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Abstract

We prove an existence and uniqueness theorem for a class of Itô-Skorohod stochastic
equations. As an application, we introduce a Black-Scholes market model where the
price of the risky asset follows a nonadapted equation.
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1 Introduction

The introduction of the anticipating (or Skorohod) integral in [8] and of the anticipating
stochastic calculus in [7] has opened the question of solving anticipating stochastic differen-
tial equations. In general, the existence and uniqueness of the solution for these equations
is not known. The difficulty of solving such equations is due to the fact that the classi-
cal method of Picard’s iterations cannot be applied because the mean square formula for
the Skorohod integral involves the Malliavin derivation in a such way that we cannot find
”closed” formulas. Only in few particular cases some results exist, see for example [1], [2]
or [3]. We have recently proved in [9] that the set of Skorohod integrals coincides with a set
of integrals of Itô type. In the present work, using this correspondence between Skorohod
integrals and Itô-Skorohod integrals, we introduce a class of anticipating equations (called
Itô-Skorohod equations) that can be solved using standard techniques. As an application we
introduce a market model where the price of the risky asset follows such an equation with
a random initial condition (the price at the transaction time). We prove that our model is
complete and has no arbitrage opportunities and we derive a Black-Scholes formula when
the initial price of the risky asset is given by a standard normal random variable.

We organized the paper as follows. Section 2 contains some preliminaries on the
anticipating stochastic calculus. In Section 3 we define the class of Itô-Skorohod equations
and we prove the existence and uniqueness of the solution. In Section 4 we introduce
a market model with price dynamic following an Itô-Skorohod equation and we obtain a
Black-Scholes option valuation formula and the expression of the replicant portfolio.
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2 Preliminaries

We start with some elements of the Malliavin calculus. We refer to [6] for a complete
presentation of this topic. Let (W (t))t∈[0,1] be a standard Wiener process on the canonical
Wiener space (Ω,F, P ) and let (Ft)t∈[0,1] be the filtration generated by W . A functional of
the Brownian motion of the form

F = f (W (t1), . . . ,W (tn)) (1)

with t1, . . . , tn ∈ [0, 1] and f ∈ C∞
b (Rn), is called a smooth random variable and this class

is denoted by S. The Malliavin derivative is defined on S as

DtF =
n∑

i=1

∂f

∂xi
(W (t1), . . . , W (tn)) 1[0,ti](t), t ∈ [0, 1],

if F has form (1). The operator D is closable and it can be extended to the closure of S
with respect to the seminorm

‖F‖p
k,p = E |F |p +

k∑

j=1

E‖D(j)F‖p
L2([0,1])

where D(i) denotes the ith iterated derivative. The adjoint of D is denoted by δ and it is
called the Skorohod integral. That is, δ is defined on its domain

Dom(δ) =
{

u ∈ L2([0, 1]× Ω)/
∣∣∣∣E

∫ 1

0
usDsFds

∣∣∣∣ ≤ C‖F‖L2(Ω)

}

and it is given by the duality relationship

E(Fδ(u)) = E
∫ 1

0
usDsFds, u ∈ Dom(δ), F ∈ S.

Recall that the variance of the Skorohod integral is

E(δ2(u)) = E
∫ 1

0
u2

αdα + E
∫ 1

0

∫ 1

0
DβuαDαuβdαdβ. (2)

By Lk,p we denote the set L2([0, 1];Dk,p), for k ≥ 1 and p ≥ 2 and we note that Lk,p is a
subset of the domain of δ. The following version of the Ocone-Clark formula was given in
[7]:

F = E
(
F/F[s,t]c

)
+

∫ t

s
E

(
DαF/F[α,t]c

)
dW (α) , for F ∈ D1,2. (3)

We will need the integration by parts formula

Fδ(u) = δ(Fu) +
∫

[0,1]
DsFusds (4)
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if all above terms are defined. Recall also that, if F is random variable, Malliavin differen-
tiable, and measurable with respect to a σ-algebra FA, A ∈ B(R), then

DF = 0, on Ac × Ω. (5)

Let us define, for k ≥ 1 and p ≥ 2, the sets of processes

Mk,p = {X = (Xt)t∈[0,1], Xt =
∫ t

0
usdWs, u ∈ Lk,p},

N k,p = {Y = (Yt)t∈[0,1], Yt =
∫ t

0
E

[
vs/F[s,t]c

]
dWs, v ∈ Lk,p}.

We will refer to the elements ofN k,p as to Itô-Skorohod integral processes and to the elements
of Mk,p as to Skorohod integral processes. It has been proved in [9] that, for sufficiently
regular integrands, the two classes coincide. As a consequence, to study Skorohod integral
processes it suffices to study Itô-Skorohod integral processes, which have two interesting
properties. Firstly, note that the integral Yt =

∫ t
0 E

[
uα/F[α,t]c

]
dWα exists even for u ∈

L2([0, 1]×Ω) and it has similarities with a classical Itô integral. Observe, by (2), that this
integral is an ”isometry”

E
(∫ t

0
E

[
uα/F[α,t]c

]
dWα

)2

= E
∫ t

0

(
E

[
uα/F[α,t]c

])2
dα.

Secondly, if we define for every λ ≤ t, Y λ
t =

∫ λ
0 E

[
uα/F[α,t]c

]
dWα then the process

(
Y λ

t

)
λ≤t

is a F(λ,t]c -martingale and we have

lim
λ→t,λ≤t

Y λ
t = Yt almost surely and in L2. (6)

We will define now the stochastic integral with respect to Itô-Skorohod integral processes.

Definition 1 Let u, v ∈ L2([0, 1] × Ω) be adapted processes and consider more Yt = Y0 +∫ t
0 E

[
uα/F[α,t]c

]
dWα +

∫ t
0 E

[
vα/F[α,t]c

]
dα. We put by definition, for any adapted square

integrable process X, ∫ t

0
XsdYs :=

∫ t

0
XsdsY

s
t (7)

where

Y λ
t = Y0 +

∫ λ

0
E

[
uα/F[α,t]c

]
dWα +

∫ λ

0
E

[
vα/F[α,t]c

]
dα

and the integral in the right side of (7) is understood in the semimartingale sense.
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3 Itô-Skorohod stochastic equations

In this section we state and prove an existence and uniqueness theorem for a class of
anticipating stochastic differential equations using the method of Picard’s iterations. It is
known that, in the anticipating stochastic calculus this method cannot be applied because
the formula of the mean square of the Skorohod integral involves the Malliavin derivative
and one cannot find ’closed’ formulas. We define here a new class of anticipating equations,
located ’between’ Itô and Skorohod equations, that can be solved by classical techniques.
Consider the following stochastic differential equation

Xt = Z +
∫ t

0
σ(s,E

(
Xs/F[s,t]c

)
)dWs +

∫ t

0
b(s, Xs)ds. (8)

Note that the stochastic integral from above is a Skorohod integral since the inte-
grand is not adapted and the initial condition is anticipating. The solution will be also
anticipating. In what follows the coefficients σ(t, x), b(t, x) : [0, 1] × R → R are given and
satisfy the following standard conditions:

H1 (Measurability): σ and b are jointly measurable in (t, x) ∈ [0, 1]× R.

H2 (Lipschitz condition): There exists a D > 0 such that for all t ∈ [0, 1] and x ∈ R

|σ(t, x)− σ(t, y)|+ |b(t, x)− b(t, y)| ≤ D|x− y|. (9)

H3 (Linear growth condition): There exists a C > 0 such that for all t ∈ [0, 1] and x ∈ R

|σ(t, x)|2 + |b(t, x)|2 ≤ C2(1 + |x|2). (10)

We also make a hypothesis concerning the initial value Z.

H4 : Z is a random variable with E|Z|2 < ∞.

A square integrable process that satisfies almost surely (8) is called a solution of
equation (8). For given coefficients σ and b, any solution X will depend on the initial value
Z. We will say that the solution is unique if, for every t ∈ [0, 1], P

(
X1

t = X2
t

)
= 1 for any

two solutions X1 and X2 with the same initial condition.
We start by proving the existence and the uniqueness of the solution of equation

(8).

Theorem 1 Under assumptions H1 −H4, stochastic equation (8) has a unique solution
Xt on [0, 1] with

sup
0≤t≤1

E|Xt|2 < ∞. (11)
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Proof: Throughout this proof, K will denote a generic constant depending only on D and
E |Z|2. Let us consider the usual Picard iterations X

(0)
t = Z and

X
(n+1)
t = Z +

∫ t

0
σ(s,E

(
X(n)

s /F[s,t]c

)
)dWs +

∫ t

0
b(s,X(n)

s )ds. (12)

We first prove the existence of the solution. We have, from (2), H3, and Hölder’s inequalities
that

E
∣∣∣X(1)

t −X
(0)
t

∣∣∣
2
≤ 2E

∣∣∣∣
∫ t

0
σ(s,E

(
Z/F[s,t]c

)
)dWs

∣∣∣∣
2

+ 2E
∣∣∣∣
∫ t

0
b(s, Z)ds

∣∣∣∣
2

≤ 2E
∫ t

0

∣∣σ(s,E
(
Z/F[s,t]c

)
)
∣∣2 ds + 2tE

∫ t

0
|b(s, Z)|2 ds

≤ 2C2E
∫ t

0

(
1 + |E (

Z/F[s,t]c
) |2) ds + 2tC2E

∫ t

0

(
1 + |Z|2) ds ≤ Kt.

Using the same arguments and condition H4, we obtain

E
∣∣∣X(n+1)

t −X
(n)
t

∣∣∣
2
≤ 2E

∣∣∣∣
∫ t

0

(
σ(s,E

(
X(n)

s /F[s,t]c

)
)− σ(s,E

(
X(n−1)

s /F[s,t]c

)
)
)

dWs

∣∣∣∣
2

+2E
∣∣∣∣
∫ t

0

(
b(s, X(n)

s )− b(s,X(n−1)
s )

)
ds

∣∣∣∣
2

≤ 2E
∫ t

0

(
σ(s,E

(
X(n)

s /F[s,t]c

)
)− σ(s,E

(
X(n−1)

s /F[s,t]c

)
)
)2

ds

+2tE
∫ t

0

(
b(s,X(n)

s )− b(s,X(n−1)
s )

)2
ds

≤ 2D2(1 + t)
∫ t

0
E

∣∣∣X(n)
s −X(n−1)

s

∣∣∣
2
ds.

By induction one can show that there exists K > 0 such that for all t ∈ [0, 1] and n ≥ 1,

E
∣∣∣X(n+1)

t −X
(n)
t

∣∣∣
2
≤ (Kt)n+1

(n + 1)!
. (13)

Relation (13) and standard arguments imply the convergence in L2(Ω) of the successive
approximations X

(n)
t to a limit Xt defined by Xt = Z +

∑∞
n=0

(
X

(n+1)
t −X

(n)
t

)
.

To prove that X is a solution, we take the L2(Ω)- limit in (12) as n →∞. Obviously,

2E
∣∣∣∣
∫ t

0

(
σ(s,E

(
X(n)

s /F[s,t]c

)
)− σ(s,E

(
Xs/F[s,t]c

)
)
)

dWs

∣∣∣∣
2

≤ K

∫ t

0
E

∣∣∣X(n)
s −Xs

∣∣∣
2
ds →n→∞ 0,
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and

E
∣∣∣∣
∫ t

0

(
b(s, X(n)

s )− b(s,Xs)
)

ds

∣∣∣∣
2

≤ K

∫ t

0
E

∣∣∣X(n)
s −Xs

∣∣∣
2
ds →n→∞ 0.

The uniqueness of the solution is given by Gronwall’s lemma since for any two solutions
X,Y with the same initial condition and for every t ∈ [0, 1] we have

E |Xt − Yt|2 ≤ K

∫ t

0
E |Xs − Ys|2 ds.

Concerning bound (11), we will only note that standard techniques apply (see e.g. [4]).

Remark 1 Let us define the following stochastic differential equation:

Xt = E (Z/Ftc) +
∫ t

0
σ(s,E

(
Xs/F[s,t]c

)
)dWs +

∫ t

0
b(s,E

(
Xs/F[s,t]c

)
)ds. (14)

Following the lines of the proof of Theorem 1, one can show that equation (14) admits an
unique solution X with sup0≤t≤1 E|Xt|2 < ∞.

In the particular case of linear coefficients, one can explicitly obtain the solution of
equation (14).

Corollary 1 Let σ, b ∈ R and X0 ∈ L2(Ω). Consider the equation

Xt = E (X0/Ftc) +
∫ t

0
σE

(
Xs/F[s,t]c

)
dWs +

∫ t

0
bE

(
Xs/F[s,t]c

)
ds. (15)

Then the unique solution of (15) is given by

Xt = E (X0/Ftc) e
σWt+

(
b−σ2

2

)
t
. (16)

Proof: Denote by Mt = e
σWt+

(
b−σ2

2

)
t. Then Mt satisfies the equation

Mt = 1 +
∫ t

0
σMsdWs +

∫ t

0
bMsds

and using (4) and (5), we obtain

Xt = E (X0/Ftc)Mt

= E (X0/Ftc) +
∫ t

0
σE (X0/Ftc) MsdWs +

∫ t

0
bE (X0/Ftc)Msds

= E
(
X0/F[s,t]c

)
+

∫ t

0
σE

(
E (X0/Fsc)Ms/F[s,t]c

)
dWs +

∫ t

0
bE

(
E (X0/Fsc) Ms/F[s,t]c

)
ds

= E (X0/Ftc) +
∫ t

0
σE

(
Xs/F[s,t]c

)
dWs +

∫ t

0
bE

(
Xs/F[s,t]c

)
ds.

6



4 Black-Scholes model driven by Itô-Skorohod stochastic
differential equations

We introduce in this section a market model with price dynamic following an Itô-Skorohod
stochastic equation. As usual, we will consider two assets on the probability space

(
Ω,F, P, (Ft)t∈[0,1]

)
:

the safe investment A = (At)t∈[0,1] satisfying At = 1 + r
∫ t
0 Asds and the risky asset

S = (St)t∈[0,1] with price dynamic following the SDE

St = E (S0/Ftc) +
∫ t

0
σE

(
Ss/F[s,t]c

)
dWs +

∫ t

0
bE

(
Ss/F[s,t]c

)
ds. (17)

Clearly At = ert and Corollary 1 implies that

St = E (S0/Ftc) e
σWt+

(
b−σ2

2

)
t
. (18)

The value of the portfolio at the instant t is defined by

Vt = htAt + HtSt (19)

where the components h, H ∈ L2([0, 1] × Ω) are adapted to the Brownian filtration and
represent the quantities of the safe asset and of the risky asset at the instant t.

We say that the portfolio (ht,Ht)t∈[0,1] is self-financing if

Vt = E (V0/Ftc) +
∫ t

0
hsdAs +

∫ t

0
HsdSs (20)

where the differential dS is understood in the sense of Definition 1.

Remark 2 Note that Definition 1 can be used although the initial value depends on t because
by the Ocone-Clark formula (3) we can write

E (S0/Ftc) = S0 −
∫ t

0
E

(
DsS0/F[s,t]c

)
dWs.

In other words, the self-financing condition (20) can be written as

Vt = E (V0/Ftc) +
∫ t

0
hsre

rsds−
∫ t

0
HsE

(
DsS0/F[s,t]c

)
dWs

+
∫ t

0
HsσE

(
Ss/F[s,t]c

)
dWs +

∫ t

0
bHsE

(
Ss/F[s,t]c

)
ds.

In the following we will denote by S̃t = e−rtSt the discounted risky asset price. A
necessary and sufficient condition for the portfolio to be self-financing is given in the next
result.
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Proposition 1 Assume that h,H ∈ L2([0, 1] × Ω) and let the process V be given by (19).
Denote by Ṽt = e−rtVt.Then the portfolio is self-financing if and only if

Ṽt = E (V0/Ftc) +
∫ t

0
HsdS̃s for every t ∈ [0, 1]. (21)

Proof: Suppose that V satisfies (20). Define, for every λ ∈ [0, t],

Vλ,t = E (V0/Ftc) +
∫ λ

0
hsre

rsds−
∫ λ

0
HsE

(
DsS0/F[s,t]c

)
dWs

+
∫ λ

0
HsσE

(
Ss/F[s,t]c

)
dWs +

∫ λ

0
bHsE

(
Ss/F[s,t]c

)
ds.

It is not difficult to check that Vλ,t = E
(
Vλ/F[λ,t]c

)
.

We can write Itô’s formula for e−rλVλ,t since, for fixed t, the process (Vλ,t)λ∈[0,t] is
a F[λ,t]c- semimartingale. It holds, taking the limit (a.s. or in L2) as λ → t, that

Ṽt = E (V0/Ftc) +
∫ t

0
e−rshsre

rsds−
∫ t

0
e−rsHsE

(
DsS0/F[s,t]c

)
dWs

+
∫ t

0
e−rsσHsE

(
Ss/F[s,t]c

)
dWs +

∫ t

0
e−rsbHsE

(
Ss/F[s,t]c

)
ds +

∫ t

0
Vs,t(−re−rs)ds

= E (V0/Ftc)−
∫ t

0
e−rsHsE

(
DsS0/F[s,t]c

)
dWs

+
∫ t

0
e−rsσHsE

(
Ss/F[s,t]c

)
dWs +

∫ t

0
e−rs(b− r)HsE

(
Ss/F[s,t]c

)
ds. (22)

On the other hand, writing Itô’s formula for e−rλSλ,t with Sλ,t = E (S0/Ftc)+
∫ λ
0 σE

(
Ss/F[s,t]c

)
dWs+∫ λ

0 bE
(
Ss/F[s,t]c

)
ds = E

(
Sλ/F[λ,t]c

)
we get

S̃t = E (S0/Ftc) +
∫ t

0
e−rsσE

(
Ss/F[s,t]c

)
dWs +

∫ t

0
e−rs(b− r)E

(
Ss/F[s,t]c

)
ds.

Identity (21) follows from (22) and the above equation using Definition 1. The proof of the
necessity part it is not more difficult.

Let T be the exercise time. In the classical Black-Scholes settings to prove the
non-existence of arbitrage it suffices to exhibit a probability measure equivalent to P under
which the discounted price S̃ is a martingale. In our case, we have the following

Proposition 2 The unique probability measure P̃ equivalent to P under which the process
S̃t

E(S0/Ftc ) is a martingale is given by the Radon-Nikodym derivative

dP̃

dP
= exp

r − µ

σ
WT − 1

2
(r − µ)2

σ2
T P -a.s..
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Under the probability P̃ , the process W̃t = Wt + b−r
σ t is a standard Brownian motion and

the discounted price S̃ satisfies the equation

S̃t = E
(
S̃0/Ftc

)
+

∫ t

0
σE

(
S̃s/F[s,t]c

)
dW̃s. (23)

Proof: Denote by Zt = S̃t
E(S0/Ftc ) = e−rte

σWt+
(
b−σ2

2

)
t. It is well-known that there exist

the unique probability P̃ and W̃ as above and it holds that Zt = 1 +
∫ t
0 σZsdW̃s. Taking

into account that the natural filtrations of W and W̃ coincide, we get

S̃t = E
(
S̃0/Ftc

)
Zt = E

(
S̃0/Ftc

)
+

∫ t

0
σE

(
S̃0/Ftc

)
ZsdW̃s

= E
(
S̃0/Ftc

)
+

∫ t

0
σE

(
S̃s/F[s,t]c

)
dW̃s.

Remark 3 Note that, by Corollary 1, we have S̃t = E
(
S̃0/Ftc

)
eσW̃t−σ2

2
t. Also, an im-

mediate consequence of Prop. 1 and 2 is the fact that the market is complete and has no
arbitrage opportunities.

Consider VT = (ST − K)+ the payoff function of the European call option with
exercise time T and strike price K. Denote by Ẽ the expectation with respect to P̃ and by
D̃ the Malliavin derivative with respect to W̃ . By formulas (21) and (23) we have

Ṽt = Ẽ (V0/Ftc)−
∫ t

0
HsẼ

(
D̃sS0/F[s,t]c

)
dW̃s +

∫ t

0
σHsẼ

(
S̃s/F[s,t]c

)
dW̃s.

Taking the conditional expectation with respect to the σ-algebra Ft, we obtain

Ẽ
(
Ṽt/Ft

)
= Ẽ(V0)−

∫ t

0
HsẼ

(
D̃sS0/Fs

)
dW̃s +

∫ t

0
σHsẼ

(
S̃s/Fs

)
dW̃s.

Therefore, the process
(
Ẽ

(
Ṽt/Ft

))
t∈[0,1]

is a martingale and for every t ≤ T it holds that

Ẽ
(
Ṽt/Ft

)
= Ẽ

(
ṼT /Ft

)
or

Ẽ (Vt/Ft) = Ẽ
(
e−r(T−t)VT /Ft

)
. (24)

We have the following option valuation Black-Scholes formula.

Proposition 3 Assume that the terminal value is given by VT = f(ST ) with f(x) = (x −
K)+ and the initial price of the risky asset is S0 = W1 + c, where c is a positive constant.
Then we have that

Ẽ (Vt/Ft) = G

(
t,

St

W1 −Wt + c

)
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where

G(t, x) =
1√

2π(1− T )

[
x

(∫

R
e−

u2

1−T (u + c)N(d1)du

)
−Ke−r(T−t)

∫

R
e−

u2

1−T N(d2)du

]

(25)
with

d1 = d1(x, u) =
ln

(
K

x(u+c)

)
+

(
r + σ2

2

)
(T − t)

σ
√

T − t
, d2 = d2(x, u) = d1 − σ

√
T − t (26)

and N(d) = 1√
2π

∫ d
−∞ e−

x2

2 dx.

Proof: Using the fact that the increments of the Wiener process are independent on
disjoint intervals, the Markov property and (24) imply

Ẽ (Vt/Ft) = Ẽ
[
e−r(T−t)f(ST )/Ft

]

= Ẽ
[
e−r(T−t)f

(
e
σWt+

(
r−σ2

2

)
tẼ (S0/FT c) e

σ(WT−Wt)+
(
r−σ2

2

)
(T−t)

)]
= G

(
t,

St

Ẽ (S0/Ftc)

)

where

G(t, x) = e−r(T−t)Ẽ
[
f

(
xE (S0/FT c) e

σ(WT−Wt)+
(
r−σ2

2

)
(T−t)

)]
.

Since E (S0/FT c) = W1−WT + c, by the joint normal distribution of (W1−WT ,WT −Wt),

G(t, x) =
1√

2π(1− T )

∫

R
e
− u2

2(1−T )

(
e−r(T−t)

√
2π(T − t)

∫

R
f

(
x(u + c)eσv+

(
r−σ2

2

)
(T−t)

)
e
− v2

2(T−t) dv

)
du.

We refer to classical arguments (see [5]) to get

e−r(T−t)

√
2π(T − t)

∫

R
f

(
x(u + c)eσv+

(
r−σ2

2

)
(T−t)

)
e
− v2

2(T−t) dv = x(u+c)N(d1(x, u))−Ke−r(T−t)N(d2(x, u))

where d1, d2 are given by (26) and the conclusion follows.

Since the market is complete, every bounded contingent claim is attainable. There-
fore, it is of importance to find the expression of the replicant portfolio. This is given in
Proposition 4 below.

Proposition 4 Under the hypothesis of Proposition 3 and denoting by g(t, x) = e−rtG(t, ertx),
the replicant portfolio is given by

Ht =

(
cσ

S̃t

Ẽ (S0/Ftc)
− 1

)−1

σ
∂g

∂x
(t,

S̃t

Ẽ (S0/Ftc)
) , ht = G

(
t,

St

W1 −Wt + c

)
−cHt

S̃t

Ẽ (S0/Ftc)
.

(27)

10



Proof: Denote by Mt = S̃t

Ẽ(S0/Ftc)
. We utilize the classical procedure to determine the

unknown quantities h and H. We have that

Ẽ
(
Ṽt/Ft

)
= e−rtẼ (Vt/Ft) = e−rtG

(
t,

St

Ẽ (S0/Ftc)

)
= e−rtG

(
t, ert S̃t

Ẽ (S0/Ftc)

)
= e−rtG(t, ertMt)

with G a C∞ function on [0, T )× R. Writing Itô’s formula for g(t,Mt), we obtain

g(t,Mt) = g(0,M0) +
∫ t

0
σ

∂g

∂x
(u,Mu)MudW̃u

+
∫ t

0

∂g

∂t
(u,Mu)du +

1
2

∫ t

0

∂2g

∂x2
(u,Mu)σ2M2

udu. (28)

Note first that the bounded variation part is zero. On the other hand, by (21)

Ẽ
(
Ṽt/Ft

)
= Ẽ (V0)−

∫ t

0
HsE

(
D̃sS0/Fs

)
+

∫ t

0
σHsẼ

(
S̃s/Fs

)
dW̃s. (29)

By (28) and (29), the natural candidate for H satisfies σ ∂g
∂x(s,Ms)Ms = σHsẼ

(
S̃s/Fs

)
and

since Ẽ
(
S̃s/Fs

)
= Ẽ(S0)Ms, we obtain relation (27).
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