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(1) Stochastic processes : first definitions and properties. The classical Poisson process; Thinning
and superposition, Law of Large Numbers and Central Limit Theorem. Poisson processes
with inhomogeneous rates.

(2) One-dimensional linear Hawkes process : definition, construction, properties, non-explosion,
stationarity, law of large numbers, mean number of jumps, empirical covariation across time
scales, longtime behavior.

(3) Multivariate linear Hawkes processes; Clustering representation.
(4) Application to financial time series.

1. Stochastic processes

Let (Ω,A, P ) be a probability space.

Definition 1.1. 1) X = (Xt, t ∈ I) is called stochastic process defined on I ⊂ IR, taking values
in Rd, if for all t ∈ I, Xt is a random variable.
2) We call the application that maps, for fixed ω ∈ Ω, I 3 t 7→ Xt(ω) ∈ Rd the trajectory of the
process.

Remark 1.2. 1) Most common choices are I = R+, I = R, or I = N (for Markov chains, for
instance).

2) The trajectory of X is a random function from I to Rd. Without any regularity properties for
the moment.

Example 1.3. 1) Take I = N and X = (Xn, n ≥ 0) where the Xn are i.i.d.
2) Markov chains.
3) Brownian motion.

In the sequel we shall be interested in modeling random events such as market buy or sell orders,
price evolution, times at which an insurance has to pay claims of the policy holders, ...

Example 1.4 (Capital evolution of an insurance). Two types of random events : the times of the
claims and the sizes of the claims.

Ct = C0 + rt−
∑

k:Tk<t

Uk,

where r is the contribution rate of the policy holders and where the Uk are the losses.
To begin with, let us concentrate on the first source of randomness, the arrival times of the claims.

1.1. Random arrival times. We write T0 = 0 < T1 < T2 . . . ≤ Tn ≤ ... for the successive random
times of arrival (of a claim, of a market order...). Define for any t ≥ 0,

Nt = number of claims before ≤ time t = #{n ≥ 1 : Tn ≤ t} =

∞∑
n=1

1{Tn≤t} =
∞∑
k=0

k1{Tk≤t<Tk+1}.

1
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Proposition 1.5. 1) We have that {Tn ≤ t} = {Nt ≥ n}.
2) If Tn ↑ +∞ then the trajectories of N = (Nt, t ≥ 0) are non-decreasing, piecewise constant, càdlàg,
starting from N0 = 0, having jumps or size +1 only. More precisely,

(1) N0(ω) = 0 for all ω,
(2) if s ≤ t, then Ns(ω) ≤ Nt(ω),
(3) the process of jumps, ∆Nt := Nt −Nt− satisfies : ∆Nt ∈ {0, 1}, ∆Nt(ω) = 1 ⇔ there exists

n ≥ 1, such that t = Tn(ω).

In the above scenario, we say that N is the counting process associated to the sequence of jump
events (Tn, n ≥ 0).

Definition 1.6. Let N be the counting process associated to the sequence of jump events (Tn, n ≥ 0),
with T0 = 0. We say that N is a Poisson process with intensity λ > 0 if τn := Tn − Tn−1, n ≥ 1,
satisfy : τn are i.i.d., ∼ exp(λ).

Remark 1.7. We call τn the inter-arrival times (the waiting times for the next event).

Remark 1.8. Recall the loss of memory property for the exponential law.

Definition 1.9 (Gamma distribution). Let α, β > 0. A positive random variable X is said to follow
the Gamma distribution Γ(α, β) if X has density

f(x) =
βα

Γ(α)
xα−1e−βx

on R+. In particular, the density of Γ(n, λ) is given by

f(x) =
λn

(n− 1)!
xn−1e−λx = λe−λx

(λx)n−1

(n− 1)!
.

Proposition 1.10. 1) Tn ∼ Γ(n, λ) for all n ≥ 1.
2) In particular, Nt ∼ Poiss(λt), ENt = V arNt = λt for all t ≥ 0.
3) For all t > 0, P (∆Nt = 1) = 0.
4) (Nt)t is a Lévy process, in particular it has independent and stationary increments.

Proposition 1.11 (Large deviations). Let Nt be a Poisson process having intensity 1. Then

P (sup
s≤t
|Ns − s| ≥ ε) ≤ 2 exp(−th(ε/t)),

for all ε < t, where h(x) = (1 + x) log(1 + x)− x.

Proof. We use the fact that Mt := Nt− t is a martingale. We upper bound one part of the inequality,
for any positive θ > 0, by

P (sup
s≤t

Ns − s ≥ ε) ≤ P (sup
s≤t

eθ(Ns−s) ≥ eθε).

Using that St := eθ(Nt−t) is a submartingale, plus Doob’s maximal inequality for positive submartin-
gales, we deduce from this that

P (sup
s≤t

Ns − s ≥ ε) ≤ e−θεE(eθ(Nt−t)) = e−θε−θtE(eθNt).

But

E(eθNt) = et(e
θ−1).
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This upper bound is minimized (in θ) choosing θ = ln(1 + ε/t). Plugging this into the above bounds,
one gets the upper bound

e−th(ε/t).

For the other term

P (sup
s≤t

s−Ns ≥ ε),

we get similarly the upper bound

e−th(−ε/t).

One concludes observing that h(−x) ≥ h(x) for all x ∈ [0, 1]. �

We conclude this section with a very useful characterisation of Poisson processes, which is due to
Watanabe.

Theorem 1.12. Let Nt be a simple and locally finite point process on R+, that is, for all t ≥ 0,
(i) Nt <∞ almost surely.
(ii) ∆Nt ∈ {0, 1}.

Suppose that Nt is IF−adapted and that for some fixed constant λ > 0,

(1.1) E

∫
]0,T ]

ZtdNt = E

∫ T

0

Ztλdt,

for all T > 0 and for all real valued, left-continuous processes Zt which are IF−adapted. Then N is a
Poisson process with intensity λ, and for all intervals 0 < a < b, we have that Nb−Na is independent
of Fa.

1.2. Poisson processes and random measures. We start with a simple remark. Knowing the
process N is equivalent to knowing the whole sequence of jump times (Tn) which is still equivalent to
knowing the random counting measure on (R+,B(R+)) given by

Π(ω) :=

∞∑
n=1

δTn(ω)

and which acts in the following way : for all C ∈ B(R+), we have

Π(ω,C) := Π(ω)(C) =

∞∑
n=1

1C(Tn(ω))

which is nothing else then the number of jump times falling into the set C.
It is clear that if Tn ↑ ∞, then for all fixed ω ∈ Ω, Π(ω, ·) is a σ−finite measure on (R+,B(R+)).

Moreover, for all C ∈ B(R+) fixed, Π(C) is a random variable. Π is also called point process on
R+. In general, we will not distinguish between Π and N.

If the jump sequence (Tn) comes from a Poisson process, then Π is also called Poisson random
measure on R+.

More generally we introduce the following notion of random measure.

Definition 1.13. A random measure N on (R+,B(R+)) is a mapping (ω,C) 7→ N(ω,C) from
Ω× B(R+) to R+ ∪ {∞} such that
(i) for each ω ∈ Ω, the application B(R+) 3 C 7→ N(ω,C) is a measure on (R+,B(R+)).
(ii) for each C ∈ B(R+), ω 7→ N(ω,C) is measurable.
Moreover, N is called σ−finite if there exists a sequence of measurable sets Kn such that

⋃
nKn = R+

and N(ω,Kn) <∞ for all ω.
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Remark 1.14. Evidently, the above definition can be extended to any random measure on (E, E)
for any measurable space (E, E).

Definition 1.15. Let Π be any random measure on R+. Define for any C ∈ B(R+)

(1.2) ν(C) := E(Π(C)) =

∞∑
k=0

kP ({ω : Π(ω,C) = k}).

Exercise : Check that ν defines a positive measure on (R+,B(R+)). ν is called the intensity
measure of Π (or of N).

Check that, if N is the Poisson process, then ν = λ× Lebesgue.

Proposition 1.16. Let N be a random measure on a measurable space (E, E) having intensity
measure ν and let ϕ : E → R be measurable and positive (or ϕ ∈ L1(ν)). Then

E(

∫
E

ϕdN) =

∫
E

ϕdν.

Proposition 1.17. Let N be the Poisson process having intensity λ and let Π be the associated
counting measure. Write ν(dx) := λdx. Then

(1) for all C ∈ B(R+), Π(C) ∼ Poiss(ν(C)).
(2) for all C1, . . . , Cn ∈ B(R+) which are mutually disjoint, Π(C1), . . . ,Π(Cn) is an independent

family of random variables.

Proof. One checks that the assertion holds for Ck =]tk−1, tk], for some t0 < t1 < . . . < tn. �

One can easily extend the above notion of a PRM from one dimension to two dimensions (or even
more, but we shall not need this here).

1.3. Two dimensional random measures. In the sequel, Xn, n ≥ 1, will denote random variables
taking values in R+ × R+. We put

M :=
∑
n≥1

δXn .

Definition 1.18. M is called PRM on R+ × R+ having intensity λdx1dx2 if
1) for all C ∈ B(R2

+), M(C) ∼ Poiss(λ|C|), where |C| denotes the Lebesgue measure of the set C,
2) for all C1, . . . , Cn ∈ B(R+×R+) which are mutually disjoint, M(C1), . . . ,M(Cn) is an independent
family of random variables.

Proposition 1.19 (Which shows how to construct/simulate from M|K where K ⊂ R+ × R+ is
some compact set.). Choose N ∼ Poiss(λ|K|) and, conditionally on N = n, n i.i.d. random variables

X1, . . . , Xn which are uniformly distributed on K and independent of N (that is, P (X1 ∈ C) = |C∩K|
|K| ).

If we put

Π̃ :=

N∑
k=1

δXk ,

then Π̃
L
= M|K .
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1.4. Thinning procedures. This section tries to answer to the question what 2−d PRM are good
for, if we are only interested in one-dimensional counting processes.

The answer is that we can actually use them to construct 1−d counting processes.

Example 1.20. Put Nt := M([0, t]×[0, λ]) (make a picture to understand what we are just doing!).
Show that the such constructed Nt is a Poisson process with intensity λ.

Proof. Indeed, Nt −Ns = M(]s, t]× [0, λ]) ∼ Poiss(λ(t− s)). Apart from this we need to show that
N has stationary and independent increments, but this follows directly from the properties of M. �

Example 1.21 (Poisson process with inhomogeneous rate). Let λt : R+ → R+ be a locally inte-

grable function, that is,
∫ t

0
λsds <∞ for all t ≥ 0. Define

Nt := M({(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤ λs}).

PICTURE !!!
Then we have that

P (Nt = 0) = P (T1 > t) = e−
∫ t
0
λsds

and

Nt ∼ Poiss(
∫ t

0

λsds).

Jargon : One says that T1 occurs at rate λt, and that the process jumps at rate λt. At times t such
that λt >> 1, jumps are more likely to occur than at times s such that λs ∼ 0.

Inhomogeneous rates can be used to model seasonalities.

Proposition 1.22. Let Nt be an inhomogeneous Poisson process of rate λt. Then the joint law
of its first n jumps T1, . . . , Tn, conditionally on {NT = n}, is given by the order statistics of n i.i.d.

random variables V1, . . . , Vn, chosen according to the density f(t) =
λ(t)1{t≤T}∫ T

0
λ(s)ds

.

Proof. It is easy to show that the joint law of (T1, . . . , Tn) is given by

λ(t1) · λ(t2) . . . λ(tn)e−
∫ tn
0

λ(s)ds1{t1≤t2≤...≤tn}.

Therefore, for any g : Rn+ → R+ measurable and bounded, and writing ‖λ‖T :=
∫ T

0
λ(s)ds,

IE[g(T1, , . . . , Tn)1{NT=n} ] =

∫
Rn+

1{t1<t2<...<tn<T}e
−

∫ T
0
λ(s)ds

n∏
i=1

λ(ti)g(t1, . . . , tn)dt1 . . . dtn

= e−‖λ‖T
‖λ‖nT
n!

∫
[0,T ]n

(
n∏
i=1

λ(ti)

‖λ‖T

)
g(t1, . . . , tn)dt1 . . . dtn,

implying the result, since e−‖λ‖T
‖λ‖nT
n! = IP (NT = n).

�

1.5. Poisson processes and martingales. As in the preceding section, we take a PRM M on R2
+

having intensity measure dx1dx2 and a locally integrable function λ : R+ → R+. We define

Nt = M({(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤ λs})

and

Ft := σ(M(C) : C ⊂ [0, t]× R+)

which can be interpreted as past before time t.
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Theorem 1.23. Then Nt −
∫ t

0
λsds is a martingale which is square integrable. In particular, we

have the identities ENt = V arNt =
∫ t

0
λsds.

Proof. One uses that the centered random measure M̃(ds, dz) := M(ds, dz) − dsdz is a martingale
measure which implies that

Mt :=

∫
[0,t]

∫ ∞
0

ϕ(s, z)M̃(ds, dz)

is a martingale for all predictable processes ϕ satisfying that E
∫ t

0

∫∞
0
|ϕ(s, z)|dsdz <∞ for all t > 0.

In this case, it is well-known (but has to be proved) that

V arMt =

∫ t

0

∫
ϕ2(s, z)dsdz.

We apply this result with the particular choice

ϕ(s, z) = 1{z≤λs}.

�

Finally, as a corollary of the above considerations, we are able to state a strong law of large numbers
and an associated Central Limit Theorem.

Theorem 1.24. Suppose that N is a time-inhomogeneous Poisson process such that

(1.3)
1

t

∫ t

0

λsds→ σ2 > 0

as t→∞. Then
1

t
Nt → σ2

almost surely as t→∞ and
√
t

(
Nt
t
− 1

t

∫ t

0

λsds

)
→ N (0, σ2)

(weak convergence as t→∞). In particular, if λt ≡ λ > 0, we have convergence

√
t

(
Nt
t
− λ
)
→ N (0, λ).

2. One-dimensional linear Hawkes processes

2.1. Motivation. The most important features of a Poisson process - independently of the fact
whether it has a constant rate or a time inhomogenous one - is the fact that subsequent waiting
times are independent the one of the others. Therefore, successive events are independent the one of
the others. This is not what can be observed in most practical examples.

Consider for instance an order driven market (see e.g. [1]) where participants can submit orders of
different types (limit orders, market orders, cancellations, ...). Just to clarify ideas, let us recall that

• Limit orders are orders that specify an upper/lower price limit at which one is willing to
buy or to sell a certain number of shares. Of course, there is no certainty that this order will
be executed. However, there will be some market impact of this order, since it changes the
anticipation that other participants of the market may have concerning the future evolution
of the market.

• Market orders are orders that trigger an immediate buy or sell transaction for a certain
number of shares. Such orders are immediately executed.
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• Cancellations Any of the above orders may be cancelled.

Several empirical facts :
− The Poisson hypothesis for the arrival of orders in time is not empirically satisfied.
− There are – of course ! – dependencies between order arrivals.
− More importantly : It is most likely that a given order, for example a buy limit order, even it is

does not change the price of the share immediately, will stimulate other buy limit and market order
events. And, for example, a buy limit order that changes the mid price (since the order price is higher
than the best bid price) will trigger a strong increase in the probability of sell market orders.

Conclusion In general there will be strong temporal dependencies between events and some events
will trigger future events - this is called self-excitation.

2.2. Branching Poisson processes. Ingredients :

− a fixed rate µ describing the arrival rate of exogenous market events.

− a function h : R+ → R+ such that
∫∞

0
h(t)dt < ∞ describing the influence of an event on

future events. More precisely, h(t) describes how an event at time s will trigger a future event at
time s+ t. h is also called kernel function, or memory kernel or offspring kernel.

Consider a homogeneous Poisson processes (It, t ≥ 0) having intensity µ and, independent of I, an
i.i.d. collection (Zn,k, n, k ≥ 1) of inhomogeneous Poisson processes having rate h(t) at time t ≥ 0
each. I(t) describes the exogenous market events and the Zn,k will describe the subsequent events
which are triggered by previous events. We fix a time horizon T > 0 and want to describe the
order driven market on [0, T ]. This is done in a hierarchical way as follows.

Generation 0: Simulate all exogenous market events on [0, T ], that is, a realization of I on [0, T ].

Call the events T
(0)
n , 0 ≤ n ≤ IT .

Generation 1: We work conditionally on the realization of the 0 generation. Suppose there is

an exogenous market event at time s = T
(0)
n . This triggers future events on ]s,+∞[ according to a

Poisson process having intensity h(t− s) on ]s, T ]. If we consider the superposition of all such events,
we obtain an overall intensity

λ(1)(t) =
∑

n:T
(0)
n <t

h(t− T 0
n).

The associated counting process can we represented as

N
(1)
t =

It∑
n=1

Zn,1
t−T (0)

n

.

Generation k + 1 : We work conditionally on the realization of generation k. Each point T
(k)
n

of generation k triggers future events on ]T
(k)
n ,+∞[, independently of anything else, according to a

Poisson process having intensity h(t−T (k)
n ) on ]T

(k)
n ,+∞[. The superposition of all these events gives

rise to a counting process N (k+1) which has an overall intensity

λ(k+1)(t) =
∑

n:T
(k)
n <t

h(t− T (k)
n ).
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We have

N
(k+1)
t =

N
(k)
t∑

n=1

Zn,k+1

t−T (k)
n

.

Definition 2.1. We put Nt := It +
∑∞
k=1N

(k)
t . N is called linear Hawkes processes with immigra-

tion rate µ and memory kernel h.

Put

(2.4) λt := µ+

∫
]0,t[

h(t− s)dNs = µ+

∞∑
k=0

∑
n:T

(k)
n <t

h(t− T (k)
n ).

The relation with the just constructed process Nt is that we can show :

Theorem 2.2. λt is the stochastic intensity of Nt in the sense that

Nt =

∫
]0,t]

∫ ∞
0

1{z≤λs}M(ds, dz),

where M is a 2−dimensional Poisson point process on R+ × R+ having intensity dsdz.

Remark 2.3. 1). The picture shows clearly how the process is self-exciting : each jump increases
the intensity of future jumps.
2) The function h(t) ≥ 0 models the impact of every event on future events and how this impact
vanishes with time.
3) Hawkes processes model any sort of self-contamination : earthquakes (Hawkes), number of clicks
on a webpage, market orders, spikes of neurons, ...
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Remark 2.4. Writing Tn, n ≥ 0, for the successive jumps of the Hawkes process Nt, we can
construct the intensity process in a recursive way. We have

λt =


µ, if t ≤ T1

µ+ h(t− T1), if T1 < t ≤ T2

µ+ h(t− T1) + h(t− T2), if T2 < t ≤ T3

...

We notice that λt does only depend on jumps of N strictly before time t. This property is termed
“predictable”. Hence t 7→ λt is a predictable process. In fact, it is left-continuous, if the function h is
continuous. (And one can show that all left-continuous processes are predictable. The proof that it is
left-continuous relies also on the fact that N does not explode, that is, that Nt <∞ almost surely for
all t− see later.)

2.3. Comparison to a branching process and total number of jumps.

2.3.1. Galton-Watson process. Recall the classical construction : let (Xn,k) be i.i.d. with values in
{0, 1, 2, . . .}, with common mean m. Put Z0 = 1 and

Zn+1 =

Zn∑
k=1

Xn,k.

Then EZn = mn, and one knows about the dichotomy extinction/survival (explosion).

2.3.2. Back to Hawkes. Each “offspring”-process Zn,k gives rise to a total number of jump events
which is given by Zn,k∞ ∼ Poiss(

∫∞
0
h(t)dt). Therefore, the average number of events triggered by a

single “ancestor”-event is given by the associated expectation which equals ‖h‖1 =
∫∞

0
h(t)dt. Write

for short m := ‖h‖1. Then m is the average number of orders directly triggered by a single event. In
a similar way, m2 is the number of grandchildren orders triggered by this event, and thus, if we call
cluster all the descendants of a given event, the average size of a cluster is given by∑

k≥1

mk.

We clearly see that in the supercritical case m > 1 and in the critical case m = 1, the average size of
a cluster is infinite, while in the subcritical case m < 1, the average size equals

m

1−m
=

‖h‖1
1− ‖h‖1

.

Since only the first jump is an exogenous market order event, the average proportion of endoge-
nously triggered events among all events, which can be interpreted as degree of endogeneity of
the market, is given by

[
m

1−m
]/[1 +

m

1−m
] = m = ‖h‖1.

Remark 2.5. Therefore, ‖h‖1 is a measure for the number of additional events that any single
event triggers. The closer ‖h‖1 is to 1, the stronger the endogeneity of the market. Experts from
financial statistics have therefore proposed to estimate ‖h‖1 from date, see Hardiman, Bercot and
Bouchaud 2013.
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2.4. Non-explosion and existence.

Theorem 2.6. If h ∈ L1
loc, then the Hawkes process Nt with intensity λt given by (2.4) exists and

we have ENt <∞ for all t > 0.

Proof. The proof of existence is done by Picard iteration. Let M be the 2−dimensional Poisson
point process on R+ ×R+ having intensity dtdz (the read points in Figure 1). We define successively

λ
(0)
t := µ, N

(0)
t = M({(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤ λ(0)(s)}), and then more generally, for all n ≥ 0,

λ
(n+1)
t := µ+

∫
(0,t)

h(t− s)dN (n)
s , N

(n+1)
t = M({(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤ λ(n+1)(s)}).

By construction, for any fixed t, n 7→ λ
(n)
t and n 7→ N

(n)
t are increasing. Thus there exist the

corresponding limits

λt := lim
n
λ

(n)
t , Nt = lim

n
N

(n)
t

and it is easy to show that

Nt = M({(s, x) : 0 ≤ s ≤ t, 0 ≤ x ≤ λ(s)})
and that

λt = µ+

∫
]0,t[

h(t− s)dNs.

(One has to use that M({(s, x) : x = λs}) = 0 almost surely. )
Therefore, we have shown that Nt exists. But it might have infinite expectation. Or even be infinite

itself. To finish the proof and to show that ENt <∞, we will use a couple of lemmas. �

Recall that for a time-inhomogeneous Poisson process with rate λt we have that

ENt =

∫ t

0

λsds and Nt −
∫ t

0

λsds is a martingale.

This remains true in the context of Hawkes processes. For that sake let

Ft = σ{Ns : s ≤ t}
be the natural filtration of the process. Moreover we put

(2.5) Λt :=

∫ t

0

λsds.

Theorem 2.7 (Another characterization of stochastic intensity). (1)

(2.6) (Nt − Λt, t ≥ 0) is a local martingale.

(2) We have that for all s < t,

(2.7) E(Nt −Ns|Fs) = E(

∫ t

s

λudu|Fs).

Remark 2.8. In mathematical terms, property (2.6) means that the increasing process Λt is the
predictable compensator of Nt. (2.7) implies n particular that

ENt∧Tn = E

∫ t∧Tn

0

λsds,

and, by monotone convergence,

ENt =

∫ t

0

E(λs)ds.
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Proof. The most elegant way of proving the Theorem is to use that the centered random measure
M̃(ds, dz) := M(ds, dz)− dsdz is a martingale measure which implies that

Mt :=

∫
[0,t]

∫ ∞
0

ϕ(s, z)M̃(ds, dz)

is a martingale for all predictable processes ϕ satisfying that E
∫ t

0

∫∞
0
|ϕ(s, z)|dsdz <∞ for all t > 0.

Then one applies this to

ϕ(s, z) := 1{z≤λs}1{s<Tn}.

We have ∫ t

0

∫ ∞
0

|ϕ(s, z)|dsdz = µ(t ∧ Tn) +

∫ t∧Tn

0

∫ s

0

h(s− u)dNuds

and we use Fubini (see exercises) and the fact that Ns ≤ n on s ≤ Tn to show that∫ t∧Tn

0

∫ s

0

h(s− u)dNuds =

∫ t∧Tn

0

h(t ∧ Tn − s)Nsds ≤ n
∫ t

0

h(s)ds <∞

to verify the integrability condition on ϕ. �

Proof of the fact that ENt <∞ for all t > 0. Using the same argument, we obtain for mt := ENt∧Tn
the following inequality

mt ≤ µt+

∫ t

0

h(t− s)msds.

Since
∫ t

0
h(s)ds <∞, we may choose A such that

∫ t
0
h(s)1{h(s)≥A}ds <

1
2 . We write∫ t

0

h(t− s)msds =

∫ t

0

h(t− s)1{h(t−s)≥A}msds+

∫ t

0

h(t− s)1{h(t−s)≤A}msds

≤ 1

2
mt +A

∫ t

0

msds.

This implies that

mt/2 ≤ µt+A

∫ t

0

msds,

and the classical Gronwall lemma allows to conclude that

mt ≤ 2µte2At.

The rhs of the above inequality does not depend on n, therefore, letting n → ∞ and writing T∞ :=
limTn = supTn, we obtain that

ENt∧T∞ ≤ 2µte2At.

Since Nt∧T∞ = NT∞ =∞ on T∞ ≤ t, this clearly implies that T∞ > t almost surely (and thus, since
this holds for all t, T∞ =∞ almost surely), whence

ENt ≤ 2µte2At.

�

Corollary 2.9. The above arguments show in particular that mt = ENt satisfies

(2.8) mt = µt+

∫ t

0

h(t− s)msds.
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Moreover, putting Mt := Nt −
∫ t

0
λsds (which is a martingale according to the proof of Theorem 2.7),

we obtain that Xt := Nt − ENt satisfies

(2.9) Xt = Nt − ENt = Mt +

∫ t

0

h(t− s)Xsds.

Remark 2.10. If ‖h‖1 < 1, the above proof can be considerably shortened in the following way.
Since ms ≤ mt for all s ≤ t, we have that

mt ≤ µt+mt

∫ ∞
0

h(t)dt

implying that

mt ≤
µt

1− ‖h‖1
.

Corollary 2.11 (Corollary of Theorem 2.7). In the proof we have in particular used that∫ t

0

∫ s

0

h(s− u)dNuds =

∫ t

0

h(t− s)Nsds.

Corollary 2.12 (Corollary of Theorem 2.7). We also have that

E

∫ t

0

h(t− s)dNs = E

∫ t

0

h(t− s)λsds.

Proof. Take ϕ(s, z) = h(T − s)1{z≤λs}1{s≤T} for some fixed T > 0. Then we obtain that for all t ≤ T,∫ t

0

∫
ϕ(s, z)M(ds, dz) =

∫ t

0

h(T − s)dNs

and on the other hand ∫ t

0

∫
ϕ(s, z)dsdz =

∫ t

0

h(T − s)λsds.

The expectations of the two expressions are the same implying the assertion, if we take T = t. �

2.5. Excursion on Hazard rates. Let us come back to (2.7). We can rewrite this as follows :

P (N jumps within (t, t+ h]|Ft) = E(Nt+h −Nt|Ft) = λth+ o(h)

as h→ 0. We can even write the following :

Proposition 2.13 (Hazard rate).

(2.10) P (Nt −Ns = 0|Fs) = e−
∫ t
s
λ̄udu,

where λ̄u = µ+
∫

]0,s]
h(u− v)dNv (which equals λu on N ≡ 0 on ]s, t]). In particular, we obtain that

P (Nt −Ns = 0) = E
[
e−

∫ t
s
λ̄udu

]
.

Proof. We start with the following simple observation

1{Nt−Ns=0} = 1−
∫

]s,t]

1{N(]s,u[)=0}dNu.

For all A ∈ Fs, the process

u 7→ 1[s,t](u)1A1{N(]s,u[)=0}
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is predictable such that we can replace, under the expectation, the integral with respect to dNu by
λudu and obtain

E1A1{Nt−Ns=0} = P (A)−
∫ t

s

E(1A1{N(]s,u[)=0}λu)du.

We then use that for Lebesgue almost all u,

E(1A1{N(]s,u[)=0}λu) = E(1A1{N(]s,u])=0}λu) = E(1A1{N(]s,u])=0}λ̄u),

where λ̄u is Fs−measurable. Therefore, we have just shown that

P (Nt −Ns = 0|Fs) = 1−
∫ t

s

P (Nu −Ns = 0|Fs)λ̄udu.

Iterating this equation yields the result. �

Remark 2.14. Equation (2.10) gives an other way of understanding a Hawkes process. Suppose
we have already constructed the process up to time s. Write Ts := inf{t > s : Nt 6= Ns} for the first
jump time of the process after time s. We thus have to simulate this random variable in order to
continue the construction of N on ]s,+∞[. (2.10) means :

P (Ts > t|Fs) = e−
∫ t
s
λ̄udu.

We first notice that λ̄u ≥ µ which implies that
∫∞
s
λ̄udu =∞ and therefore

P (Ts <∞|Fs) = 1.

Taking the derivative with respect to t in the above expression and changing sign, we obtain the
probability density of Ts. In fact,

L(Ts|Fs)(dt) = λ̄te
−

∫ t
s
λ̄udu1{t≥s}dt.

Of course, the above defines a proper probability density, once we know the past before time s.

2.6. On stationarity. Here the idea is to construct a version of the Hawkes process which behaves
in the same way all over its domain of definition.

Definition 2.15. Let N = (Nt, t ≥ 0) be a point process on R+. We identify Nt and N(]0, t]). N
is called stationary if for all s, t ≥ 0,

Nt = N(]0, t])
L
= N(]s, s+ t]) = Ns+t −Ns.

Remark 2.16. People working in stochastic processes would say that such a process has stationary
increments. But since we are thinking in terms of point processes or point measures, the above really
says that the way the process distributes points over space is really homogeneous. Thus the process
itself is stationary.

How is it possible to construct a stationary version of the Hawkes process? The idea is simple : If
the process started to evolve at time t = −∞, then – since it has evolved over an infinite time interval
– it must be in stationary regime (if it has not exploded so far). This is an old idea which is classical
in the analysis of long-memory processes. To construct such a process starting from −∞ one uses the
same Picard iteration approach as before. We work on R instead of R+.

Generation 0 Put λ
(0)
t = µ and let N (0) be a point process on R having this intensity. Remember

that this simply means that for any C ∈ B(R),

N (0)(C) = M({(s, x) ∈ R× R+ : s ∈ C, 0 ≤ x ≤ λ(0)
s }).
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Recursion Put

λ
(n+1)
t = µ+

∫
]−∞,t[

h(t− s)dN (n)
s

(notice that the only difference with the proof of Theorem 2.6 is the fact that integration starts from
−∞ and not from 0) and let

N (n+1)(C) = M({(s, x) ∈ R× R+ : s ∈ C, 0 ≤ x ≤ λ(n+1)
s }).

Then, passing to expectations, we obtain the following recursion, using Corollary 2.12,

Eλ
(n)
t = µ+

∫ t

−∞
h(t− s)Eλ(n−1)

s ds.

Using that λ
(0)
t ≡ µ does not depend on t this shows recursively that for all n ≥ 1, Eλ

(n)
t = Eλ

(n)
0 =

µ+ ‖h‖1Eλ(n−1)
0 , and thus

Eλ
(n)
0 = µ(1 + ‖h‖1 + . . .+ ‖h‖n1 ).

Then, as before, by monotone convergence, one obtains the existence of the limit point process N
having intensity

λt = µ+

∫
]−∞,t[

h(t− s)dNs

where

Eλt =
µ

1− ‖h‖1
.

We have just proven the following theorem.

Theorem 2.17. Under the sub criticality assumption ‖h‖1 < 1, there exists a unique stationary
version of the Hawkes process with average intensity given by

Eλt =
µ

1− ‖h‖1
.

Remark 2.18. The above construction shows even more : the process λt = µ+
∫

]−∞,t[ h(t− s)dNs
is actually also stationary. Recall that in case h(t) = αe−βt, for some α < β, λ is a Markov process
with values in R+, having generator

Ag(x) = −β(x− µ)g′(x) + x[g(x+ α)− g(x)].

We thus have shown that this Markov process possesses a stationary distribution (an invariant proba-
bility measure). Of course, this can also be shown using standard theory of Markov processes.

Remark 2.19. Prove that for the non-stationary version of the Hawkes process, under the sub
criticality assumption ‖h‖1 < 1, we have the uniform bound

(2.11) Eλt ≤
µ

1− ‖h‖1
,

for all t ≥ 0.
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2.7. Limit theorems. Let us come back to the non-stationary Hawkes process starting to live at
time 0.

In the subcritical regime, several limit theorems can easily be stated and proven. First of all, as
for the classical Poisson process, we have a law of large numbers.

Theorem 2.20 (Law of large numbers). Suppose that ‖h‖1 <∞. The we have that

Nt
t
→ µ

1− ‖h‖1
almost surely, as t→∞.

Sketch of proof. We use the cluster representation of the linear Hawkes process. Let I = (It, t ≥ 0)
be the process of “immigrants” and let C(n), n ≥ 1 be the sequence of independent clusters of point
processes that are endogenously triggered by each such immigrant. Then we can write that

Nt = It +

It∑
n=1

C
(n)

t−T (0)
n

.

Step 1. As t→∞, C(n)

t−T (0)
n

→ C
(n)
∞ , which is the total size of the cluster created by an immigrant

at time T
(0)
n . Therefore (here, we are very sloppy...),

Nt ∼ It +

It∑
n=1

C(n)
∞ .

Step 2. Now we use that all these C
(n)
∞ are i.i.d., having expectation ‖h‖1

1−‖h‖1 . Hence,

Nt
It
→ 1 +

‖h‖1
1− ‖h‖1

=
1

1− ‖h‖1
,

almost surely, as t→∞. (Here, we have applied the usual SLLN, with the subsequence It →∞.)
Step 3. We finally use that the classical SLLN for Poisson processes implies that It/t→ µ almost

surely as t → ∞ (which is also the argument that we were missing in the previous step that ensures
that indeed It →∞). �

Remark 2.21. The above result can be extended to

sup
0≤s≤1

(
Nst
t
− sµ

1− ‖h‖1

)
→ 0

almost surely, as t→∞. For a proof and for a rigorous proof of Theorem 2.20, see [4].

We also have an associated Central Limit Theorem, under a slightly more restrictive condition on
the function h.

Theorem 2.22 (Central Limit Theorem). Suppose that ‖h‖1 <∞ and moreover that
∫ t

0
h(t)
√
tdt <

∞. Then
√
t

(
Nt
t
− µ

1− ‖h‖

)
L→ N (0, σ2),

as t→∞, where σ2 = µ
(1−‖h‖1)3 .
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Remark 2.23. In [4], a functional version of the above theorem is proved. It holds in fact that(√
t

(
Nst
t
− sµ

1− ‖h‖

)
, 0 ≤ s ≤ 1

)
L→ (σBs, 0 ≤ s ≤ 1).

This shows that at large scales, a Hawkes process (if it is centered) behaves as a diffusion.

A sketch of a proof of Theorem 2.22 will be given in the next section, in a multivariate setting.

2.8. Application : Estimation of ‖h‖1− the degree of endogeneity of the market. Suppose
we know the rate of arrivals of exogenous market order events µ. Then we may use the above results
to estimate m := ‖h‖1. We simply take

m̂t := 1− µ t

Nt
and we know, by Theorem 2.20, that m̂t → m almost surely, as t→∞. Theoretically, Theorem 2.22
enables us also to provide confidence bands, but the associated variance depends on the unknown
parameter, so we have to replace it with an estimator of it. And, due to continuity reasons, we have
to exclude regions of the parameter space where m is too close to 1.

2.9. Higher order moments. In the following, N denotes the invariant Hawkes process defined on
R. In particular, we work under the condition of sub-criticality ‖h‖1 < 1. We introduce the second
moment measure M2(dt, ds) on R× R by

IE

∫ ∫
g(t, s)N(dt)N(ds) =:

∫ ∫
g(t, s)M2(dt, ds),

where g is any positive Borel measurable function. It is possible to show (but this is admitted here)
that

M2(dt, ds) = dtσ(du)δt+u(ds)

where
σ(du) = Λδ0(du) + σc(u)du,

with Λ = µ
1−‖h‖1 the expected value of the stationary intensity. Let us just briefly explain why a Dirac

measure is necessarily appearing in the above formula. Indeed, we can write∫ ∫
g(t, s)N(dt)N(ds) =

∑
n

∑
m

g(Tn, Tm) =
∑
n

g(Tn, Tn) +
∑
n

∑
m 6=n

g(Tn, Tm).

But ∑
n

g(Tn, Tn) =

∫
g(t, t)N(dt),

whose expectation is ∫
g(t, t)IE(λ(t))dt = Λ

∫
g(t, t)dt.

So the sum over diagonal terms gives the Dirac measure, and the double sum over un-common jumps
of N gives rise to a two dimensional Lebesgue density σc(t− s).

Proposition 2.24. In particular, we have that

Cov(

∫
ϕdN,

∫
ψdN) =

∫ ∫
ϕ(t)ψ(t+ s)Γ(ds)dt,

where the measure Γ is given by

Γ(du) = σ(du)− Λ2du = Λδ0 + σc(u)du− Λ2du.
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The function γ(u) := σc(u)− Λ2 is called the covariance density of the process.

Theorem 2.25. We have that

γ(τ) = h(τ)Λ +

∫ τ

−∞
h(τ − u)γ(u)du.

Proof. First of all, by symmetry, γ(τ) = γ(−τ). So in the following we only consider τ > 0. The idea
of the proof is the following : let h > 0 and introduce for any t, ϕt(x) := 1

h1[t,t+h](x). Then, as h→ 0,
for any γ > 0,

IE((

∫
ϕtdN)(

∫
ϕt+τdN))→ σc(τ).

So it is sufficient fo evaluate the expression on the lhs for sufficiently small values of h. Notice that∫
ϕtdN = (Nt+h − Nt)/h and

∫
ϕt+τdN = (Nt+τ+h − Nt+τ )/h. We choose h sufficiently small such

that t+ τ > t+ h. Conditioning with respect to Fτ+t, we thus obtain

IE((

∫
ϕtdN)(

∫
ϕt+τdN)) =

1

h
IE((

∫
ϕtdN)

∫ τ+t+h

τ+t

λ(u)du),

which behaves, for h→ 0 as

IE((

∫
ϕtdN)λ(t+ τ)) = µIE((

∫
ϕtdN)) + IE((

∫
ϕtdN)

∫ (t+ τ)−

−∞
h(t+ τ − s)dNs)

∼ µΛ + IE((

∫
ϕtdN)

∫ (t+ τ)−

−∞
h(t+ τ − s)dNs).

We have to control this last double integral. We can write

(

∫
ϕtdN)

∫ (t+ τ)−

−∞
h(t+ τ − s)dNs =

∫
ϕt(s)h(t+ τ − s)dNs

+

∫ ∫
ϕt(s)h(t+ τ − u)1u≤t+τ1u 6=sdNsdNu.

But, as h→ 0,

IE

∫
ϕt(s)h(t+ τ − s)dNs → Λh(τ).

Moreover, we rewrite the second term as∫ ∫
ϕt(s)h(t+ τ − u)1u≤t+τ1u6=sdNsdNu ∼∫

ϕt(s)dNs

∫ (t+τ)−

−∞
h(t+ τ − u)du

∫
ϕu(v)1v 6=sdNv

=

∫ t+τ

−∞
h(t+ τ − u)du

∫ ∫
ϕt(s)ϕu(v)1v 6=sdNsdNv.

We take expectation and exploit the fact that

IE

∫ ∫
ϕt(s)ϕu(v)1v 6=sdNsdNv ∼ σc(u− t)

such that the above expression finally gives∫ t+τ

−∞
h(t+ τ − u)σc(u− t)du =

∫ τ

−∞
h(τ − s)σc(s)ds.
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As a consequence,

σc(τ) = µΛ + Λh(τ) +

∫ τ

−∞
h(τ − s)σc(s)ds.

Subtracting Λ2 and observing that µΛ − Λ2 = −Λ2
∫ τ
−∞ h(t − s)ds, we obtain the desired recursion

formula. �

3. Multivariate Hawkes processes

3.1. Definition. For applications, it is more convenient to consider multivariate Hawkes processes
N1, . . . , Nd, d ≥ 1, where each jump process accounts for the events associated to a given asset. The
ingredients are as before
− positive constants µ1, . . . , µd ≥ 0 – the arrival rates of exogenous market events;
− integrable interaction functions hij : R+ → R+, for all 1 ≤ i, j ≤ d.

Definition 3.1. We say that the multivariate counting process (N1
t , . . . , N

d
t ) is a linear Hawkes

process if

(1) Almost surely, for all i 6= j, N j and N i do not jump at the same times.

(2) For all i, N i
t −

∫ t
0
λisds is a martingale, where

(3.12) λit = µi +

∫
]0,t[

∑
j

hij(t− s)dN j
s .

Remark 3.2. As before, we can construct the process N i as the thinning of a two-dimensional
Poisson point process M i(ds, dz) where M1, . . . ,Md are i.i.d.

It is possible to rewrite (3.12) in the following way. Let

λt :=

 λ1
t
...
λdt

 , µ :=

 µ1

...
µd

 , Nt :=

 N1
t
...
Nd
t

 .

Write moreover

h(t) := (hij(t))1≤i,j≤d ∈ Rd×d+ .

Then

λt = µ+

∫
]0,t[

h(t− s)dNs,

and

Nt −
∫ t

0

λsds ∈ Rd

is a martingale.

Example 3.3. Let d = 3 and consider the following interaction graph. Thus, h21 > 0, h12 =
0, h23 > 0, h32 = 0, . . . . (One has to read from the right to the left!) For example we can write

λ3
t = µ3 +

∑
T 3
n<t

h33(t− T 3
n) +

∑
T 1
n<t

h31(t− T 1
n).

The first represents the exogenous events, the second one the self-interactions and the last one the
interactions that N3 feels due to events of type 1.
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3.2. First properties. Define by matrix convolution the sequence of functions

hn = hn−1 ∗ h, that is, (hn)ij(t) =

∫ t

0

∑
k

(hn−1)ik(t− s)hkj(s)ds,

for all n ≥ 1. Moreover, define

ψ :=
∑
n≥1

hn.

We will work under the usual sub criticality assumption which can be stated as follows. We put
K =

∫∞
0
h(t)dt. Recall that this is a d× d−matrix.

Assumption 3.4. Let λ1, . . . , λd be the (complex) eigenvalues of K. Then we put %(K) := max |λi|;
%(K) is called the spectral radius of K. We suppose that %(K) < 1.

Notice that the above implies that ‖Kx‖ ≤ %‖x‖ for all x ∈ Rd. In particular, Id−K is invertible
in this case, and ψ exists, that is, ψ(t) < ∞ for almost all t, since

∫∞
0
ψ(t)dt = K + K2 + . . . =

(Id−K)−1 − Id.

Proposition 3.5. Under Assumption 3.4, we have that

(3.13) ENt = tµ+

∫ t

0

ψ(t− s)sdsµ.

Proof. Follows from the usual Fubini argument that implies that mt = ENt satisfies

mt = µt+

∫ t

0

h(t− s)msds,

and the fact that the unique solution for this equation is given by the rhs of (3.13). �

It follows from the above considerations that the Strong Law of Large Numbers can be stated
exactly as in the univariate case, except that one has to replace 1

1−‖h‖1 by (Id−K)−1. But the proof

is essentially the same.

Theorem 3.6. Under Assumption 3.4, we have that

Nt
t
→ (Id−K)−1µ

as t→∞, almost surely.

Let us now consider the martingale Mt = Nt −
∫ t

0
λsds. We obtain

Mt = Nt − µt−
∑
j

∑
n:T jn<t

∫ t

T jn

h·j(s− T jn)ds = Nt − µt−KNt +Rt = (Id−K)Nt − µt+Rt,
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where Rit =
∑
j

∑
n:T jn<t

∫∞
t
hij(s− T jn)ds+ [K(Nt −Nt−]i and where 1 = (1, . . . , 1) ∈ Rd.

It follows from this that

Nt√
t
−
√
t(Id−K)−1µ ∼ (Id−K)−1Mt√

t
+
Rt√
t
.

It is relatively easy to show that Rt/
√
t → 0 in probability. Therefore, the weak convergence of

Nt√
t
−
√
t(Id−K)1µ is implied by the one of Mt/

√
t.

To prove this last result, it is possible to use a classical martingale convergence theorem. Since
M has uniformly bounded jumps and since different components of M do never jump together, it
is sufficient to prove that the corresponding quadratic variations converge. But [M i]t = N i

t , and by
the SLLN, N i

t/t → σi := [(Id −K)−1µ]i. So, writing Σ for the diagonal matrix having all diagonal

elements equal to Σii =
√
σi, we have that

Mt/
√
t
L→ ΣB1,

where B = (B1, . . . , BN ) is Brownian motion, and thus

Theorem 3.7. Suppose that
∫∞

0

√
th(t)dt converges.

√
t

(
Nt
t
− (Id−K)−1µ

)
L→ (Id−K)−1ΣB1,

as t→∞.

Proof of Theorem 3.7. It remains to prove that Rt/
√
t → 0 in probability (we will show that this

convergence actually holds in L1). It is clear that the term K(Nt −Nt) does not pose any problem.
For the remaining terms and for the simplicity of notation, let us do the proof in the uni-variate case.
We have Rt =

∑
Tn<t

g(t − Tn) =
∫

[0,t[
g(t − s)dNs, where g(t) =

∫∞
t
h(s)ds. Therefore, applying

Corollary 2.12,

ERt =

∫ t

0

E(λs)g(t− s)ds ≤ sup
s≤t

E(λs)

∫ t

0

g(s)ds.

Now, use that, by sub criticality, sups≤tE(λs) ≤ µ
1−‖h‖1 (uniformly in t, see (2.11)), whence

1√
t
ERt ≤

µ

1− ‖h‖1

∫ t
0
g(s)ds
√
t

.

We use de l’Hopital’s rule and obtain

lim
t→∞

∫ t
0
g(s)ds
√
t

= lim
t→∞

g(t)
1
2 t
−1/2

≤ 2

∫ ∞
t

s1/2h(s)ds→ 0

as t→∞.
�

Remark 3.8. In [4], a functional version of the above result is proved: It actually holds that(√
t

(
Ntv
t
− v(Id−K)1µ

)
, 0 ≤ v ≤ 1

)
L→
(
(Id−K)−1ΣBv, 0 ≤ v ≤ 1

)
.
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3.3. Covariation across scales. Within this section we consider a multivariate Hawkes process in
stationary regime (that is, started from t = −∞, under our sub criticality condition Assumption 3.4).
Recall firstly that

E(Nt −Ns) = E

∫ t

s

λudu = (t− s)λλ,

where

λλ = Eλt = (Id−K)−1µ.

We shall also write

λλ =
E(dNt)

dt
.

The autocovariance density is defined, for a time lag τ > 0, to be

R(τ) = Cov(
dNt+τ
dτ

,
dNt
dt

).

The above expression might look a bit mysterious. What it just means is that

(3.14) Rij(τ) = lim
h→0

P (∆N i
t+τ+h = 1,∆N j

t+h = 1)− P (∆N i
t+τ+h = 1)P (∆N j

t+h = 1)

h2
.

By symmetry, we have that R(τ) = R(−τ) for all τ > 0. However, for τ = 0, the limit in (3.14) does
not exist for i = j, since

P (∆N i
t+h = 1) ∼ hEλi = hλλi, as h→ 0.

Therefore, the complete covariance density is defined by

Rc(τ) = R(τ) + λλδ0(τ).

Theorem 3.9. We have that

R(τ) = h(τ)D +

∫ τ

−∞
h(τ − u)R(u)du,

where D is the d× d−diagonal matrix having entries Dii = λλi.

Sketch of the proof of Theorem 3.9. Since P (∆i
t = 1|Ft) = λith+ o(h), we can write that

1

h2
P (∆N i

t+τ+h = 1,∆N j
t+h = 1) ∼ 1

h
E(λit+τ1{∆Njt+h=1}) ∼ E

([
µi +

∫ t+τ

−∞
hi·(t+ τ − s)dNs

]
dN j

t

dt

)
.

On the other hand, λλ satisfies the equation

λλ = µ+

∫ t+τ

−∞
h(t+ τ − s)λλds.

Since

lim
h→0

P (∆N i
t+τ+h = 1)P (∆N j

t+h = 1)

h2
= λλiλλj ,

this gives

Ri,j(τ) = E

([∫ t+τ

−∞
hi·(t+ τ − s)dN̄s

]
dN̄ j

t

dt

)
,

where N̄t = Nt − ENt. Now we use Fubini and obtain

Rij(τ) =

∫ t+τ

−∞
hi·(t+ τ − s)E

(
dN̄s
ds

dN̄ j
t

dt

)
ds.
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But

E

(
dN̄s
ds

dN̄t
dt

)
= Rc(s− t) = diag(λλ)δ(0) +R(s− t).

As a consequence, we obtain that

Rij(τ) = hij(τ)λλj +

∫ t+τ

−∞
[h(t+ τ − s)R(s− t)]ijds = hij(τ)λλj +

∫ τ

−∞
[h(τ − u)R(u)]ijdu,

which is the assertion. �

4. Application to financial statistics

In this section we follow closely the paper by Bacry, Delattre, Hoffmann and Muzy [5].
We introduce a univariate price process given by

(4.15) Pt = N1
t −N2

t ,

where Nt is a multivariate Hawkes process in dimension d = 2 and where

λ1
t = µ+

∫
]0,t[

h(t− s)dN2
s , λ

2
t = µ+

∫
]0,t[

ϕ(t− s)dN1
s .

Thus the two processes are mutually exciting, and the associated interaction matrix is given by

h(t) =

(
0 ϕ(t)
ϕ(t) 0

)
.

The fact that the price process takes values in ZZ, that is, takes values on a lattice, corresponds to the
tick-grid in financial statistics accounting for the discreteness of the price formation at fine scales.

Microstructure noise is a stylized fact of high-frequency financial analysis that corresponds to
the observation that the observed daily variance increases as the time step of observation tends to 0.
This observed daily variance is defined as follows. We introduce a time step ∆ > 0 and put

Ĉ(∆) :=
1

T

[T/∆]∑
i=1

(Pi∆ − P(i−1)∆)2.

This is the sum of squared increments of the price process over small time intervals of length ∆. The
total observation interval is given by [0, T ]. We renormalize by T to obtain an expression which should
be of order 1 with respect to the total observation time.

We call

C(∆) := EĈ(∆)

the mean signature plot of the price process.
The fact that C(∆) increases as ∆→ 0 can not (!) be explained with a standard diffusion model.

But it can be explained by the fact that an upwards jump of the price will be more likely be followed
by a downward jump and vice versa, which is included in our model due to the mutual excitation of
the two processes.

Proposition 4.1. Suppose that ϕ(t) = αe−βt, for t ≥ 0 and for 0 ≤ α < β. Then, if the process is
in stationary regime,

C(∆) = Λ

(
κ2 + (1− κ2)

1− e−γ∆

γ∆

)
,

where Λ = 2µ/(1− ‖ϕ‖), κ = 1/(1 + ‖ϕ‖), γ = α+ β.
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Proof. We want to apply Theorem 3.9. Firstly, by symmetry of N1 and N2, we certainly have that
N1
t ∼ N2

t , thus they have same expectation and variance. We start computing the mean average jump
intensity λλ1 = EN1

t /t in stationary regime. Observe that λλ1 = λλ2 =: λλ. We have

λλt := Eλt(t) = µ+ α

∫ t

0

e−β(t−s)λλsds.

Since λλt → λλ, as t→∞, we obtain
λλ = µ+ (α/β)λλ

and thus

λλ =
µβ

β − α
.

By stationarity, we also have that

C(∆) =
2

∆
(E(N1

∆)2 − EN1
∆N

2
∆).

Then E((N1
t )2) = V arN1

t + λλ2t2. But

V arN1
t = Cov(N1

t , N
1
t ) =

∫ t

0

∫ t

0

Cov(
dN1

s

ds
,
dN1

u

du
)dsdu = λλt+

∫ t

0

∫ t

0

R11(s− u)dsdu.

And in the same way, we obtain that

E(N1
t N

2
t ) = λλ2t2 +

∫ t

0

∫ t

0

R12(s− u)dsdu.

Thus,

C(∆) = 2

(
λλ+

1

∆

∫ ∆

0

∫ ∆

0

(R11 −R12)(s− u)dsdu

)
.

Now we exploit the findings of Theorem 3.9. We have that

R11(∆) =

∫ ∆

−∞
ϕ(∆− s)R12(s)ds.

And moreover,

R12(∆) = λλϕ(∆) +

∫ ∆

−∞
ϕ(∆− s)R11(s)ds.

Consequently, r(t) := R11(t)−R12(t) satisfies

r(t) = −ϕ(t)λλ−
∫ t

−∞
ϕ(t− s)rsds = −ϕ(t)λλ−

∫ t

0

ϕ(t− s)rsds−
∫ ∞

0

ϕ(t+ s)rsds,

since rs = r−s.
Writing r̂(µ) :=

∫∞
0
e−µtrtdt, we obtain

r̂(µ) = −λλϕ̂(µ)− r̂(µ)ϕ̂(µ)−
∫ ∞

0

e−µt
∫ ∞

0

ϕ(t+ s)rsdsdt.

We calculate the last expression, taking into account that ϕ(t) = αe−βt.∫ ∞
0

e−µt
∫ ∞

0

ϕ(t+ s)rsdsdt = α

∫ ∞
0

e−µte−βt
∫ ∞

0

e−βsrsdsdt =
α

µ+ β
r̂(β),

where we have used that ϕ(µ) = α
µ+β . Therefore,

(4.16) r̂(µ) = −λλ α

µ+ β
− r̂(µ)

α

µ+ β
− α

µ+ β
r̂(β).



24 E. LÖCHERBACH

Taking µ = β, we obtain

r̂(β) = −1

2

λλα

α+ β
.

Replacing in (4.16), this yields

r̂(µ) =
λλα

µ+ β + α
[−1 +

α

2(α+ β)
]

which is the Laplace transform of

r(x) = ae−bx, b = α+ β, a = −λλα 2β + α

2(α+ β)
.

Finally, we obtain that

C(∆) = 2

(
λλ+ 2

a

b
− 2

a

b2
1− e−b∆

∆

)
which gives the result.

�

Remark 4.2. Notice that, as ∆ → 0, C(∆) → 2λλ and that C(∆) increases as ∆ decreases to 0.
This can also be seen on the next picture which is taken from [5].
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