

References

[1] E. Alos, J. Léon and D. Nualart, Stratonovich calculus for fractional Brownian motion
with Hurst parameter less than %, Taiwanese Journal of Math., 4 (2001), 609-632.

[2] E. Alos, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian
processes, Annals of Probability, 29(2) (2001) , 766-801.

14



[3]

[13]
[14]
[15]

[16]

B. del Castillo-Negrete, B. A. Carreras and V. Lynch, Front dynamics in reaction-
diffusion systems with Levy flights: a fractional diffusion approach, Physical Review
Letters , 91, (2003), 018302.

P. Cheridito and D. Nualart, Stochastic integral of divergence type with respect to
fractional Brownian motion with Hurst parameter H € (0, %), Preprint, 2002.

L. Decreusefont and A.S. Ustiinel, Stochastic Analysis of the Fractional Brownian Mo-
tion, Potential Analysis, 10 (1998), 177-214.

T. Duncan, Y. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian
motion I. theory, STAM J. Control and Optimization, 38(2) (2000), 582-612.

T.E. Duncan, B. Maslowski and B. Pasik-Duncan, Fractional Brownian motion and
stochastic equations in Hilbert spaces, Stochastics and Dynamics 2(2) (2002), 225-250.

M. Gradinaru, F. Russo and P. Vallois, Generalized covariations, local time and

Stratonovich Ito’s formula for fractional Brownian motion with Hurst index H > 1

g
Annals of Probability, 31(4) (2003), 1772-1820.

W. Grecksch and V.V. Anh, A parabolic stochastic differential equation with fractional
Brownian motion input, Statistics and Probability Letters, 41 (1999), 337-346.

A. Grorud and E. Pardoux, Intégrales Hilbertiennes anticipantes par rapport a un
processus de Wiener cylindrique et calcul stochastique associé, Applied Mathematics
and Optimization, 25 (1992), 31-42.

G. Kallianpur and V.Perez-Abreu, The Skorohod Integral and the Derivative Operator
of Functionals of a Cylindrical Brownian motion, Applied Mathematics and Optimiza-
tion, 25 (1999), 11-29.

V. Lynch, B.A. Carreras,D. del Castillo-Negrete, K.M. Ferreira-Mejias and H.R. Hicks,
Numerical methods for the solution of partial differential equations of fractional order,
J. Comput. Phys., 192(2), 406.

P. Malliavin, Stochastic Analysis, Springer, Berlin, 1997.
D. Nualart, The Malliavin calculs and related topics, Springer, New York, 1995.

G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge
University Press, Cambridge, 1992.

S. Tindel, C.A. Tudor, F. Viens, Stochastic evolution equations with fractional Brown-
ian motion, Prob. Th. Rel. Fields., 127 (2003), 186-204.

C. Tudor, Procesos estocasticos. Sociedad Matematica Mexicana, México, 1994.

M. Zaehle, Integration with respect to fractal functions and stochastic calculus, Prob.
Theory Related Fields, 111 (1998), 333-374.

15



