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Let {BH
t , t ∈ [0, τ ]} be a fractional Brownian motion with Hurst parameter

H ∈ (0, 1). We prove Kramers- Smoluchowski approximation for the solution
of the equation Xt = x + BH

t +
∫ t
0 b(Xs)ds. The case H = 1/2 is the classical
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1. INTRODUCTION

Let (Ω, F , IP ) be a probability space and τ > 0 a fixed time. Consider {BH
t , t ∈

[0, τ ]} to be a fractional Brownian motion with Hurst parameter H ∈ (0, 1). That is
BH is a centered Gaussian process with covariance

R(t, s) = E(BH
s BH

t ) =
1

2
(t2H + s2H − |t− s|2H).

Consider the following stochastic differential equation

(1.1) Xt = x + BH
t +

∫ t

0
b(Xs)ds,

where b : R → R is a measurable function satisfying a global Lipschitz condition. In
this case one can prove, by the classical Picard iterations method, the existence and
the uniqueness of a strong solution of (1.1).

For every α ∈ (0,∞), consider the system (1.2)-(1.3)

(1.2) dX
(α)
t = Y

(α)
t dt, X

(α)
0 = x ∈ R

(1.3) dY
(α)
t = αb(X

(α)
t )dt− αY

(α)
t dt + αdBH

t , Y
(α)
0 = y ∈ R.
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In this paper we investigate the asymptotic behavior of Xα, as α → ∞ and will
prove that the process Xα converges a.s uniformly to X solution of (1.1). Note that
if H = 1/2, then B1/2 is the standard Brownian motion, the problem is then classic
and it describe a physical phenomena. To be more precise, by a change of scaling, the
system (1.2)-(1.3) may describe the motion of a particle in a force field. (Originally,
the model has been introduced by Langevin [9]. He proposed to use the equation

dv(t) = − f

m
dt +

F (t)

m
dt

where m > 0 is the mass of the particle, f > 0 the friction coefficient and F a fluctuating
force resulting from the impacts of the molecules of the surrounding medium). The
process Xα is the position of the particle and Y α is the velocity process. We refer
to [10] for an other example concerning the motion of tagged particle corresponding
to large number of oscillators of Liénard type. The use of Smoluchowski-Kramers
approximation to treat problems of chemical reaction can be found in [7] and [6].

The paper is organized as follows: In Section 2 we give some preliminaries
on fractional Brownian motion. Section 3 is devoted to investigate the asymptotic
behavior of the position and velocity process (Xα and Y α) when α is large enough.

2. PRELIMINARIES

Consider T = [0, τ ] a time interval with arbitrary fixed horizon τ , and let
(BH

t )t∈T be the one-dimensional fractional Brownian motion with Hurst parameter
H ∈ (0, 1). This means by definition that BH is a centered Gaussian process with
covariance

R(t, s) = E(BH
s BH

t ) =
1

2
(t2H + s2H − |t− s|2H).

Note that B1/2 is a standard Brownian motion. Moreover BH has the following Wiener
integral representation:

BH
t =

∫ t

0
KH(t, s)dWs,

where W = (Wt)t∈T is a Wiener process, and KH(t, s) is the kernel given by

(2.1) KH(t, s) = cH(t− s)H− 1
2 + sH− 1

2 F
(

t

s

)

cH being a constant and

F (z) = cH

(
1

2
−H

) ∫ z−1

0
rH− 3

2

(
1− (1 + r)H− 1

2

)
dr.
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¿From (2.1) we obtain

(2.2)
∂KH

∂t
(t, s) = cH(H − 1

2
)(t− s)H− 3

2

(
s

t

) 1
2
−H

.

We will denote by EH the linear space of step functions on T of the form

(2.3) ϕ(t) =
n∑

i=1

ai1(ti,ti+1](t)

where t1, . . . , tn ∈ T, n ∈ N, ai ∈ R and by H the closure of EH with respect to the
scalar product

〈1[0,t], 1[0,s]〉H = R(t, s).

For ϕ ∈ EH of the form (2.3) we define its Wiener integral with respect to the fractional
Brownian motion as

(2.4)
∫

T
ϕsdBH(s) =

n∑

i=1

ai

(
BH

ti+1
−BH

ti

)
.

Obviously, the mapping

(2.5) ϕ =
n∑

i=1

ai1(ti,ti+1] →
∫

T
ϕsdBH(s)

is an isometry between EH and the the linear space span{BH
t , t ∈ R} viewed as a

subspace of L2(Ω) and it can be extended to an isometry between H and the first
Wiener chaos of the fractional Brownian motion spanL2(Ω){BH

t , t ∈ R}. The image on
an element Φ ∈ H by this isometry is called the Wiener integral of Φ with respect to
BH . For every s < τ , let us consider the operator K∗ in L2(T )

(K∗
τ ϕ)(s) = K(τ, s)ϕ(s) +

∫ τ

s
(ϕ(r)− ϕ(s))

∂K

∂r
(r, s)dr.

When H > 1
2
, the operator K∗ has the simpler expression

(K∗
τ ϕ)(s) =

∫ τ

s
ϕ(r)

∂K

∂r
(r, s)dr.

We refer to [2] for the proof of the fact that K∗ is an isometry betweenH and L2(T ) and,
as a consequence, we will have the following relationship between the Wiener integral
with respect to fBm and the Wiener integral with respect to the Wiener process W

(2.6)
∫ t

0
ϕ(s)dBH(s) =

∫ t

0
(K∗

t ϕ)(s)dW (s)
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for every t ∈ T and we have ϕ1[0,t] ∈ H if and only if K∗
t ϕ ∈ L2(T ). We also recall that,

if φ, χ ∈ H are such that
∫
T

∫
T |φ(s)||χ(t)|t − s|2H−2dsdt < ∞, their scalar product in

H is given by

(2.7) 〈φ, χ〉H = H(2H − 1)
∫ τ

0

∫ τ

0
φ(s)χ(t)|t− s|2H−2dsdt.

3. APPROXIMATION

Let us consider the equation

(3.1) Xt = X0 +
∫ t

0
b(Xs)ds + BH

t , t ∈ [0, τ ].

Remark 3.1. • In [13] the authors proved the existence and uniqueness of a
strong solution of the equation (3.1) under the following assumptions on the coefficient
b:

– if H < 1
2
, b satisfies a linear growth condition.

– if H > 1
2
, b is Hölder continuous of order 1 > α > 1− 1

2H
.

• In [3] an existence and uniqueness result for (3.1) is given when H > 1
2

under
the hypothesis b(x) = b1(x) + b2(x), b1 satisfying the above conditions and b2

being a bounded nondecreasing left (or right) continuous function. For the case
of discontinuous drift we refer to [12].

• The case of the Hölder continuous drift is obvious. It is not difficult to show that
the method of the usual Picard iterations can be used to prove the existence and
uniqueness of strong solution even in the multidimensional case.

For every α ∈ (0,∞), consider the system (3.2)-(3.3),

(3.2) dX
(α)
t = Y

(α)
t dt, X

(α)
0 = x

(3.3) dY
(α)
t = αb(X

(α)
t )dt− αY

(α)
t dt + αdBH

t , Y
(α)
0 = y.

where b : R → R is a measurable function satisfying the global Lipschitz condition

(3.4) |b(x)− b(y)| ≤ K |x− y| for every x, y ∈ R .
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We will prove that the position process X(α), solution of (3.2)-(3.3) converges a.s as
α →∞ to the solution of (3.1). We start with the following

LEMMA 3.2 Consider the equation

dXt = −aXtdt + f(t)dt + dBH
t , X0 = x,

where a is a positive real number and f : IR −→ IR is a measurable function such that∫ τ

0
eas |f(s)| ds < ∞. Then its unique solution is given by

(3.5) Xt = e−atx +
∫ t

0
e−a(t−s)f(s)ds +

∫ t

0
e−a(t−s)dBH

s .

Proof. Let us prove first that for every t, the function 1[0,t]e
−a(t−s) ∈ H (or

K∗
(
1[0,t]e

−a(t−s)
)
∈ L2(T )). Given the expression of the operator K∗, we will separate

the proof into two cases: H > 1
2

and H < 1
2
.

Suppose first that H > 1
2
. By (2.8), we need to prove that

It =
∫ t

0

∫ t

0
e−a(t−u)e−a(t−v) |v − u|2H−2 dvdu < ∞.

We can write

It = 2
∫ t

0

∫ t

0
e−a(t−u)e−a(t−v) |v − u|2H−2 dvdu

=
∫ t

0

(
n

∫ u

0
e−a(2t−2u+x)x2H−2dx

)
du

=
∫ t

0
e−a(2t−2u)

(∫ u

0
e−axx2H−2dx

)
du ≤ a1−2HΓ(2H − 1)

∫ t

0
e−a(2t−2u) < ∞.

Suppose now that H < 1
2
. We will prove that K∗

(
1[0,t]e

−a(t−s)
)
∈ L2(T ). It

is clear that the first term appearing in the definition of K∗ is finite, so it suffices to
check the second one. More precisely, we have to show that

Jt =
∫ t

0

(∫ t

s

∂K

∂r
(r, s)

(
e−a(t−r) − e−a(t−s)

)
dr

)2

ds < ∞.

Note that (see (2.2) ∂K
∂r

(r, s) can be written as ∂K
∂r

(r, s) = a(H)f(s, t) where a(H) is a

negative constant and f(s, t) is a positive function lesser than (r − s)H− 3
2 . Therefore

Jt ≤ a(H)2
∫ t

0
e−2a(t−s)

(∫ t

s
(r − s)H− 3

2

(
ea(r−s) − 1

)
dr

)2

ds

= a(H)2
∫ t

0
e−2a(t−s)

(∫ t−s

0
yH− 3

2 (ear − 1) dr
)2

ds

5



and it suffices to observe that the quantity
∫∞
0 yH− 3

2 (ear − 1) dr is finite.
Concerning (3.5), let us note that the following integration by parts holds

(3.6) eatBH
t =

∫ t

0
easdBH

s + a
∫ t

0
BH

s easds.

The rest of the proof is standard.

We state now our main result.

THEOREM 3.3. Assume that (3.4) holds. Then, for every value of α ∈ (0,∞),
the system (3.2)-(3.3) admits an unique solution and we have

(3.7) lim
α→∞ sup

0≤t≤τ

∣∣∣X(α)
t −Xt

∣∣∣ = 0 a.s. .

where X = (Xt)t∈[0,τ ] is the unique solution of (3.1).

Proof. Let us denote by Z
(α)
t the transposed vector

(
X

(α)
t , X

(α)
t

)T
. The system

(3.2)-(3.3) can be expressed as

(3.8) Z
(α)
t = b

(
Z

(α)
t

)
dt + σdBH

t

where B : R2 → R is a 2× 1 vector which components are B1(x, y) = y and B2(x, y) =
αb(x)−αy and σ is the constant vector (0, α)T . It is not difficult to see that B satisfies
the Lipschitz condition

||B(u)−B(v)|| ≤ K ′‖u− v‖ for every x, y ∈ R2,

where ‖ · ‖ denotes the euclidian norm and K ′ = 1 + α ∨ αK. Therefore, standard
arguments apply to obtain the existence of a unique (strong) solution of (3.8) (see the
last point of Remark 3.1).

Let us choose t0 = 0 < t1 < . . . < tN = τ , a partition of [0, τ ] such that

K (tn+1 − tn) ≤ 1

2
, K being the Lipschitz constant of b . Consider the equations (3.2)

and (3.3) on In = [tn, tn+1], n = 0, 1, 2, . . . N − 1. It holds

(3.9) X
(α)
t = X

(α)
tn +

∫ t

tn
Y (α)

s ds

and

(3.10) Y
(α)
t = Y

(α)
tn − α

∫ t

tn
Y (α)

s ds + α
∫ t

tn
b(X(α)

s ) ds + α
(
BH

t −BH
tn

)
.
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Combining (3.9) and (3.10) we obtain

(3.11) X
(α)
t = X

(α)
tn +

Y
(α)
tn

α
− Y

(α)
t

α
+

∫ t

tn
b(X(α)

s ) ds +
(
BH

t −BH
tn

)
.

On the other hand the equation (3.1) can be written on In as

Xt = Xtn +
∫ t

tn
b(Xs) ds +

(
BH

t −BH
tn

)

and therefore, for every t ∈ In,

X
(α)
t −Xt = X

(α)
tn −Xtn +

Y
(α)
tn

α
− Y

(α)
t

α

+
∫ t

tn

[
b(X(α)

s )− b(Xs)
]
ds

and using the Lipschitz condition (3.4), we get

∣∣∣X(α)
t −Xt

∣∣∣ ≤
∣∣∣X(α)

tn −Xtn

∣∣∣ + 2 sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

+ (t− tn)K sup
t∈In

∣∣∣X(α)
t −Xt

∣∣∣ .

Since (t− tn)K ≤ 1
2
, we have

(3.12) sup
t∈In

∣∣∣X(α)
t −Xt

∣∣∣ ≤ 2
∣∣∣X(α)

tn −Xtn

∣∣∣ + 4 sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

.

Denote by
an(α) = sup

t∈In

∣∣∣X(α)
t −Xt

∣∣∣ ,

then we get

an(α) ≤ 2 an−1(α) + 4 sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

, n = 1, . . . , N ,

Since X
(α)
0 = X0 = 0, clearly a0(α) → 0 as α → 0 by (3.12) and (3.13) proved in the

Lemma 3.4 below. An induction argument will finish the proof.

LEMMA 3.4. For every 0 ≤ n ≤ N − 1,

(3.13) sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

→ 0
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almost surely as α → 0.

Proof. We follow the lines of [11]. We show first the bound

(3.14) sup
t∈In

∣∣∣X(α)
t −X

(α)
tn

∣∣∣ ≤ 4 sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

+
1

K

∣∣∣b
(
X

(α)
tn

)∣∣∣ + 2 sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ .

Indeed, by (3.11) and the inequality
∣∣∣b(X(α)

s )
∣∣∣ ≤

∣∣∣b(X(α)
tn )

∣∣∣ + K
∣∣∣X(α)

tn −X(α)
s

∣∣∣

we obtain

sup
t∈In

∣∣∣X(α)
t −X

(α)
tn

∣∣∣ ≤
∣∣∣Y (α)

t

∣∣∣
α

+

∣∣∣Y (α)
tn

∣∣∣
α

+ (t− tn)
∣∣∣b(X(α)

tn )
∣∣∣

+K(t− tn) sup
t∈In

∣∣∣X(α)
t −X

(α)
tn

∣∣∣ + sup
t∈In

|BH
t −BH

tn | ,

and since t− tn ≤ 1
2K

, we obtain (3.14).
Let us apply now Lemma 3.2 to the equation (3.3) ( X(α) is considered as

known). We obtain

Y
(α)
t = e−α(t−tn)Y

(α)
tn + α

∫ t

tn
e−α(t−s)b(Xα

s )ds + α
∫ t

tn
e−α(t−s)dBH

s

and therefore

sup
t∈In

∣∣∣Y (α)
t

∣∣∣ ≤
∣∣∣Y (α)

tn

∣∣∣ + sup
t∈In

∣∣∣b(X(α)
t )

∣∣∣ + sup
t∈In

∣∣∣∣α
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣

≤
∣∣∣Y (α)

tn

∣∣∣ +
∣∣∣b(X(α)

tn )
∣∣∣ + K sup

t∈In

∣∣∣X(α)
t −X

(α)
tn

∣∣∣ + sup
t∈In

∣∣∣∣α
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣

≤
∣∣∣Y (α)

tn

∣∣∣ + 4K sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

+ 2
∣∣∣b

(
X

(α)
tn

)∣∣∣

+2K sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ + sup
t∈In

∣∣∣∣α
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣ .

Since
|b(X(α)

tn )| ≤ |b(0)|+ K |X(α)
tn |

and if we apply equation (3.9) for tn and tn−1, we get

|X(α)
tn | ≤ |X(α)

tn−1
|+ sup

t∈In−1

∣∣∣Y (α)
t

∣∣∣ (tn − tn−1)
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(3.15) ≤ |Xα
0 |+

n∑

j=1

sup
t∈Ij−1

∣∣∣Y (α)
t

∣∣∣ (tj − tj−1) .

On the other hand if we choose α large enough (α > 8K), we obtain

sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

≤ 2

α

∣∣∣Y (α)
tn

∣∣∣ +
4

α

∣∣∣b
(
X

(α)
tn

)∣∣∣

(3.16) +
4K

α
sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ + 2 sup
t∈In

∣∣∣∣
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣ ,

and using the bounds (3.15) and (3.16) we get

sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

≤ 4

α
(K|x|+ |b(0)|) +

n∑

j=1

sup
t∈Ij−1

∣∣∣Y (α)
t

∣∣∣
α

4 K (tj − tj−1) +
2

α

∣∣∣Y (α)
tn

∣∣∣

+
4K

α
sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ + 2 sup
t∈In

∣∣∣∣
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣ ,

≤ 4

α
(K|x|+ |b(0)|) + 4

n−1∑

j=0

sup
t∈Ij

∣∣∣Y (α)
t

∣∣∣
α

+
4K

α
sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ + 2 sup
t∈In

∣∣∣∣
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣ .

We will use the following notations:

xn(α) = sup
t∈In

∣∣∣Y (α)
t

∣∣∣
α

and

zn(α) =
4K

α
sup
t∈In

∣∣∣BH
t −BH

tn

∣∣∣ + 2 sup
t∈In

∣∣∣∣
∫ t

tn
e−α(t−s)dBH

s

∣∣∣∣ .

Then we obtain the following inductive formulae

xn(α) ≤ 4

α
(K|x|+ |b(0)|) + 4

n−1∑

j=0

xj(α) + zn(α) .

We prove first that

(3.17) zn → 0 as α →∞, a.s. .
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Clearly, the first summand of zn tends a.s. to 0 as α → ∞ due to the continuity
of the paths of BH . Concerning the second summand of zn, we can write, using the
integration by parts (3.6)

∫ t

tn
e−α(t−s)dBH

s = −α
∫ t

−∞
e−α(t−s)Zsds + Zt = α

∫ t

−∞
e−α(t−s)(Zt − Zs)ds

where we used the notation: Zt = BH
t − BH

tn if t ≥ tn and Zt = 0 if t < tn. There-
fore (3.17) holds, noting that xe−ax →x→∞ 0 for a > 0 and applying the dominated
convergence theorem. Finally we obtain the convergence of xn(α) to 0 by induction.

Now we will investigate, after a suitable change of scaling, the asymptotic be-

havior of the velocity term Y α when α →∞. For this purpose, define Ỹ α
t =

1

α1−H
Y α

t/α

and B̃H
t = αH BH

t
α
. Clearly B̃H is a fractional Brownian motion with Hurst parameter

H and Ỹ α satisfies the following equation

(3.18) dỸ
(α)
t = −Ỹ

(α)
t dt + αH−1 b(X

(α)
t
α

) dt + dB̃H
t , Ỹ

(α)
0 =

y

α1−H
.

PROPOSITION 3.5. The velocity process Ỹ α given by (3.18) converges a.s

uniformly to the process
(
Ỹt =

∫ t

0
e(s−t) dB̃H

s , t ∈ [0, τ ]
)

.

Proof. By Lemma 3.2, we have

Ỹ
(α)
t = e−t yαH−1 + αH−1

∫ t

0
e(s−t) b(X

(α)
s
α

) ds +
∫ t

0
e(s−t) dB̃H

s .

Since
|b(X(α)

s

α

)| ≤ K sup
s∈[0,τ ]

|X(α)
s −Xs|+ |b(X s

α

)| ,

then

|Ỹ (α)
t − Ỹt| ≤ |y|αH−1 + αH−1 (1− et)

(
K sup

s∈[0,τ ]
|X(α)

s −Xs|+ sup
0≤s≤τ

|b(Xs)|
)

,

where the supremum of |b(Xs)| is finite since b is continuous and we can show, by
Kolmogorov criterion, that X is a.s continuous. Since 0 < H < 1, the result is just a
consequence of Theorem 3.3.
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Remark 3.6. If H = 1
2

and b = 0, the process Ỹ is the classical Ornstein-
Uhlenbeck process satisfying the following one-dimensional stochastic differential equa-
tion:

dỸt = −Ỹt dt + dB̃t , Ỹ0 = 0 .

and for arbitrary H ∈ (0, 1), Ỹ (α) is the fractional Ornstein-Uhlenbeck process as
defined, e.g., in [4].

4. GENERALIZATION: APPROXIMATION OF STRATONOVICH
EQUATIONS WITH FRACTIONAL BROWNIAN MOTION

We will consider the equation

(4.1) Xt = x +
∫ t

0
σ(Xs)d

◦BH
s +

∫ t

0
b(Xs)ds.

It has been proved in [1] that, if H > 1
4
, the equation (4.1) has an unique strong

solution if σ is of class C2 with bounded first and second derivative and b is a Lipschitz
continuous function. The stochastic integral is taken in the symmetric (Stratonovich)
sense (see [14] or [1] for the definition of the symmetric integral).

We can prove the following approximation result.

PROPOSITION 4.1 Let Vn be a sequence of continuous processes having a finite
total variation on compact intervals. For every n,consider the equation

(4.2) X
(n)
t = x +

∫ t

0
σ(X(n)

s )dV n
s +

∫ t

0
b(X(n)

s )ds

where the integral dV n
s is understood in the Lebesque-Stieltjes sense. Let BH be a fBm

such that

(4.3) lim
n→∞ sup

0≤s≤t

∣∣∣V n
s −BH

t

∣∣∣ = 0 a.s.

Then the sequence of unique solutions of (4.2) converges almost surely, uniformly on
bounded intervals, to the unique solution of (4.1).

Proof. The standard arguments (see e.g. [8], pag. 295-299) can be used in this
case.

Remark 4.2. Let us give an example of sequence of processes satisfying (4.3).
Let {χn , n ≥ 0} be the orthonormal Haar basis of L2([0, 1]) (for the definition we refer
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to [5] and the reference therein). Let ϕn(.) =
∫ .
0 χn(s) ds , n ≥ 0 be the classical family

of Schauder functions and define

V n
t =

n∑

j=0

gH
j ϕj(t) , ∀t ∈ [0 , 1] ,

where gj are the gaussian variables given by gH
j =

∫ 1
0 χj(s) dBH

s . One can prove easily
that V n is a.s of finite variations and since BH is a.s continuous the uniform convergence
(4.3) holds. In the case of H = 1

2
this is just the classical Lévy’s representation of the

Brownian motion.
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