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Chapter 1

Parametric hypothesis testing

1.1 An introduction on statistical hypothesis testing

A statistical test allows to decide between two possible hypothesis, given the observed values of an n-sample.
1.

Let us consider two statistical hypothesis H0 and H1, among which one and only one is true. The statistical
decision consists in choosing between H0 and H1, while this decision may be right (true) or wrong (false).
Then, four possible situations occur, two of them leading to errors, and which may be resumed as in the
following table :

Reality H0 true H0 false
Decision

Accept H0 OK β
Reject H0 α OK

The two possible errors may be now defined as :

1. The 1st type error is the probability of mistakenly rejecting H0:

α = P (reject H0|H0 true)

2. The 2nd type error is the probability of mistakenly accepting H0:

β = P (accept H0|H0 false)

In practice, these errors correspond to different risks, as one may see in the following example.

Example : One wishes to know if introducing a speed limit on a given road reduces the number of accidents.
In order to reach a decision upon this issue, the local authorities make a trial and introduce a speed restriction
during three months. At the end of the period, they compare the results before and after having introduced
the limitation. The two hypothesis being tested are :

H0 : ”the speed restriction has no impact on the number of accidents“.
H1 : ”the speed restriction allows to decrease the number of accidents“.

The two possible decisions are then :

1. If one decides H0 is true, the speed restriction is not set up.

2. If one decides H0 is wrong, then the speed restriction is set up.

Let us now look at the interpretation of the two associated errors (risks) :

1. α is the error committed by rejecting H0 when H0 is true, that is the error which consists in deciding
to set up a speed limitation, while this limitation does not diminish the number of accidents.

1These lecture notes are greatly inspired from the online lecture notes and the books [2, 5, 1, 3, 4]

3



2. β is the error committed by accepting H0 when H0 is wrong, that is the error which consists in deciding
not to set up a speed limitation, while this limitation would decrease the number of accidents.

Hypothesis selection
Normally, the two errors associated to a statistical test should be low. However, in practice, it is impossible
to minimize (or at least control) both α and β. Consequently, when performing a statistical test, α is gen-
erally fixed (usual values are 0.01, 0.05 or 0.10), while β is computed ex post, provided that the probability
distributions under H1 are completely known. For this reason, the manner of selecting the hypothesis is
crucial for the result and also for the trustworthiness of the test.

In practice, the choice of H0 is dictated by various reasons :

• since one would not want to drop H0 too often, H0 must be an hypothesis solidly established and
which hasn’t been contradicted so far by the experiment;

• H0 is an hypothesis considered as particularly important, for reasons which may be subjective (in
the previous example, the choice of the hypothesis may be different according to the organization
requesting the test);

• H0 may correspond a cautious hypothesis (for instance, when testing the innocuousness of a vaccine,
it is wiser to start with an hypothesis unfavorable to the new product);

• H0 is the only hypothesis easy to express (for example, when testing m = m0 against m 6= m0, it is
obvious that H0 : m = m0 only allows to perform easy computations).

Remark : One should also know that β varies oppositely to α. When one wants to decrease the 1st type
error α, the it automatically increases 1− α, the probability of accepting H0 when H0 is true. In this case,
the decision rule becomes more strict since it would hardly ever drop H0, hence it would also occasionally
keep H0 mistakenly. By seeking not to drop H0, one ends keeping it almost every time, hence β, the risk of
mistakenly keeping H0, becomes larger.

Definition : 1− β, the probability of rightly rejecting H0, is called the power of the test. Between two
tests having the same level α, one should always prefer the one having the highest power.

Test statistic :
Once α is fixed, the next step consists in elaborating a test statistic from the n-sample, that is a measurable
map of the sample T = T (X1, ..., Xn). This statistic should carry the maximum of information on the
considered problem and should verify some conditions:

• the probability distribution of T under H0 must be exactly known;

• the behavior of T under H1 must be known, at least qualitatively, for determining the form of the
rejection region.

Critical region or rejection region :
The critical region W is the set of values for the test statistic T which lead to rejecting H0 in favor of H1.
The form of the critical region W is determined by the behavior of T under H1 (the event {T ∈W} must
be “dubious” or of “low probability” if H0 is true). The exact form of W is derived by writing :

PH0
(T ∈W ) = P (T ∈W |H0) = α

1.1.1 The steps in the construction of a test

In summary, the steps of a statistical test are the following :

1. Select the hypothesis H0 and H1;

2. Fix the level of the test or the 1st type error equal to α;

3. Select the test statistic, T ;

4. Determine the form of the rejection region W , depending on the behavior of T under H1;

5. Explicitly compute the rejection region W according to α;
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6. (Optional) Compute the 2nd type error and/or the power of the test;

7. Compute the observed value, t, for the test statistic T ;

8. According to t, decide whether to accept or not H0.

Remark :
Statistical tests may be classified into two large categories:

1. Parametric hypothesis testing: the family of probability distributions Pθ is known and the test
concerns the value of the parameter θ only ;

2. Nonparametric hypothesis testing : the family of probability distributions Pθ is unknown and
the test is about issues such as: the probability distribution belongs to the Gaussian family?; the
probability distribution is uniform?; are two samples issued from the same probability distribution or
not?; ...

1.1.2 The p-value

In most statistical software, hypothesis testing is slightly different from the general framework introduced
above. Indeed, rather than fixing a level α for the test and deciding whether the hypothesis H0 should be
rejected or not, a p-value is directly computed from the observed values of the sample.

Definition : The p-value is equal to the probability of obtaining a value for the test statistic T at least as
“extreme” or as “awkward” as the observed t, under the hypothesis H0.

The hypothesis H0 will then be rejected whenever the p-value is lower than some fixed threshold (0.01, 0.05
or 0.10). A very low p-value means that the observed test statistic t is highly unlikely under the hypothesis
H0 and leads to rejecting H0.

1.2 Some general considerations on parametric tests

In this section, we shall place ourselves in the parametric framework. Let us consider a dominated parametric
model (En, En,Pθ, θ ∈ Θ), where Θ ∈ Rd, and let θ be the “true” value of the parameter. Hypothesis testing
consists in this case in deciding one of the hypothesis{

H0 : θ ∈ Θ0 (null hypothesis)
H1 : θ ∈ Θ1 (alternative hypothesis)

,

where Θ0,Θ1 ⊂ Rd and Θ0 ∩Θ1 = ∅.

Within this framework, one may specify two categories of parametric tests, according to the content of Θ0

and Θ1.

Definition: A hypothesis (H0 of H1) is said to be simple if it is associated to a singleton (Θ0 or Θ1).
Otherwise, it is said to be composite. In dimension one (Θ ∈ R), if H0 is simple of the form θ = θ0 and if
H1 is composite of the form θ > θ0 or θ < θ0, one shall speak of unilateral test; if H1 is composite of the
form θ 6= θ0, we shall speak of bilateral test.

Definition: Consider T̂ a measurable function of an n-sample (X1, ..., Xn), issued from the model (En, En,Pθ, θ ∈ Θ),

valued in Rd. T̂ is called a test statistic. The test is then defined by the decision function φ̂ = 1{T̂∈W},
where W ∈ Rd is called critical region or rejection region. Its complement in Rd, W , is called acceptance
region. If φ̂ = 1, then H0 is rejected, otherwise it is accepted.

Definition: For the test statistic T̂ , let us define

1. The 1st type error: α = supθ∈Θ0
Pθ
(
T̂ ∈W

)
;

2. The 2nd type error: β = supθ∈Θ1
Pθ
(
T̂ /∈W

)
;
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3. The power function: π(θ) = Pθ
(
T̂ /∈W

)
, ∀θ ∈ Θ;

4. The efficiency function: e(θ) = Pθ
(
T̂ ∈W

)
, ∀θ ∈ Θ.

Definition: A statistical test φ̂ is unbiased if π(θ) ≥ α, ∀θ ∈ Θ1.

Definition: Let φ̂1 and φ̂2 two statistical tests of level ≤ α for testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. We
say that φ̂1 is uniformly most powerful (UMP) than φ̂2 if πφ̂1

(θ) ≥ πφ̂2
(θ), ∀θ ∈ Θ1.

When the alternative is simple, we shall only speak of the most powerful test.

1.2.1 Exercices

Exercice 1: One knows that a box contains either three red balls and five black balls, or five red balls and
three black balls. Three balls are drawn at random from the box. If strictly less than three balls are red,
then the decision is that the bow contains three red balls and five black balls. Compute α and β.

Exercice 2: One knows that a box contains one or two winning tickets and eight losers. Let H0 and H1 be
the two possible hypothesis. In order to test H0 against H1, the tickets are drawn, without replacement, until
one winning ticket is obtained. Consider X the random variable associating the number of drawn tickets.
Compute the probability distribution of X under H0 and under H1. The rejection region is W = {X ≤ 5}.
Compute α and β.

Exercice 3: The number of accidents recorded each month on a given route may be considered as the
realization of a random variable distributed according to a Poisson distribution with parameter λ > 0. We
admit that λ can have two values only, λ1 = 4 and λ2 = 6, 25, corresponding to the hypothesis H1 and H2

to be tested.
According to the value of λ, the decision to improve the route is taken or not. For this test, we dispose of a
nine-month observed sample :

x1 = 4 , x2 = 9 , x3 = 2 , x4 = 5 , x5 = 6 , x6 = 2 , x7 = 3 , x8 = 7 , x9 = 7

1. According to the test is requested by an automobile association or by the ministry for equipment and
transport, which of the two hypothesis should be chosen as the null hypothesis by the statistician?

2. The following decision rule is adopted :

si x ≥ c , the route is improved;
si x < c , the route is not improved.

Using a Gaussian approximation for the probability distribution of X, compute c1 or c2, depending on
the hypothesis selected as null among H1 or H2, with a 1st type error α =1%, and then evaluate the
associated powers π1 and π2.

3. According to the hypothesis chosen as null, which decision will be taken based upon the available data?

4. Is it possible to answer the following question:

Is H1 more probable than H2?

One should first examine in which framework this question makes sense, and then which supplementary
(a priori) information would be necessary for answering it.

1.3 Neyman-Pearson lemma

Example: Consider (X1, ..., X16) an iid 16-sample, drawn from a Gaussian distribution, N (m, 1), m ∈ R is
the unknown parameter. One has to decide between two possible values for m:

H0 : m = 0 against H1 : m = 2 .
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Intuitively, since the parameter to test is the expected value of the variables in the sample, the empirical
mean, X = 1

16

∑16
i=1Xi, may be a good test statistic. Moreover, from the general properties of Gaussian

vectors follows that

X ∼H0 N (0,
1

16
) ; X ∼H1 N (2,

1

16
) .

The test statistic X is a Gaussian distribution centered in 0 under H0 and it shifts towards the right under
H1 (the variance remains unchanged). Hence, if α = 0.05 is the level of the test, one would select as rejection
region W =

{
X > q1−α

4

}
, where q1−α = 1.64 is the (1− α)-quantile of the N (0, 1) distribution.

The power associated to this test may then be computed

π = PH1
(W ) = Pm=2

(
X >

1.64

4

)
' 1 .

The power of this “intuitive” or “reasonable” test is thus very close to 1, but is there a way to state, with
certainty, that this test is the most powerful among all tests of level α = 0.05? The following results will
allow to answer this question.

1.3.1 Randomized tests

The framework of not-randomized tests is, in some sense, an ideal situation in which, based on the observa-
tion of a random variable, x, one decides whether to reject or not the null hypothesis H0. Here, we place
ourselves in a more general context where, for some values of x, reaching a statistical decision may turn out
to be a difficult issue (for instance, when the probability distribution is discrete and there is no continuous
approximation available). We are then led to use a randomized test, where we consider that for some
values x, the decision function φ(x) ∈]0, 1[, defining a probability of rejecting H0 based on the observation
x.

Definition: A randomized test is defined by a decision rule, φ : (E, E)→ [0, 1] such that

• φ(x) = 1 implies to reject H0 based on x;

• φ(x) = 0 implies to accept H0 based on x;

• φ(x) = c ∈]0, 1[ implies to reject H0 with probability c, based on x.

Remark: The interest of randomized tests is, above all, theoretical. In practice, they are used but very
seldom.

Interpretation: One may conceive a randomized test as the first step of a decision process. Based on the
observation x,

1. Define a probability φ(x) of rejecting H0;

2. Draw an element in {0, 1} according to a Bernoulli distribution, B(φ(x)). Let y be the value observed
for this Y variable.

Eventually, one decides to reject H0 if y = 1 and accept H0 if y = 0.

The probability distribution of Y , conditionally to X = x (and which does not depend on the parameter θ)
is B(φ(x)). Hence, E(Y |X = x) = φ(x) and E(Y |X) = φ(X). Furthermore,

E(Y ) = E(E(Y |X)) = E(φ(X)) ⇒ Y ∼ B(φ(X)) .

Definition: The 1st type error for a randomized test φc is defined as the mapping α : Θ0 → [0, 1] such
that α(θ) = Eθ(φ(X)), ∀θ ∈ Θ0.

Definition: Consider α0 ∈ [0, 1] fixed. A randomized test φc is

• of level α0, if supθ∈Θ0
α(θ) ≤ α0;

• of size α0, if supθ∈Θ0
α(θ) = α0.
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Definition: The 2nd type error for a randomized test φc is defined as the mapping β : Θ1 → [0, 1] such
that β(θ) = Eθ(1− φ(X)), ∀θ ∈ Θ1.

Definition: The power function of a randomized test φc is defined as the mapping π : Θ1 → [0, 1] such
that π(θ) = 1− β(θ) = Eθ(φ(X)), ∀θ ∈ Θ1.

1.3.2 Simple hypothesis testing

In this section, we are in the parametric framework (E, E ,Pθ, θ ∈ Θ), dominated by the probability measure
µ. Let L(X, θ) be the likelihood of X, a random vector defined on the above probability space.

Consider two simple hypothesis H0 : θ = θ0 and H1 : θ = θ1. The model is then dominated, for instance, by
µ = Pθ0 + Pθ1 .

Contrary to the general framework, the powers of two tests are in this case always comparable. So one might
consider the existence of a most powerful test.

Definition: A Neyman-Pearson test is of the form

φk,c(X) =

 1 , if L(X, θ1) > kL(X, θ0)
0 , if L(X, θ1) < kL(X, θ0)
c , if L(X, θ1) = kL(X, θ0)

.

Remark: If Pθ0 ({x,L(x, θ1) = kL(x, θ0)}) = 0, then c = 0 or c = 1, and the test is not randomized.

Remark: The Neyman-Pearson test is also called likelihood ratio test (LRT). H0 is rejected when the

quotient L(X,θ1)
L(X,θ0) is large, that is when θ1 appears as being more likely than θ0.

Proposition (existence): For all α ∈ [0, 1], there exists a Neyman-Pearson test of size α.

Proof : TODO.

Neyman-Pearson Lemma: Let α ∈ [0, 1].

1. A Neyman-Pearson test of size α is the most powerful test among all tests of H0 against H1 of size α.

2. Conversely, a most powerful test of size α is a Neyman-Pearson test of size α.

Proof :

1. Consider φk,c a Neyman-Pearson test, of size α, et consider also φ?, a test of level α: Eθ0(φ?) ≤ α.
One has

• φ(x) = 1 ≥ φ?(x), if L(x, θ1) > kL(x, θ0);

• φ(x) = 0 ≤ φ?(x), if L(x, θ1) < kL(x, θ0).

Hence, for all x ∈ E,

(φ(x)− φ?(x))(L(x, θ1)− kL(x, θ0)) ≥ 0 ⇒
∫
E

(φ(x)− φ?(x))(L(x, θ1)− kL(x, θ0))dµ(x) ≥ 0 .

It follows that
Eθ1(φ(X))− Eθ1(φ?(X)) ≥ k(Eθ0(φ(X))− Eθ0(φ?(X))

≥ k(α− Eθ0(φ?(X)))
≥ 0 .

Consequently, Eθ1(φ(X)) ≥ Eθ1(φ?(X)), which means that φ is more powerful than φ?.

2. According to the previous proposition, there exists a Neyman-Pearson test φ of size α. Consider also
a test φ?, of level α, most powerful among all tests of level α. According to (1), φ is also the most
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powerful among all tests of level α. Hence, Eθ1(φ(X)) = Eθ1(φ?(X)). We also checked in (1) that
(φ(x)− φ?(x))(L(x, θ1)− kL(x, θ0)) ≥ 0. It follows that∫

E
(φ(x)− φ?(x))(L(x, θ1)− kL(x, θ0))dµ(x) = Eθ1(φ)− Eθ1(φ?) + k(Eθ0(φ?)− Eθ0(φ))

= k(Eθ0(φ?)− Eθ0(φ))
= k(Eθ0(φ?)− α)
≥ 0 .

We thus get that Eθ0(φ?) ≥ α. Since φ? is of level α, φ? is of size α if∫
E

(φ(x)− φ?(x))(L(x, θ1)− kL(x, θ0))dµ(x) = 0 ,

which means that, µ-a.s., (φ(x)−φ?(x))(L(x, θ1)−kL(x, θ0)) = 0, or also φ(x) = φ?(x) for µ-a.s. every
x such that L(x, θ1) 6= kL(x, θ0). We may then conclude that φ? is a Neyman-Pearson test.

Remark: If T is an exhaustive statistic for the parameter θ, according to Neyman’s factorization theorem,
one has that L(x, θ0)) = hθ0(T (x))g(x), L(x, θ1)) = hθ1(T (x))g(x), and the Neyman-Pearson test in this
case can be written in terms of T (x) only.

Example: Univariate Gaussian
Let us consider (X1, ..., Xn) an n-sample from a Gaussian distribution N (m, 1), where m ∈ R is the unknown
parameter and the variance is a priori known, σ2 = 1. The hypothesis to be tested are H0 : m = m0 = 0
versus H1 : m = m1 = 1, with a level α = 0.05. Let us build the most powerful test, according to the
Neyman-Pearson lemma.
The likelihood of the n-sample for any value m of the parameter is

L(X1, ..., Xn;m) = (2π)−
n
2 exp

(
− 1

2

∑n
i=1(Xi −m)2

)
= (2π)−

n
2 exp

(
− 1

2

∑n
i=1X

2
i

)
exp

(
−nm

2

2

)
exp (m

∑n
i=1Xi)

The likelihood ratio may then be written :

V (X1, ..., Xn) = L(X1,...,Xn;m0)
L(X1,...,Xn;m1) =

exp

(
−nm

2
0

2

)
exp(m0

∑n
i=1Xi)

exp

(
−nm

2
1

2

)
exp(m1

∑n
i=1Xi)

= exp
(
−n2 (m2

0 −m2
1)
)

exp ((m0 −m1)
∑n
i=1Xi)

The rejection region is then of the form :

W = {V (X1, ..., Xn) ≤ k} =

{
(m0 −m1)

n∑
i=1

Xi ≤ k′
}

,

and, since m0 < m1, W may be further written as W = {
∑n
i=1Xi ≥ k′′} =

{
X ≥ C

}
.

In order to obtain the exact value of the threshold C, one should use the value fixed for the value of the test:

α = PH0
(W ) = Pm=m0

(X ≥ C) = Pm=m0

(√
n(X −m0) ≥

√
nC
)

= P(N (0, 1) ≥
√
nC) .

For α = 0.05, one gets
√
nC = 1.64.

A practical exercice
A politician running as candidate for the elections is interested in estimating the proportion p of electorate
which will vote for him. Two possible hypothesis are considered:{

H : p = 0, 48
K : p = 0, 52

The campaign staff runs an opinion poll and interviews a sample of size n. According to the results of the
survey, the candidate will decide to intensify his campaign or not.

1. Which are the two possible errors?

2. The statistician of the staff selects H as null hypothesis and fixes the level of the test, α = 0.05. Which
is the meaning of this choice?
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3. The statistician selects critical regions having the form R(n) = {fn ≥ a}, where fn is the proportion
of voters which are favorable in the sample. Which is the decision rule if n = 900? Compute the power
of this test.

4. How is the critical region varying when n increases? It will be explicitly computed for: n = 900, 2500
and 10000. Starting from which value of n the power becomes greater than 95%?

5. Which is the decision of the candidate if half of the interviewed sample is favorable when the sample
size is, respectively, 900, 2 500 and 10 000? Are these results coherent?

6. Show that the critical regions R(n) are the optimal decision rules for testing H against K.
N.B. : The binomial distribution may be approximated here by a Gaussian distribution.

1.4 Monotone likelihood ratio

Let us go back to the Gaussian example in the previous section.

1. Let us first remark that we never used the exact value of m1 in the construction of the test and of the
rejecting region. Hence, the hypothesis could have been written as well

H0 : m = m0 = 0 ; H1 : m > m0

2. Also, let us remark that, for some m′ < m0,

Pm′(W ) = Pm′((X) ≥ 1.64√
n

) < Pm0((X) ≥ 1.64√
n

) = α .

Hence, if the hypothesis of the test are changed into

H0 : m ≤ m0 = 0 ; H1 : m > m0 ,

the rejection region remains the same and the level of the test is still α = supm≤m0
Pm(W ).

This example shows that simple hypothesis testing could be easily transformed into composite hypothesis
testing. Let us now check if one can always do this extension, which are the necessary conditions and if the
resulting test for composite hypothesis is uniformly most powerful (UMP).

Definition: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model,Θ ⊂ R. Let us denote

Vθ1,θ0(x) =
Lθ1(x)

Lθ0(x)

If T (X) is an exhaustive statistic for the parameter of this model, one says that the model has a monotone
likelihood ratio (MLR) in T whenever Vθ1,θ0(x) (which can be written in terms of T (x) only by exhaus-
tivity) is an increasing function of T (x), for θ1 < θ0.

Remark: If θ 7→ g(θ) is an increasing function, the exponential model Lθ(x) = h(x) exp(g(θ)T (x) − B(θ))
has a monotone likelihood ratio in T .

Proposition: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model. Let φ be a test of level α of
H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, with Θ0 ∩Θ1 = ∅.
If there exists θ0 ∈ Θ0 such that Eθ0(φ) = α and if, for all θ1 ∈ Θ1, there exists k > 0 such that

• φ(x) = 1, if L(x, θ1) > kL(x, θ0);

• φ(x) = 0, if L(x, θ1) < kL(x, θ0).

Then, φ is the uniformly most powerful test of level α, UMP(α).

Proof : Let φ? be a test of level α of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. We consider the following reduced
problem of hypothesis testing :

H ′0 : θ = θ0 ; H ′1 : θ = θ1 .

For this reduced problem, φ is a Neyman-Pearson test of size α. Hence, it is the most powerful test of level
α. Furthermore,

Eθ0(φ?(X)) ≤ sup
θ∈Θ0

Eθ(φ?(X)) ≤ α ,

hence Eθ1(φ(X)) ≥ Eθ1(φ?(X)).
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1.4.1 Unilateral tests

Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model, with Θ ∈ R.

Unilateral test H0 : θ = θ0 against H1 : θ > θ0

Theorem: Suppose the parametric model has a monotone likelihood ratio, strictly increasing in T (X), an
exhaustive statistic. For any α ∈]0, 1[, there exists an UMP(α) test, having the following form:

φk,c(X) =

 1 , if T (x) > k
0 , if T (x) < k
c , if T (x) = k

.

Proof : Let θ′ > θ0. We consider the Neyman-Person test, of size α,

H0 : θ = θ0 ; H ′1 : θ = θ′ .

We’ve already seen that the Neyman-Pearson test may be written as

φk,c(X) =

 1 , if T (x) > k
0 , if T (x) < k
c , if T (x) = k

.

Consider now θ1 > θ0 and since L(x,θ1)
L(x,θ0) = Vθ1,θ0(T (x)) with Vθ1,θ0 strictly increasing in T (x), it follows

that there exists k1 such that T (x) > k is equivalent to L(x, θ1) > k1L(x, θ0) and T (x) < k is equivalent
to L(x, θ1) < k1L(x, θ0). According to the previous proposition, one gets that φ is the UMP(α) test of
H0 : θ = θ0 against H1 : θ > θ0.

Unilateral test H0 : θ = θ0 against H1 : θ < θ0

In a similar manner, one gets the following theorem:

Theorem: Suppose the parametric model has a monotone likelihood ratio, strictly increasing in T (X), an
exhaustive statistic. For any α ∈]0, 1[, there exists an UMP(α) test, having the following form:

φk,c(X) =

 1 , if T (x) < k
0 , if T (x) > k
c , if T (x) = k

.

Unilateral test H0 : θ ≤ θ0 against H1 : θ > θ0

Lehman theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model, with Θ ∈ R. Suppose that
the model has a monotone likelihood ratio, strictly increasing in T (X), an exhaustive statistic. For any
α ∈]0, 1[, there exists an UMP(α) test, having the following form:

φk,c(X) =

 1 , if T (x) > k
0 , if T (x) < k
c , if T (x) = k

.

Furthermore, the size α is reached for θ = θ0, that is supθ≤θ0 Eθ(φ(X)) = Eθ0(φ(X)) = α.

Proof : We already know that there exists a test φ, such that = Eθ0(φ(X)) = α and having the form

φk,c(X) =

 1 , if T (x) > k
0 , if T (x) < k
c , if T (x) = k

.

Consider θ′ < θ′′. Since L(x,θ′′)
L(x,θ′)

= Vθ′′,θ′(T (x)) with Vθ′′,θ′ strictly increasing in T (x), φ is a Neyman-Pearson

test for the hypothesis
H ′0 : θ = θ′ ; H ′′1 : θ = θ′′ .

According to the Neyman-Pearson lemma, for all test φ? such that Eθ′(φ?(X)) ≤ Eθ′(φ(X)), it follows that
Eθ′′(φ(X)) ≥ Eθ′′(φ?(X)).
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Let θ′ = θ0, θ′′ = θ > θ0, and φ? a test of level α for the initial test problem H0 : θ ≤ θ0 against H1 : θ > θ0.
Then,

Eθ0(φ?(X)) ≤ sup
θ∈Θ0

Eθ(φ?(X)) ≤ α = Eθ0(φ(X)) ,

hence Eθ(φ?(X)) ≤ Eθ(φ(X)) and φ is more powerful than φ?.

It remains to prove that φ is of size α for the initial test problem, H0 : θ ≤ θ0 against H1 : θ > θ0.

Consider now θ′ < θ0, θ′′ = θ0 and φ? the constant test equal to Eθ′(φ(X)). Then

Eθ′(φ?(X)) = Eθ′(φ(X)) ⇒ Eθ0(φ(X)) ≥ Eθ0(φ?(X)) ,

that is Eθ0(φ(X)) ≥ Eθ′(φ(X)). It follows than that, ∀θ′ < θ0, Eθ′(φ(X)) ≤ Eθ0(φ(X)) = α, and
supθ≤θ0 Eθ(φ(X)) = Eθ0(φ(X)) = α.

Remark: In the previous proof, we showed that φ is a Neyman-Pearson test for all hypothesis testing
situations of H ′0 : θ = θ′ against H ′′1 : θ = θ′′, with θ′ < θ′′, hence it is unbiased and Eθ′(φ(X)) < Eθ′′(φ(X))
unless Pθ′ = Pθ′′ a.e.

Indeed, if Eθ′(φ(X)) = Eθ′′(φ(X)) and if φ? is a constant test of size Eθ′(φ(X)), then φ? has the same
power function as φ, hence it is UMP(Eθ′(φ(X))). It follows that it is of Neyman-Pearson type and
L(x, θ′) = kL(x, θ′′), µ-a.e. Since L is a likelihood, k = 1 and Pθ′ = Pθ′′ .

It also follows that the model is identifiable, the mapping θ 7→ Eθ(φ(X)) is strictly increasing.

Example:

Consider the observed values (x1, ..., xn) of a iid n-sample (X1, ..., Xn) of a Gaussian distribution, N
(
0, 1

θ

)
,

θ > 0. The size of the sample is n = 15.

1. Build a UMP(0.05) test of H0 : θ = 1 against H1 : θ > 1.

2. Compute the power function of this test.

3. Which is the decision if the observed statistic is
∑15
i=1 x

2
i = 6.8? For which level of the test α one

would have reached to the opposite decision? Which is the p-value associated to this test?

1.4.2 Bilateral tests

Within the framework of exponential parametric models with strictly monotone ratios, one may build “op-
timal” (in a sense to be defined) bilateral tests.

Theorem : Neyman-Pearson generalized lemma
Consider P1, ...,Pm+1 probability measures defined on (E, E). Suppose that there exists σ-finite probability

measure µ such that dPi = fidµ, ∀i = 1, ...,m + 1 (for example, µ =
∑m+1
i=1 Pi. Let us denote Ei(φ(X)) =∫

E
φ(x)fi(x)dµ(x) and let Cm the set of statistical tests φ verifying the constraints:

E1(φ(X)) = c1,E2(φ(X)) = c2, ...,Em(φ(X)) = cm,

for c1, ..., cm ∈ R, fixed. Then

1. There exists a test φ ∈ Cm which maximizes Em+1(φ(X)).

2. Every φ ∈ Cm having the expression

φ(X) =

{
1 , if fm+1(x) >

∑m
i=1 kifi(x)

0 , if fm+1(x) >
∑m
i=1 kifi(x)

.

is maximizing Em+1(φ(X)).

3. Every φ ∈ Cm having the expression

φ(X) =

{
1 , if fm+1(x) >

∑m
i=1 kifi(x)

0 , if fm+1(x) >
∑m
i=1 kifi(x)

,

with k1 ≥ 0, ..., km ≥ 0 is maximizing Em+1(φ(X)), among all tests such that

E1(φ(X)) ≤ c1,E2(φ(X)) ≤ c2, ...,Em(φ(X)) ≤ cm .
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4. The set
Cm = {(E1(φ(X)), ...,Em(φ(X))) , φ : (E, E)→ ([0, 1],B([0, 1]))}

is closed and convex. If (c1, ..., cm) ∈ C̊m, there exists a generalized Neyman-Pearson test in Cm, and
every test in Cm maximizing Em+1(φ(X)) is a generalized Neyman-Pearson test.

Bilateral test H0 : θ ≤ θ1 or θ ≥ θ2 against H1 : θ ∈]θ1, θ2[

Theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure
µ, and Θ ∈ R. The likelihood is given by

L(x, θ) = C(θ)h(x) exp(η(θ)T (x)) .

Suppose that η(θ) is a strictly increasing function, hence the model has a monotone likelihood ratio, strictly
increasing in T (x). For any α ∈]0, 1[, there exists a UMP(α) test having the following expression:

φk,c(X) =


1 , if k1 < T (x) < k2

0 , if T (x) < k1 or T (x) > k2

c1 , if T (x) = k1

c2 , if T (x) = k2

.

Furthermore, the size α of φ is reached for θ = θ1 and θ = θ2, that is supθ≤θ1 Eθ(φ(X)) = Eθ1(φ(X)) = α
and supθ≥θ2 Eθ(φ(X)) = Eθ2(φ(X)) = α.

Proof : TODO.

Remark: In practice, the issues with applying this test lie mainly in the choice of thresholds k1 and k2,
such that Eθ1(φ(X)) = Eθ2(φ(X)) = α.

Bilateral test H0 : θ 6= θ0 against H1 : θ = θ0

This problem is in some sense similar to the previous one. One may show, in a similar manner, that, in the
framework of general exponential models, there exists a UMP(α) test.

Theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure
µ, and Θ ∈ R. The likelihood is given by

L(x, θ) = C(θ)h(x) exp(η(θ)T (x)) .

Suppose that η(θ) is a strictly increasing function, hence the model has a monotone likelihood ratio, strictly
increasing in T (x). For any α ∈]0, 1[, there exists a UMP(α) test having the following expression:

φk,c(X) =


1 , if k1 < T (x) < k2

0 , if T (x) < k1 or T (x) > k2

c1 , if T (x) = k1

c2 , if T (x) = k2

.

Furthermore, the size α of φ is reached for θ = θ0 and the thresholds k1 and k2 are computed using the
following equations {

Eθ0(φ(X)) = α
Eθ0(φ(X)T (X)) = αEθ0(T (X)) .

Remark: The computation of k1 and k2 is simplified if the probability distribution of T (X) is symmetric
whenever X ∼ Pθ0 . If one selects a test φ = h(T ), with h symmetric with respect to a (i.e. (k1 + k2)/2 = a
and c1 = c2 = c), and such that Eθ0(φ(X)) = α, then

Eθ0(φ(X)T (X)) = Eθ0((T (X)− a)h(T (X))) + aEθ0(φ(X)) = aα = αEθ0(T (X)) ,

and the second equation is verified.
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Bilateral test H0 : θ ∈ [θ1, θ2] against H1 : θ < θ1 or θ > θ2

Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure µ, and
Θ ∈ R. Let us also suppose that the model has a monotone likelihood ratio, strictly increasing in T (x). We
shall now show that there does not exist a UMP(α) test.

Indeed, if such a test φ existed, then, for any other test φ? such that supθ∈[θ1,θ2] Eθ(φ?(X)) ≤ α,

Eθ(φ(X)) ≥ Eθ(φ?(X)) , for all θ > θ2 or θ < θ1 .

Then φ would also be UMP(α) for the test problemH0 : θ ∈ [θ1, θ2] againstH ′1 : θ < θ1 or againstH ′1 : θ > θ2.
Following the remark given after the Lehmann theorem, one would deduce that the mapping θ 7→ Eθ(φ(X))
is strictly decreasing on Θ∩]−∞, θ2], and strictly increasing on Θ ∩ [θ1,+∞[, which is impossible.

Then, we shall look for “optimal” tests in a more restricted class than that of tests with a fixed level α.

Definition: A statistical test φ of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is said to be unbiased of level α if, for
all θ0 ∈ Θ0, Eθ0(φ(X)) ≤ α and, for all θ1 ∈ Θ1, Eθ1(φ(X)) ≥ α.

Definition: A statistical test φ is said to be uniformly most powerful among all unbiased tests of
level α, UMPU(α) if it is unbiased of level α and if it is uniformly most powerful than any other unbiased
test of level α.

Theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure
µ, and Θ ∈ R. The likelihood is given by

L(x, θ) = C(θ)h(x) exp(η(θ)T (x)) .

Suppose that η(θ) is a strictly increasing function, hence the model has a monotone likelihood ratio, strictly
increasing in T (x). For any α ∈]0, 1[, there exists a UMPU(α) test having the following expression:

φk,c(X) =


1 , if T (x) < k1 or T (x) > k2

0 , if k1 < T (x) < k2

c1 , if T (x) = k1

c2 , if T (x) = k2

.

Furthermore, the size α of φ is reached for θ = θ1 and θ = θ2, that is

sup
θ∈[θ1,θ2]

Eθ(φ(X)) = Eθ1(φ(X)) = Eθ2(φ(X)) = α .

Proof : TODO.

Bilateral test H0 : θ = θ0 against H1 : θ 6= θ0

This problem is close to the previous one. Hence, we may show that in this case there does not exist a
UMP(α) test. However, we state the existence of a UMPU(α) test.

Theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure
µ, and Θ ∈ R. The likelihood is given by

L(x, θ) = C(θ)h(x) exp(η(θ)T (x)) .

Suppose that η(θ) is a strictly increasing function, hence the model has a monotone likelihood ratio, strictly
increasing in T (x). For any α ∈]0, 1[, there exists a UMPU(α) test having the following expression:

φk,c(X) =


1 , if T (x) < k1 or T (x) > k2

0 , if k1 < T (x) < k2

c1 , if T (x) = k1

c2 , if T (x) = k2

.

Furthermore, the size α of φ is reached for θ = θ0 and the thresholds k1 and k2 are computed using the
following equations {

Eθ0(φ(X)) = α
Eθ0(φ(X)T (X)) = αEθ0(T (X)) .
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Remark: Here also, the practical computation of the thresholds k1 and k2 is greatly simplified whenever
the probability distribution of T (X) is symmetric when X ∼ Pθ0 .

Example: Consider two positive numbers θ0 and θ1 (θ0 < θ1) and an n-sample of a probability distribution
characterized by the following density:

f(x) =

{
θ2xe−θx , x > 0

0 , x ≤ 0

Show that, for all α ∈ [0, 1], there exists a most powerful test of level α for testing “θ = θ0” against “θ = θ1”.
Is this test unbiased? Propose a statistical test for the hypothesis “θ = θ0” against “θ > θ0”, or against
“θ 6= θ0”? Which are the properties of these tests?

1.4.3 Exercices

Exercice 1: Consider X = (X1, ..., Xn) an n-sample of iid random variables, issued from a uniform distri-
bution, U [0, θ] and let α ∈]0, 1[.

1. Consider φ a statistical test of H0 : θ = θ0 against H1 : θ > θ0. Prove that φ is uniformly most powerful
among all tests of level α if and only if Eθ0(φ(X)) = α and φ(X) = 1 whenever max(X1, ..., Xn) > θ0.

2. Prove that there exists a uniformly most powerful test of H0 : θ = θ0 against H1 : θ 6= θ0, of level α
and given by

φ(X) =

{
1 , max(X1, ..., Xn) > θ0 or min(X1, ..., Xn) ≤ θ0α

1/n

0 , otherwise.

Exercice 2: Consider X = (X1, ..., Xn) an n-sample of iid random variables having as density with respect
to the Lebesgue measure:

f(a,b)(x) = a exp(−a(x− b))1(x≥b) .

1. Suppose that a is known, fixed.

(a) Compute the probability distribution of Yi = exp(−aXi).

(b) Show that there exists a unique uniformly most powerful test of H0 : b = b0 against H1 : b 6= b0.
Describe the details of this test.

2. Show that there exists a uniformly most powerful test of H0 : a = a0, b = b0, against H1 : a > a0, b < b0.
Describe the details of this test.

1.5 Likelihood ratio tests (LRT) and asymptotic LRT

As illustrated in the previous sections, the likelihood is a valuable tool in hypothesis testing. Another way
of building a test is to maximize the likelihood ratio.

Consider (E, E ,Pθ, θ ∈ Θ) a parametric dominated model with respect to a probability measure µ. Consider
also the test problem H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1, where Θ0,Θ1 ⊂ Θ and Θ0 ∩Θ1 = ∅.

The first way of defining the test is to consider the ratio

T (x) =
supθ∈Θ0

L(x, θ)

supθ∈Θ1
L(x, θ)

,

and define a rejection region as W = {T (x) < k}.

One may show that this test is also equivalent to the maximum likelihood ratio test (LRT), defined by the
test statistic

Λ(x) =
supθ∈Θ0

L(x, θ)

supθ∈Θ L(x, θ)
,
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The LRT decision rule may be written as φ(x) = 1{Λ(x)≤k}.

Remark: The LRT statistic Λ(x) is related to the maximum likelihood estimate. Indeed, if θ̂ is the ML

estimate of θ and θ̂0 is the ML estimate on the restricted parameter set Θ0, then Λ(x) = L(x,θ̂0)

L(x,θ̂)
.

Remark: Even if in the simple cases (simple hypothesis), the LRT is equivalent to the optimal tests intro-
duced in the previous sections, the LRT is, in general, not necessarily optimal!

The effective computation of Λ(x) is greatly simplified in practice if there is an exhaustive statistic, available
for the considered model.

Theorem: Consider (E, E ,Pθ, θ ∈ Θ) a parametric model, dominated by some probability measure µ, with
likelihood L(x, θ). If T is an exhaustive statistic for θ, then, for any Θ0 ⊂ Θ, the LRT statistic Λ(x) is
factorizing across T , that is there exists a real function λ̃ such that, for all x, Λ(x) = λ̃(T (x)).

In the case where the probability distribution of Λ(X) is not easily tractable, one may use the following
asymptotic result:

Theorem (Wilks): Consider (E, E ,Pθ, θ ∈ Θ), Θ ∈ Rp, a parametric regular model, dominated by some
probability measure µ, with likelihood L(x, θ). Consider also the test problemH0 : θ = θ0 againstH1 : θ 6= θ0.
Then, with the notation

Λn =
L(X1, ..., Xn, θ0)

supθ∈Θ L(X1, ..., Xn, θ)
,

one has that

−2 ln Λn
(l)−−−−→

n→∞
χ2(p) .

The rejection region of this asymptotic test is then W = {− ln Λn > q1−α}, where q1−α is the (1−α)-quantile
of the χ2(p) distribution. Furthermore, the sequence of tests given by Λn has a power asymptotically equal
to 1, for a fixed level α.

Example:
Let (X1, ..., Xn) be an n-sample of N (m, 1), where m ∈ R is the unknown parameter. Compute the LRT
test of level α = 0.05 in the following cases

1. H0 : m = 0 against H1 : m = 2.

2. H0 : m = 0 against H1 : m 6= 0.

1.5.1 Exercices

Exercice 1: Consider τ1, τ2, ..., τm, ... independent random variables distributed according to E(θ), θ > 0 an
unknown parameter. For all n ∈ N?, let us denote Tn = τ1 + ...+ τn. Design a uniformly most powerful test
of H0 : θ ≤ θ0 against H1 : θ > θ0, of level α = 0.05, using the following :

1. the available statistic is Nt =
∑
n≥1 1(Tn≤t), for a fixed t > 0 (hint: show that Nt is distributed

according to a Poisson P(θt)).

2. the available statistics are (T1, ..., Tm), where m ∈ N? is fixed.

Exercice 2: The annual income of the individuals in a given population is a random variable, distributed
according to a Pareto law, with density

f : x 7→ aka

xa+1
1[k,+∞[(x) , a, k > 0.

1. Estimate the parameters of the considered density using the maximum likelihood procedure.

2. One wishes to test H0 : a = 1 against H1 : a 6= 1. Compute the likelihood ratio test for a given level,
α = 0.05.
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1.6 Wald test

When performing statistical hypothesis testing, the maximum likelihood estimate is a valuable tool. How-
ever, the difficulty consists in computing exactly the probability distribution of the ML estimate, θ̂n, for a
fixed sample size, n. If this is possible, then θ̂n may be used as test statistic.

Otherwise, more generally, the asymptotic distribution of θ̂n is known under regularity conditions. Hence,
when n is sufficiently large, the probability distribution of θ̂n may be approximated by a Gaussian. However,
this is quite tricky: the asymptotic covariance matrix, which is the inverse of the Fisher information matrix,
depends on the parameter θ. The following test statistic T̂ will be then preferred instead:

Definition: Consider a regular parametric dominated statistical model (En, En,Pθ, θ ∈ Θ), where Θ ⊂ Rp.
The Wald statistic for testing H0 : θ = θ0 against H1 : θ ∈ Θ1 is

T̂n = n · (θ̂n − θ)t · I(θ) · (θ̂n − θ),

where θ̂n is the maximum likelihood estimate and I(θ) is the Fisher information matrix computed for one
random variable only.

In order to prove the relevance of this test, let us next consider the sequence (T̂n) in the “big” asymptotic
model.

Theorem: Given the regular dominated parametric model
(
EN, EN, (pθ · dµ)⊗N, θ ∈ Θ

)
, where µ is the

dominating measure, and given the hypothesis testing problem H0 : θ = θ0 against H1 : θ 6= θ0, the Wald
test statistic T̂n for the projected model of size n and under the hypothesis H0 is convergent in law:

T̂n
(l)−−−−→

n→∞
χ2(p) .

The asymptotic rejection region will have the form Wn =
{
T̂n > q1−α

}
, where q1−α is the 1 − α-quantile

of the χ2(p) distribution. The power of the sequence of tests with rejection regions Wn is converging to 1,
when the level α is fixed.

Proof : The asymptotic probability distribution of θ̂n induces that of T̂n, since
√
n · I(θ)

1
2 · (θ̂n − θ) is

asymptotically distributed according to N (0, Ip) under the hypothesis H0 and T̂n = ‖
√
n · I(θ)

1
2 · (θ̂n− θ)‖2.

An exercice: Let (X1, ..., Xn) be an n-sample of N (m, 1), where m ∈ R is the unknown parameter.
Compute the Wald test of level α = 0.05 in the following cases

1. H0 : m = 0 against H1 : m = 2.

2. H0 : m = 0 against H1 : m 6= 0.
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Chapter 2

Gaussian tests

2.1 One-sample tests

2.1.1 Testing for the mean of a Gaussian distribution

Consider (X1, ..., Xn), an n-sample from a Gaussian distribution, N (m,σ2). For defining the following test
statistics, we use the unbiased empirical estimates for the mean and the variance:

X =
1

n

n∑
i=1

Xi ; S2 =
1

n− 1

n∑
i=1

(Xi −X)2

Hypothesis testing on m, with σ2 known

Under H0, the test statistic verifies
X −m0

σ√
n

∼ N (0, 1)

Hypothesis testing on m, with σ2 unknown and n small

Under H0, the test statistic verifies
X −m0

S√
n

∼ St(n− 1)

Hypothesis testing on m, with σ2 unknown and n large

Under H0, the test statistic verifies
X −m0

S√
n

(l)−−−−→
n→∞

N (0, 1)

Example:
A plant is manufacturing fluorescent tubes whose lifespan X, expressed in hours, is a random variable
distributed according to a Gaussian N (m,σ2). In order to have an acceptable output, m has to be equal to
450 and σ equal to 10. A random sample of tubes of size 16 is drawn and their lifespans are recorded. The
resulting estimation for the empirical mean and the empirical variance are

x =
1

16

16∑
i=1

xi = 454 ; s2 =
1

15

15∑
i=1

(xi − x)2 = 121 .

For a fixed level α = 0.1, test the statistical hypothesis H0 : m = 450 against H1 : m 6= 450. Which is the
statistical decision?

2.1.2 Testing for the variance of a Gaussian distribution

With the framework defined in the previous subsection:

18



Hypothesis testing on σ2, with m known

Under H0, the test statistic verifies

1

σ2
0

n∑
i=1

(Xi −m)
2 ∼ χ2(n).

Hypothesis testing on σ2, with m unknown

Under H0, the test statistic verifies

1

σ2
0

n∑
i=1

(
Xi −X

)2 ∼ χ2(n− 1).

If n is large, the following approximations may be used:

S2 =
1

n− 1

n∑
i=1

(
Xi −X

)2 ∼=−→ N (σ2,

√
2σ4

n

)
and √

2χ2(n)
∼=−→ N

(√
2n− 1, 1

)
Example:
Using the same framework as in the previous example and for a fixed level α = 0.1, test the statistical
hypothesis H0 : σ = 10 against H1 : σ 6= 10. Which is the statistical decision?

2.1.3 Testing for a theoretical proportion

Consider (X1, ..., Xn), an n-sample from a Bernoulli distribution, B(p), 0 < p < 1. For defining the following
test statistic, we use the empirical frequency, p̂ = 1

n

∑n
i=1Xi.

Under H0 : p = p0,
p̂− p0√
p0(1−p0)

n

(l)−−−−→
n→∞

N (0, 1).

Example:
Several studies on the motor development of children showed that 50% of the babies are walking at the age of
12 months. We wish to investigate the possible delay of preterm babies in acquiring the capacity of walking.
The hypothesis to be tested is that preterm babies walk later than normal babies. A sample of 80 preterm
babies is drawn at random in the general population. Among them, 35 are walking at 12 months. For a
fixed level of the test, α = 0.05, may we accept the former hypothesis? Which is the p-value associated to
this test?

2.2 Two-samples tests

Consider two samples (X1, ..., Xn1
) and (Y1, ..., Yn2

) issued from two Gaussian distributions, N
(
m1, σ

2
1

)
and

N
(
m2, σ

2
2

)
. Define the unbiased empirical estimates for the means and the variances in the two samples :

X =
1

n1

n1∑
i=1

Xi ; S2
1 =

1

n1 − 1

n1∑
i=1

(Xi −X)2 ;

Y =
1

n2

n2∑
j=1

Yj ; S2
2 =

1

n2 − 1

n2∑
j=1

(Yj − Y )2 .

2.2.1 Testing for the equality of the variances

Testing for σ1 = σ2, with m1 and m2 known

Under H0, the test statistic verifies

1
n1

∑n1

i=1 (Xi −m1)
2

1
n2

∑n2

j=1 (Yj −m2)
2 ∼ F (n1, n2)
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Testing for σ1 = σ2, with m1 and m2 unknown

Under H0, the test statistic verifies

1
n1−1

∑n1

i=1

(
Xi −X

)2
1

n2−1

∑n2

j=1

(
Yj − Y

)2 ∼ F (n1 − 1, n2 − 1)

Example:
We are interested in the lifespan of two types of devices, A and B. The lifespan is denoted by X and is
considered to be a random variable, distributed according to a Gaussian distribution, N (mA, σ

2
A) for devices

A and N (mB , σ
2
B) for devices B.

In order to make a statistical test, two samples are randomly chosen, of sizes nA = 30 and nB = 60, and we
compute the following estimations (measured in hours):

xA = 2 000 the estimated empirical mean in sample A;
xB = 2 200 the estimated empirical mean in sample B;
sA = 300 the estimated empirical standard deviation in sample A;
sB = 360 the estimated empirical standard deviation in sample B.

Test the equality of the variances in the two populations, for a fixed level α = 0.05.

2.2.2 Testing for the equality of the means

Testing for m1 = m2, with σ2
1 and σ2

2 known

Under H0, the test statistic verifies
X − Y√
σ2
1

n1
+

σ2
2

n2

∼ N (0, 1)

Testing for m1 = m2, with σ2
1 and σ2

2 unknown, n1 and n2 large

Under H0, the test statistic verifies
X − Y√
S2
1

n1
+

S2
2

n2

(l)−−−−→
n→∞

N (0, 1)

Testing for m1 = m2, with σ2
1 and σ2

2 unknown, but equal

Under H0, the test statistic verifies

X − Y√(
1
n1

+ 1
n2

) ∑n1
i=1(Xi−X)

2
+
∑n2
j=1(Yj−Y )

2

n1+n2−2

∼ St (n1 + n2 − 2)

Example:
Considering the test from the previous example states the equality of variances, may one conclude that
the mean lifespan of devices B is significantly larger than the mean lifespan of devices A, for a fixed level
α = 0.05?

2.2.3 Testing for the correlation coefficient (Pearson test)

In this section, let us consider (X1, Y1),...,(Xn, Yn), a n-sample of iid random vectors, distributed according to

a GaussianN
((

mX

mY

)
,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
. The parameter of this model is θ =

(
mX ,mY , σ

2
X , σ

2
Y , ρ

)
∈

Θ ⊂ R5.

In this framework, testing ρ = 0 against ρ 6= 0 is equivalent to testing the independence of X and Y .

When writing the log-likelihood of the n-sample, one gets

lnL(Xn
1 , Y

n
1 , θ) = −n ln(2πσXσY

√
1− ρ2)

− 1
2(1−ρ2)

(
1
σ2
X

∑n
i=1(Xi −mX)2 − 2ρ

σXσY

∑n
i=1(Xi −mX)(Yi −mY ) + 1

σ2
Y

∑n
i=1(Yi −mY )2

)
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After maximizing the log-likelihood, one gets the ML estimates for θ:

m̂X = X ; m̂Y = Y ; σ̂2
X =

1

n

n∑
i=1

(Xi −X)2 ; σ̂2
Y =

1

n

n∑
i=1

(Yi − Y )2

and ρ̂ = 1
σ̂X σ̂Y

∑n
i=1(Xi −X)(Yi − Y ).

Under H0 : Θ0 = {θ ∈ Θ | ρ = 0}, the ML estimate is θ̂0 = (X,Y , σ̂2
X , σ̂

2
Y , 0).

The log-likelihood ratio may then be written as follows

lnλ(Xn
1 , Y

n
1 ) = ln

supθ∈Θ0
L(Xn

1 , Y
n
1 , θ)

supθ∈Θ L(Xn
1 , Y

n
1 , θ)

= ln
L(Xn

1 , Y
n
1 , θ̂0)

L(Xn
1 , Y

n
1 , θ̂)

=
n

2
ln(1− ρ̂2) .

One may remark that the likelihood ratio is a decreasing function of |ρ̂|, but also of |Tn|, where Tn =
√
n−2ρ̂√
1−ρ̂2

.

If ρ = 0, one may show that Tn ∼ St(n− 2) and derive the corresponding rejection region.

Example: In the following table, the cylinder capacity and the power are reported for 28 car brands. The
estimated correlation coefficient between the two is equal to 0.9475. Is this statistically significant, for a
given level α = 0.05?

Figure 2.1: Relation between cylinder capacity and power (eric.univ-lyon2.fr/~ricco/cours/cours/
Analyse_de_Correlation.pdf)
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2.2.4 Testing for the equality of two proportions

Consider two samples (X1, ..., Xn1
) and (Y1, ..., Yn2

) issued from two Bernoulli distributions, B(p1) and B(p2).
Define the empirical frequencies in the two samples

p̂1 =
1

n1

n1∑
i=1

Xi ; p̂2 =
1

n2

n2∑
j=1

Yj ,

as well as the overall frequency f̂ = 1
n1+n2

(∑n1

i=1Xi +
∑n2

j=1 Yj

)
= 1

n1+n2
(n1p̂1 + n2p̂2).

Under H0 : p1 = p2,
p̂1 − p̂2√

f̂(1− f̂)
(

1
n1

+ 1
n2

) (l)−−−−→
n→∞

N (0, 1).

Example:
A teaching assistant wishes to test whether the fact of students attending the class improves their results
on the exam. For this, he considers a random sample of 100 students with the following characteristics :

Exam passed Exam missed Overall
Attend the class 28 12 40
Don’t attend the class 33 27 60
Overall 61 39 100

Formalize the wording of the exercice; which is the decision rule for a fixed level α = 0.1? Which is the
decision of the teaching assistant given the observed values in the sample?

2.3 The linear model

2.3.1 Analysis of variance

We consider here k independent samples, (Xij)i=1,...,k;j=1,...,ni
of respective sizes ni for i = 1, ..., k, issued

respectively from k Gaussian distributions, Xij ∼ N (mj , σ
2). The variances are supposed to be equal

(homoscedasticity).

The issue here is to test the equality of the means within the k groups :
H0 : m1 = ... = mk = m against H1 : ∃i 6= i′ such that mi 6= mi′ .

In order to do so, we need to introduce the empirical means within the k groups and on all groups

Xi• =
1

ni

ni∑
j=1

Xij , ∀i = 1, ..., k ; X•• =
1

n

k∑
i=1

ni∑
j=1

Xij ,

where n = n1 + ... + nk. With the above assumptions, one may remark that, under H0, Xi• ∼ N (m, σ
2

ni
),

∀i = 1, ..., k and X•• ∼ N (m, σ
2

n ).

Let us remark that we may alternatively write the model in a linear form

Xij = mi + εij , εij ∼ N (0, σ2) , ∀j = 1, ..., ni , i = 1, ..., k .

Furthermore, with the notation mi = µ+ αi, where µ is the main, general effect and αi is the specific effect
of factor i, and with the constraint

∑k
i=1 niαi = 0. With these notations, the previous hypothesis may be

written
H0 : α1 = ... = αk = 0 against H1 : ∃i ∈ {1, ..., k} such that αi 6= 0.

Under H0, Xij = µ+ εij and, using least squares (or ML) estimates, one gets that µ̂ = X•• and the forecast

X̂ij = µ̂. Then, the residual variance or the residual sum of squares is

SST =

k∑
i=1

ni∑
j=1

(
Xij −X••

)2
,
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which may be further decomposed into the within sum of squares (SSW) and the between sum of squares
(SSB):

SST =

k∑
i=1

ni∑
j=1

(
Xij −Xi•

)2
+

k∑
i=1

ni∑
j=1

(
Xi• −X••

)2
= SSW + SSB .

By remarking that, under H0, SSW ∼ σ2χ2(n− k) and SSB ∼ σ2χ2(k − 1), one may easily derive the test
statistic and its probability distribution

F 2 =
SSB/(k − 1)

SSW/(n− k)
∼H0

F(k − 1, n− k) .

Example: A school wishes to test if there is an examiner effect on the results obtained by the candidates
at the entrance examination. For each of the three examiners of the school, a small sample of results was
selected, resumed in the following table :

Examiner A B C
Grades 10, 11, 11 8, 11, 11, 13 10, 13, 14, 14

12, 13, 15 14, 15, 16, 16 15, 16, 16
Sample size 6 8 7

Under the regular assumption (independent samples, Gaussian distribution, homoscedasticity), make a sta-
tistical test in order to check the existence of an examiner effect.
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Chapter 3

Nonparametric hypothesis testing

3.1 χ2-tests

The χ2 test was originally designed for checking assumptions on the goodness-of-fit of a probability distribu-
tion, but it may also be used for other purposes, such as checking whether two variables are independent or
if two random samples are issued from the same distribution. The test is essentially based on an asymptotic
property of the multinomial distribution.

Consider (X1, ..., Xn) an iid n-sample issued from the probability model (E, E , P ). Let us also consider a
partition of E, {E1, ..., Em}, such that E = ∪mk=1Ek and Ek ∩ El = ∅, ∀k 6= l ∈ {1, ...,m}.

Next, let us define, for all k ∈ {1, ...,m} ,

Nk(n) =

n∑
i=1

1Xi∈Ek .

If pk = P(Xi ∈ Ek), ∀k ∈ {1, ...,m}, then the random vector (N1(n), ..., Nm(n)) is distributed according to
a multinomial distribution, M(n; p1, ..., pm):

P(N1(n) = n1, ..., Nm(n) = nm) =
n!

n1! · · ·nm!
pn1

1 · · · pnmm .

Let us also denote Pn the empirical distribution allowing to approximate P based on the sample (X1, ..., Xn):
Pn = 1

n

∑n
i=1 δXi .

Definition: The (pseudo) χ2-distance between Pn and P is defined by

D(Pn,P) =

m∑
k=1

(Nk(n)− npk)2

npk
.

Theorem: The following asymptotic result holds for D(Pn,P),

D(Pn,P)
(l)−−−−→

n→∞
χ2(m− 1) .

Proof : In order to prove this theorem, we shall use a central limit theorem for random vectors. Let us first
introduce the random vectors Yi = (1Xi∈E1 , ...,1Xi∈Em), for all i = 1, ..., n. Then, N(n) =

∑n
i=1 Yi and

Cov(Yi,k, Yi,l) = E (1Xi∈Ek1Xi∈El)− pkpl = δlkpk − pkpl .

The covariance matrix of Yi is then given by Σ = ∆π − ππ′, where π′ = (p1, ..., pm) and ∆π is a diagonal
matrix, whose diagonal is equal to π elements. The CLT for vectors states that

N(n)− nπ√
n

(l)−−−−→
n→∞

Nm(0,Σ) .

If we consider now f : Rm → R+ such that f(t) =
∑m
k=1

t2k
pk

, then D(Pn,P) = f
(
N(n)−nπ√

n

)
, hence

D(Pn,P)
(l)−−−−→

n→∞
f(Z) , Z = (Z1, ..., Zm) ∼ Nm(0,Σ) .
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It remains to derive the probability distribution of f(Z)?
First, let us remark that f(Z) = ‖AZ‖2, with

A =


1√
p1
· · · 0

...
. . .

...
0 · · · 1√

pm

 .

For any orthogonal transformation U : Rm → Rm, f(Z) = ‖AZ‖2 = ‖UAZ‖2. But, AZ is distributed
according to a centered Gaussian distribution with covariance matrix AΣA′ = Im −

√
π
√
π
′
, hence UAZ

is distributed according to a centered Gaussian distribution with covariance matrix U(Im −
√
π
√
π
′
)U ′ =

Im− (U
√
π)(U

√
π)′. By considering U such that U

√
π = (0, ..., 0, 1)′ (this is possible since ‖

√
pi‖ = 1), then

U(Im −
√
π
√
π
′
)U ′ =


1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 0

 .

Eventually, f(Z) = ‖Z̃‖2, where Z̃ ∼ N
(

0,

(
Im−1 0

0 1

))
. Using the results on Gaussian vectors, one

deduces that Z̃k are independent, that Z̃k ∼ N (0, 1), ∀k = 1, ...,m − 1 and Z̃m = 0 a.s. The probability
distribution of f(Z) is χ2(m− 1).

Remark: The above proof is very similar to that of the Cochran theorem, which may also be used here
directly.

3.1.1 Goodness-of-fit χ2-test

Consider here X1, X2, ..., Xn an n-sample of iid random variables with probability distribution P, supposed
to be unknown, and defined on (E, E). We would like to test the hypothesis that P is equal to a particular
distribution P0, i.e. to decide between

H0 : P = P0 against H1 : P 6= P0 .

Furthermore, consider also a partition of E, {E1, ..., Em}, such that E = ∪mk=1Ek and Ek ∩El = ∅, ∀k 6= l ∈
{1, ...,m}. In most of the cases, the sample is resumed by the random vector N(n) = (N1(n), ..., Nm(n)),
where Nk(n) =

∑n
i=1 1Xi∈Ek , ∀k = 1, ...,m.

The test probability distribution P0 is resumed by pk0 = P0(Ek), ∀k = 1, ...,m.

Intuitively, if the Xi’s are distributed according to P0, the (psedo) χ2-distance D(Pn,P0) should be small.

Furthermore, under H0, D(Pn,P0)
(l)−−−−→

n→∞
χ2(m−1), and if there exists k such that pk 6= pk0 , the law of large

number states that
Nk(n)

n

a.s.−−−−→
n→∞

p 6= pk0 ⇒ D(Pn,P0)
a.s.−−−−→
n→∞

0 .

With the above remarks, we may conclude that D(Pn,P0) may be a suitable test statistic:

Tn(Xn
1 ) = D(Pn,P0) =

m∑
k=1

(Nk(n)− npk0)2

npk0
.

The rejection region may then be written as W = {Tn(Xn
1 ) > q1−α}, where q1−α is the (1 − α)-quantile of

the χ2(m−1) probability distribution. Also, the decision rule of the test may be written as φ(x) = 1W (x) =
1{Tn(xn1 )>q1−α}.

Remark: The χ2 test is an asymptotic test. In practice, we consider that the results are reliable provided
that npk0 ≥ 5, ∀k = 1, ...,m. If this is not the case, the partition of E may be modified by concatenating
some of its elements.

Remark: If one wishes to test whether the sample is issued from a family of parametric probability dis-
tributions, indexed by θ ∈ Rd, then θ will be estimated from the sample (X1, ..., Xn) - using, for example,
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the maximum likelihood or any other consistent and asymptotically Gaussian estimate -, and the test is
identical, except for the number of degrees of freedom of the χ2-distribution, which is now equal to m−d−1.

Example:
We would like to test whether the number of births in a maternity ward is uniformly distributed across the
year. A sample of 88 births is available and may be resumed as follows:

April - June July - August September - October November - March
27 20 8 33

The hypothesis to be tested are:
H0 : “the births are uniformly distributed across the year”;
H1 : “the births are not uniformly distributed across the year”.

Under H0, we are in an equiprobability framework. Under this hypothesis, the expected values npk0 previously
defined may be resumed in the following table :

April - June July - August September - October November - March
3
1288 = 22 2

1288 = 15 2
1288 = 15 5

1288 = 37

The test statistic is then equal to :

D2 =
(27− 22)2

22
+

(20− 15)2

15
+

(8− 15)2

15
+

(33− 37)2

37
= 6.51 .

Moreover, under H0, D2 ∼ χ2(4− 1) = χ2(3).

If the level of the test is α = 0.05, one gets from the tables that q0.95 = 7.815, the 0.95-quantile of the χ2(3)
distribution. The rejection region of the test is then W =

{
D2 ≥ 7.815

}
.

Since D2 = 6.51 < 7.815 = q0.95, the null H0 hypothesis cannot be rejected given the observed data, and we
conclude that the births in the maternity ward are uniformly distributed.

We may also compute the p-value associated to this test, p-value = P
(
χ2(3) ≥ 6.51

)
= 0.09. With a test

level α = 0.05, H0 cannot be rejected, but with α = 0.10, H0 is rejected. The test is significant at 10%, but
not at 5%.

Let us now consider the statistics for the entire population of the country, for a whole year. This may be
summarized by the following table:

April - June July - August September - October November - March
27385 19978 8106 33804

In this case, the expected values npk0 are:

April - June July - August September - October November - March
3
1289273 = 22318 2

1289273 = 14879 2
1289273 = 14879 5

1289273 = 37197

and the test statistic is

D2 =
(27385− 22318)2

22318
+

(19978− 14879)2

14879
+

(8106− 14879)2

14879
+

(33804− 37197)2

37197
= 6290.39 .

For a fixed level, α = 0.05, the critical value of the χ2 does not change. Hence, since

D2 = 6290.39 > 7.815 = q0.95 ,

we may conclude that, as D2 ∈W , H0 is rejected and the probability distribution of the births is not uniform
across the year.

We may also compute the p-value of the test, p-value = P
(
χ2(3) ≥ 6290.39

)
= 0, hence the level of the test

α may be fixed as small as wished.

Remark: Among the two tests, the second is preferred since the size of the sample is much larger and the
results are thus more reliable.
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3.1.2 χ2-test for independence

The χ2-test may also be used for checking the independence of two random variables. Consider (X1, Y1),...,
(Xn, Yn) an n-sample of iid random vectors, where the Xi’s are valued in {a1, ..., am1} and the Yi’s are valued
in {b1, ..., bm2} .

The hypothesis to be tested are:

{H0 : X and Y are independent} ; against {H1 : X and Y are not independent} .

In this case, the hypothesis H0 is equivalent to

P {(X,Y ) = (ai, bj)} = pi•p•j = P(X = ai)P(Y = bj), ∀i = 1, ...,m1; j = 1, ...,m2.

The hypothesis H0 maybe also written in terms of membership to a parametric family of probability distri-
butions. Indeed, the unknown parameter would be

θ = (p1•, ..., pm1−1•, p•1, ..., p•m2−1) ∈]0, 1[m1+m2−2.

The maximum likelihood estimate for θ is then

θ̂ =

(
N1•

n
, ...,

Nm1−1•

n
,
N•1
n
, ...,

N•m2−1

n

)
,

where

• Ni• =
∑n
l=1 1{Xl=ai}, ∀i = 1, ...,m1;

• N•j =
∑n
l=1 1{Yl=bj}, ∀j = 1, ...,m2;

• and also, let us denote Ni,j =
∑n
l=1 1{Xl=ai,Yl=bj}, ∀i = 1, ...,m1 and ∀j = 1, ...,m2.

Using the asymptotic Gaussian distribution of the maximum likelihood estimate, one may easily prove that:

Tn(Xn
1 , Y

n
1 ) =

m1∑
i=1

m2∑
j=1

(
Ni•N•j

n −Ni,j
)2

Ni•N•j
n

(l)−−−−→
n→∞

χ2((m1 − 1)(m2 − 1)) .

Remark: The rejection region may then be written as W = {Tn(Xn
1 , Y

n
1 ) > q1−α}, where q1−α is the

(1−α)-quantile of the χ2((m1− 1)(m2− 1)) probability distribution. Also, the decision rule of the test may
be written as φ(x) = 1W (x) = 1{Tn(xn1 ,y

n
1 )>q1−α}.

Remark: Since the χ2 test is an asymptotic test, in practice we consider that the results are reliable if
Ni,j ≥ 5, ∀i = 1, ...,m1 and ∀j = 1, ...,m2. If this is not the case, some values on the support of X and/or
Y may be put together.

Remark: If the variables for which the test is performed are not categorical or discrete with a finite support,
finite partitions of the supports of X and Y may be considered.

Example:
The following table resumes the results of a study conducted on 120 young adults in Switzerland and concerns
the use of mobile phones. Two variables are available, X, the mean duration of the phone calls emitted or
received, and Y , the education level.

Duration/Education level High-school University
0 to 2 minutes 7 10
2 to 4 minutes 21 15
4 to 6 minutes 42 25

Can one conclude, based on this data, at the existence of a relation between the education level and the
time spent on the phone by young adults in Switzerland?

First, let us compute the marginal numbers, Ni• and N•j :
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Duration/Education level High-school University Overall
0 to 2 minutes 7 10 17
2 to 4 minutes 21 15 36
4 to 6 minutes 42 25 67

Overall 70 50 120

Next, let us compute the expected statistics in case on independence (under H0), Ni•N•j :

Duration/Education level High-school University Overall
0 to 2 minutes 9.92 7.08 17
2 to 4 minutes 21 15 36
4 to 6 minutes 39.08 27.92 67

Overall 70 50 120

The test statistic is:

T =
(7− 9.92)2

9.92
+

(10− 7.08)2

7.08
+

(21− 21)2

21
+

(15− 15)2

15
+

(42− 39.08)2

39.08
+

(25− 27.92)2

27.92
= 2.59

Moreover, under H0, T ∼ χ2((2− 1)(3− 1)) = χ2(2). If the level of the test is α = 0.05, the critical value is
the 0.95-quantile of a χ2(2) distribution, q0.95 = 5.991.

Since
T = 2.59 < 5.991 = q0.95 ⇒ T /∈W ,

we decide, based on the available data, that we cannot state the existence of a relation between the education
level and the duration of the phone calls.

One may also compute the p-value of this test, p-value = P
(
χ2(2) ≥ 2.59

)
= 0.28.

3.1.3 A few more exercices

Exercice 1
After long years of clinical trials, the survival rates (without medical treatment) for bronchial-cancer patients
were established:

survival without medical treatment ≤ 6 months 7-12 months 13-24 months ≥ 24 months
rate 0.45 0.35 0.15 0.05

At the same time, on a sample of sixty patients having received medical treatment combining chemotherapy
and radiotherapy, the following statistics were recorded:

survival with medical treatment ≤ 6 months 7-12 months 13-24 months ≥ 24 months
number of patients 6 24 12 18

For fixed level α = 0.05, may one conclude that the medical treatment is efficient? Which is the p-value
associated to this test?

Exercice 2
We consider the following data, issued from Bortkiewicz, 1898, and summarizing the number of soldiers in
the Prussian army killed accidentally by horse kicks, during 200 years.

No of deaths per year 0 1 2 3 4
Frequency 109 65 22 3 1

1. Compute the empirical mean of the random variable “number of accidental deaths per year”, x.

2. For a fixed level, α = 0.05, test whether the data is issued from a Poisson distribution with parameter
λ = x. Which is the p-value of this test?

Exercice 3
In a study issued in 2000, two Spanish researchers investigated hundreds of facial expressions of men and
women on their wedding photo. In all, 389 couples were studied and, for each face, it was recorded whether
it was smiling or not. The results may be summarized as follows:
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Facial expression/Gender Men Women Overall
Smile 285 366 651

No smile 104 23 127
Overall 389 389 778

May one conclude at the existence of a relation between the gender and the facial expression on the wedding
photo?

3.2 Kolmogorov-Smirnov tests

3.2.1 Some generalities

We consider here X1, X2, ... a sequence of iid random variables with c.d.f. F (x) = P(X1 ≤ x), supposed to
be unknown. We would like to test the hypothesis that F is equal to a particular distribution F0, i.e. to
decide between

and we define

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}

the empirical cumulative distribution function (which, like F , is increasing, left-continuous and has
limit at the right in each point).

Glivenko-Cantelli lemma (add proof!)

sup
x∈R
|Fn(x)− F (x)| as−−−−−→

n→+∞
0.
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Figure 3.1: Empirical distribution (10 and 100 observations) and theoretical distribution, N (0, 1)

Remark: For simplicity reasons, we shall suppose hereafter that F is strictly increasing and continuous
everywhere. Then, the inverse F−1 of F has its usual meaning, F (X) is uniformly distributed on [0, 1] and
F−1(U) has the same probability distribution as X1, where U ∼ U [0, 1].
Without this hypothesis, it remains exact that F−1(U) has the same probability distribution as X1. How-
ever, considering, for instance, X1 ∼ B

(
1
2

)
proves that F (X1), which takes three values only, cannot be

uniform.

The Glivenko-Cantelli lemma justifies the idea of considering a test statistic of the form ‖Fn−F0‖∞ in order
to test H0 : F = F0 against H1 : F 6= F0. If ε ↘ 0, the previous lemma proves that the sequence of tests
having

Wn = {‖Fn − F0‖∞ ≥ ε}

as rejection region is consistent. In order to consider the level of such a test, one must know the approximate
quantiles of the probability distribution of ‖Fn − F0‖∞. The following result proves that this distribution
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depends on n only; hence, it may be tabulated after having simulated uniform distributions.

Theorem Kolmogorov - Smirnov (1): Suppose F = F0. The test statistics

Dn =
√
n supx∈R |Fn(x)− F0(x)| ;

D+
n =

√
n supx∈R (Fn(x)− F0(x)) ;

D−n =
√
n supx∈R (F0(x)− Fn(x)) ,

have probability distributions independent of F0. Moreover, D+
n

(l)
= D−n .

Proof : Using the remark above, one may see that

Fn(x)− F (x)
(l)
= Un (F (x))− F (x) ,

where Un(t) is the empirical c.d.f. of an n-sample issued from a uniform distribution. Then,

sup
x∈R
|Fn(x)− F (x)| (l)

= sup
t∈[0,1]

|Un(t)− t| .

Since this statistic is independent of F , it is also called a free statistic.

Let us also remark that the random variables D+
n and D−n have the same probability distribution. If one

disposes of an n-sample of U [0, 1], let us eventually remark that the expressions Dn, D+
n and D−n are maxi-

mums of at most 2n values, since it is enough to consider the values for the observations in the sample, as
well as the left limits at these points for computing the supremum in R.
Following this, one may easily tabulate these probability distributions using the law of large numbers in the
case where a sufficiently large number of independent uniform samples are available

Next, we admit the following (difficult) theorem :
Theorem Kolmogorov - Smirnov (2):

lim
n→∞

P
(
D+
n > λ

)
= exp

(
−2λ2

)
and

lim
n→∞

P (Dn > λ) = 2

∞∑
k=1

(−1)k+1 exp
(
−2λ2k2

)
.

The asymptotic result is generally admitted whenever n > 50.

For a complete proof of the previous result, refer to P. Doukhan, Empirical processes. Let us however give
some hints for understanding at least the factor

√
n. The following lemma, easy to prove, is left as exercice.

Lemma: Let Bn(x) =
√
n (Fn(x)− F (x)). Then, for any −∞ < x1 ≤ x2 ≤ ... ≤ xk <∞, one has

(Bn (x1) , ..., Bn (xk))
(l)−−−−−→

n→+∞
(B1, ..., Bk) ,

(B1, ..., Bk) ∼ N (0,Σ) ,

Σ = (σij)i,j=1,...,k , σij = F (xi) ∧ F (xj)− F (xi)F (xj) .

This lemma allows to figure that a functional central limit theorem is guiding the previous theorem. Then,

if one admits that
√
n(Fn − F )

(l)−−−−−→
n→+∞

B ◦ F , where B is a Brownian bridge: (B(t))t∈R such that∑I
i=1 aiB(ti) is Gaussian, ∀I, ∀ai ∈ R, ∀ti ∈ [0, 1], i = 1, ..., I and such that B(s) ∼ N (0, s(1 − s)) and

Cov(B(t), B(s)) = t ∧ s− ts, s, t ∈ [0, 1].

The probability distributions in Theorem 2 are those of ‖B‖∞.
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3.2.2 Testing F = F0

For testing the hypothesis F = F0, F ≤ F0, F ≥ F0, one should use the (1− α)-quantiles dn,1−α, d+
n,1−α of

the probability distributions of Dn and, respectively, D±n and reject the null hypothesis whenever the test
statistic exceeds the corresponding threshold.

• For testing F = F0 against F 6= F0, the rejection region is W = {Dn > dn,1−α} ;

• For testing F ≤ F0 against F > F0, the rejection region is W =
{
D+
n > d+

n,1−α
}

;

• For testing F ≥ F0 against F < F0, the rejection region is W =
{
D−n < d+

n,α

}
.

All of the above tests are of level α and consistent.

In order to prove the last assertion, let us remark, for example,

F < F0 ⇒ lim sup
n

sup
x

(Fn(x)− F (x)) ≤ 0 ,

hence P (supx (Fn(x)− F (x)) < d) −−−−−→
n→+∞

1, ∀d > 0.

The asymptotic behavior of the sequence dn,1−α is obtained using Theorem (2). These expressions are
computed using the rank representations which will be detailed in the next sections.

3.2.3 The case of two samples

Let us now consider two independent samples of iid random variables X1, ..., Xn ∼ F and Y1, ..., Ym ∼ G,
where F and G are the corresponding cumulative distribution functions. Then, similarly to the previous
reasoning, one may prove the following result.

Theorem: Let cn,m =
(

1
n + 1

m

)− 1
2 . The test statistics

Dn,m = cn,m supx∈R |Fn(x)−Gm(x)| ;
D+
n,m = cn,m supx∈R (Fn(x)−Gm(x)) ;

D−n,m = cn,m supx∈R (Gm(x)− Fn(x)) ,

have probability distributions independent of F and G, if these c.d.f. are continuous and strictly increasing.

The goal is to test one of the following couples of hypothesis :

• For testing F = G against F 6= G, the rejection region is W = {Dn,m > dn,m,1−α} ;

• For testing F ≤ G against F > G, the rejection region is W =
{
D+
n,m > d+

n,m,1−α
}

;

• For testing F ≥ G against F < G, the rejection region is W =
{
D−n,m < d−n,m,α

}
.

Under these conditions, the sequences Ui = F (Xi) and Uj = G(Yj) are iid and distributed according to a
uniform distribution in [0, 1]. The quantiles of these distributions may be simulated and tabulated.

3.2.4 Rank-based expressions of the test statistics

Since we supposed the distributions to be continuous, the probability of ex-aequo in the following list is null.
Although we shall return to this in a more detailed manner in the following section, in order to obtain a
simplified writing of these tests, it is of interest to introduce the rank of Xi is a list of variables (X1, ..., Xn)
(with no ex-aequo):

RX(i) =
∑
j 6=i

1(Xj≤Xi) .

This is also the rank occupied by Xi when the list of variables is ordered in ascending fashion, X(1) < X(2) <
... < X(n), called order statistic.
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Then, one may directly derive the test statistics for the two-samples problem as follows :

Dn,m = cn,m max
{
| in −

j
m | | U(i) < V(j) < U(i+1)

}
;

D+
n,m = cn,m max

{
i
n −

j
m | U(i) < V(j) < U(i+1)

}
;

D−n,m = cn,m max
{
j
m −

i
n | U(i) < V(j) < U(i+1)

}
;

and, for the one-sample problem,

Dn =
√
nmax

{
| in − u| | U(i) < u < U(i+1)

}
;

D+
n =

√
nmax

{
i
n − u | U(i) < u < U(i+1)

}
;

D−n =
√
nmax

{
u− i

n | U(i) < u < U(i+1)

}
.

3.3 Some practical examples

Example 1: lifespan of an electrical device.
A sample of 5 devices were tested. The observed lifespans, measured in hours, were {133; 169; 8, 122; 58}.
One would like to test if the lifespan of these devices is distributed according to an exponential law.

1. Give an estimation for the parameter of an exponential distribution which could be fit to the observed
data;

2. State the hypothesis to test (null and alternative).

3. Compare the empirical distribution to the theoretical distribution using a Kolmogorov-Smirnov test.
Which is the conclusion of the test?

Solution of example 1.

1. The parameter of an exponential distribution, E(λ), represents the inverse of the expected value,
E(X) = 1

λ . Let us then compute the observed empirical mean :

x =
1

5
(133 + 169 + 8 + 122 + 58) = 98 .

Then, an estimation of λ is λ̂ = 1
x = 1

98 .

2. The hypothesis to test are H0:“the lifespan of the considered devices is distributed according to E( 1
98 )”

versus H1:“the lifespan of the considered devices is not distributed according to E( 1
98 )”.

3. The information from the sample may be resumed as in the following table Then, the test statistic

Ordered observed sample x(i) 8 58 122 133 169
Cumulative sizes ni 1 2 3 4 5
Cumulative frequencies fi 0.2 0.4 0.6 0.8 1
Theoretical c.d.f. F0(x(i)) 0.078 0.0447 0.712 0.743 0.822
|F0(x(i))− fi| 0.122 0.047 0.112 0.057 0.178

is D5 =
√

5 × 0.178 = 0.398. For n = 5 and α = 0.05, the Kolmogorov-Smirnov table provides the
quantile d5, 0.95 = 0.5633. Since D5 < d5, 0.95, then, according to the available data, the hypothesis H0

cannot be rejected and the exponential distribution E( 1
98 ) will be accepted as probability distribution

for the sample.

Example 2: tree heights in a forest.
Two samples of trees were selected in two forests. We are interested to know if the distributions of the
heights are the same within the two forests. The registered values for the two samples are :

{x1, ..., x12} = {23.4, 24.4, 24.6, 24.9, 25, 26.2, 26.3, 26.8, 26.9, 27, 27.6, 27.7}

{y1, ..., y14} = {22.5, 22.9, 23.7, 24.0, 24.4, 24.5, 25.3, 26, 26.2, 26.4, 26.7, 26.9, 27.4, 28.5}
State the hypothesis to test (null and alternative). Compare the two empirical distributions using a
Kolmogorov-Smirnov test. Which is the conclusion of the test?
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3.4 Exercices

Exercice 1: At the start of a horse race, there are usually eight lanes and the first lane is the closest to
the fence. One supposes that a horse is more likely to win a race when it starts from a level with a low
number, that is it is closed to the inner fence. The data from 144 races is available and may be summarized
as follows: State the hypothesis to test (null and alternative). Compare the empirical distribution to the

Lane number 1 2 3 4 5 6 7 8
Winners 29 19 18 25 17 10 15 11

theoretical distribution using a Kolmogorov-Smirnov test. Which is the conclusion of the test?

Exercice 2: A meticulous antique dealer records in a notebook the time spent between the arrival of
customers during a continuous day of work, from 10am to 6pm. The arrival times for one given day are the
following :

{10h15; 10h40; 11h15; 11h27; 12h57; 13h03; 14h18; 15h23; 16h20; 16h24; 17h09} .

These arrival times allow to compute, for example, the waiting time, in minutes, between two costumers:

{25; 35; 12; 90; 6; 75; 65; 57; 4; 45} .

The antique dealer knows the costumers arrive independently and, but he would like to further know if the
number of costumers arriving in a time interval T depends on T only, or also on the instant in time with
respect to which the time interval T is observed.

1. Show that, if the number of costumers arriving independently in a time interval T depends on T only,
the waiting time between two costumers is distributed according to an exponential law, and that the
number of customers arriving during the interval T is distributed according to a Poisson law.

2. Give an estimation for the mean waiting time between two arrivals of customers.

3. State the hypothesis to test (null and alternative). Compare the empirical distribution to the theoretical
distribution using a Kolmogorov-Smirnov test. Which is the conclusion of the test?

3.5 Rank tests

3.5.1 Some considerations on rank statistics

3.5.2 Wilcoxon test

Let us describe here a nonparametric test useful for deciding whether two samples are issued from the same
probability distribution or not. Consider two independent samples X1, ..., Xn ∼ F and Y1, ..., Ym ∼ G, where
F and G are the corresponding cumulative distribution functions. F and G are supposed to be continuous
and strictly increasing.

The hypothesis to test are H0 : F = G against H1 : F 6= G.

Let us denote N = n + m and (Z1, ..., ZN ) = (X1, ..., Xn, Y1, ..., Ym). Next, we consider the ranks and the
order statistics related to the concatenated samples :

Z(1) < Z(2) < ... < Z(N−1) < Z(N) , RZ(i) = 1 +
∑
j 6=i

1Zj<Zi , 1 ≤ i ≤ N.

Then, RZ is the permutation of {1, ..., N} such that ZRZ(i) = Z(i), ∀i = 1, ..., N . This random variable has
a uniform distribution on SN , the set of permutations of {1, ..., N} (of cardinal N !).

Definition: The sum of ranks of the Xi , Wn =
∑n
i=1RZ(i), is called the Wilcoxon statistic.

The probability distribution of Wn (which depends both on n and m) is tabulated. Let us remark that n
and m can be switched, provided that Wn is replaced by a sum from n+ 1 to N , hence the quantile tables
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contain the case n ≤ m only. Obviously, this probability distribution does not depend on F if F = G.

When testing H0 : F = G against H1 : F > G, the rejection region has the form W = {Wn > wα}, where
α > 0 is the test level. Here wα is the (1− α)-quantile of the probability distribution of Wn, which can be
tabulated since it is the same (under H0) probability distribution for WU =

∑n
i=1RU (i), for a random iid

sample U = (U1, ..., UN ) of uniform variables, U [0, 1].

Theorem: Under H0,
Wn − EWn√

VWn

(l)−−−−→
n→∞

N (0, 1) ,

where EWn = nERZ(1) = n
∑N
j=1

j
N = n(N+1)

2 (since P(RZ(i) = j) = 1
N ) and VWn = n(N+1)(N−n)

12 .

Example:
The concentration of a particular chemical in a river is subject to daily measurements. The values registered
at two spots P1 and P2 are the following :

Point 1 (X) 5.32 5. 00 5.14 5.00 5.35 5.17 5.11 526
Point 2 (Y ) 5.33 5.13 5.16 5.09 5.49 5.32 5.24 5.23

1. Is there a statistically significant difference in the concentrations on the pollutant between the two
spots?

2. The second spot is situated downstream the first spot. One wants to tests whether the discharges of a
plant situated between the two spots lead to an increase in the concentration of the pollutant at spot
2. The table above contains the registered values of these concentration during eight days. How is the
test to be modified in this case? What is the conclusion of the test?

3.5.3 Wilcoxon signed-rank test

Consider (X1, ..., Xn) an iid n-random sample, issued from the probability distribution P, continuous with
respect to the Lebesgue measure on (R,B(R)). P is supposed to be unknown and the test checks whether

P is symmetric around zero. Let us denote
(
Xa

(1), ..., X
a
(n)

)
the ordered statistic associated to |Xi|.

Consider (x1, ..., xn) an observed value of the sample.

The probability distribution P being continuous, one has that P(|Xi| = |Xj |) = 0 for any i 6= j, hence we
might consider that there are no ties in the sample.

Eventually, let R|X| be the vector of ranks:

R|X|(i) = k ⇔ |Xi| = Xa
(k) ,∀i, k = 1, ..., n .

Symmetry test

The hypothesis to test here are

H0 : P is symmetric around zero ; H1 : P is not symmetric around zero.

The test statistic is

W+
n (X) =

n∑
i=1

R|X|(i)1Xi>0 =

n∑
k=1

kB+
k ,

where B+
k = 1{

Xi, (|Xi|=Xa(k))>0
}.

The decision function associated to this test is

φ(x) = 1{W+
n (x)≤s1} + 1{W+

n (x)≥s2} .

Finally, how do we choose the threshold values s1 and s2? Under the null hypothesis, B+
k ∼ B(0.5). More-

over, the B+
k variables are independent. Hence, the probability distribution of the test statistic W+

n is free
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of P under H0. Furthermore, it is symmetric with respect to its expected value, n(n+1)
4 . One may thus

either read s1 and s2 in the corresponding table for small values of n, or use an asymptotic approximation

by N
(
n(n+1)

4 , n(n+1)(2n+1)
24

)
for large values of n.

Test on the center of symmetry

Here, we suppose that the probability distribution P is symmetric and the hypothesis testing is about the
value of the center of symmetry m, only:

H0 : m = m0 ; against H1 : m 6= m0, or m > m0, or m < m0 .

If one denotes Yi = Xi − m0, yi = xi − m0, ∀i = 1, ..., n, the test statistic is W+
n (Y ). According to the

alternative hypothesis, the decision function is

φ(x) = 1{W+
n (y)≤s1} + 1{W+

n (y)≥s2}, or φ(x) = 1{W+
n (y)≤s}, or φ(x) = 1{W+

n (y)≥s} .

Example:

3.5.4 Spearman test

Now, consider (X1, Y1),..., (Xn, Yn) an iid sequence of random vectors, with unknown probability distribution.
We would like to test if the random variables X and Y are independent. For this, we shall use the Spearman
statistic

Sn =

n∑
i=1

RX(i)RY (i)

Under the null hypothesis H0 : X and Y are independent, ont gets that

E(Sn) =
1

4
n(n+ 1)2 ; V(Sn) =

1

144
(n− 1)n2(n+ 1)2 .

Let us remark that the two extreme situations, RX = RY and RX = n + 1 − RY , are naturally leading to
the following bounds

n∑
i=1

i(n+ 1− i) =
n(n+ 1)(n+ 2)

6
≤ Sn ≤

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
.

When n → ∞, the probability distribution of Sn is asymptotically Gaussian; hence a critical region of the
Spearman test has the form W = {Sn < s}∪{Sn > s}, for tabulated s and s which allow to reach any level α.

Eventually, let us recall the Spearman correlation coefficient or the empirical correlation between the random
vectors RX and RY :

ρSn =
Cov(RX , RY )

SRXSRY
,

where

Cov(RX , RY ) =
1

n

n∑
i=1

RX(i)RY (i)− 1

n2

n∑
i=1

RX(i)

n∑
i=1

RY (i) ,

and
S2
RX

= 1
n

∑n
i=1R

2
X(i)−

(
1
n

∑n
i=1RX(i)

)2
= 1

n

∑n
i=1 i

2 −
(

1
n

∑n
i=1 i

)2
= S2

RY

= (n+1)(2n+1)
6 −

(
n+1

2

)2
= n2−1

12 .

Then, one may easily remark that

ρSn =
12Sn − 3n(n+ 1)2

n(n2 − 1)
,

is an affine function of Sn.

Example:
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3.5.5 Shapiro-Wilks test for Gaussian distribution

Consider (X1, ..., Xn) an iid n-random sample, issued from the probability distribution P and let (x1, ..., xn)
be an observed value of the sample. We wish to test:
H0 : X is distributed according to a Gaussian law ; H1 : X is not distributed according to a Gaussian law.

The test statistic here is

SWn(X) =

(∑n
i=1 aiX(i)

)2∑n
i=1(Xi −X)2

,

where

• ai are constants depending on the expected value m and on the variance matrix V of the order

statistic associated to an n-sample of a standard Gaussian distribution, (a1, ..., an) = m′V −1

(m′V −1V −1m)1/2

and available in tables/software;

•
(
X(1), ..., X(n)

)
is the order statistic associated to (X1, ..., Xn).

This test statistic may be seen as a coefficient of determination between the quantile vector issued from a
Gaussian distribution and the empirical quantiles computed from the data. The scatter-plot of these two
vectors is the quantile-quantile graph or the “Q-Q plot”.

The associated decision rule is φ(x) = 1{SWn(x)≤s} and the threshold value s may be read in the Shapiro-
Wilks tables.
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Chapter 4

Confidence intervals and confidence
regions

In practice, giving an estimation for the parameter of a model is not enough, in most situations. One would
also like to have a more precise idea on the “safety margin” one has in the knowledge of this parameter and
its estimation.

Definition: Let us consider the parametric framework (En, En,Pθ, θ ∈ Θ), where Θ ⊂ Rp. Let α ∈ [0, 1]
an a priori fixed number. The confidence region on the parameter θ of level 1 − α is a random subset
R1−α ∈ Rp and defined on (En, En), such that ∀θ ∈ Θ, {(x1, ..., xn) ∈ En, θ ∈ R1−α(x1, ..., xn)} ∈ En, and

inf
θ∈Θ
{Pθ(θ ∈ R1−α)} ≥ 1− α .

If an observed sample (X1(ω), ..., Xn(ω)) is known, then R1−α(X1(ω), ..., Xn(ω)) is called observed confi-
dence region. Furthermore, if the parameter is univariate (p = 1), one will speak of confidence interval.

Now the next question is how does one actually build a confidence region? First, it is obvious that for any
α ∈ [0, 1], R1−α ⊂ Θ (usually, α is chosen to be close to 0, and α = 0.05 is mostly used). One possible
approach pour building a confidence region is the following: naturally, one would fancy using a consistent
estimate T̂ of θ, except that the probability distribution of T̂ is usually depending on θ, and this makes
difficult (with few exceptions) its direct utilization. One should then prefer using a pivot function π(T̂ , θ),
which is a measurable function depending on the estimate T̂ and the parameter θ and which is a free statistic.
Then, the inequality in the previous definition could be written under the alternative form:

inf
θ∈Θ

{
Pθ(π(T̂ , θ) ∈ Cα)

}
≥ 1− α ,

where Cα is a deterministic region. This way, the confidence region can be subsequently computed using the
quantiles (usually qα/2 and q1−α/2 of the probability distribution of the pivot function.

Remark: For a given level, 1 − α, the manner of defining a confidence interval is not unique. Indeed, if
one writes α = α1 + α2, α1, α2 ≥ 0, it is enough to consider Aα and Bα such that Pθ(θ ≤ Aα) = α1 and
Pθ(θ ≥ Bα) = α2, provided that Aα < Bα. But, in general, one chooses α1 = α2 = α

2 (some hints justifying
this symmetric choice will be given hereafter).
A confidence interval of the form [Aα ; Bα] is called a bilateral confidence interval. However, in some cases,
it might be more relevant to look for unilateral confidence intervals, generally when one bound is already
known (0, for example).

4.1 The duality between hypothesis testing and building a confi-
dence interval

There exists a strong connection between the confidence region and the rejection region of a parametric
statistical test.
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Duality theorem: Let R(θ0) be the rejection region of a non-randomized test of level α of the hypothesis

Θ0 against Θ1 = Θ0, such that
sup
θ0∈Θ0

Pθ0(X /∈ R(θ0)) = α .

Suppose the mapping θ 7→ R(θ) defined for any θ ∈ Θ, then a confidence region of level ≥ 1 − α for the
parameter θ is given by R(X) = {θ ∈ Θ | X /∈ R(θ)}.
Conversely, this mapping associates the rejection region R(θ0) of a statistical test with level ≤ α to each
confidence region R(X).

When Θ0 = {θ0}, the hypothesis H0 = θ = θ0 will be accepted, provided that θ0 belong to the confidence
interval of level 1− α.

4.2 The Gaussian case

4.2.1 Confidence intervals for the mean of a univariate Gaussian distribution

Case 1: the variance is known

Let (X1, ..., Xn) be an n-sample of N
(
m,σ2

0

)
. Suppose the variance σ2

0 is known and the mean m is the
parameter to be estimated. Then, according to Fisher theorem,

Xn −m
σ0√
n

∼ N (0, 1) ,

where Xn = 1
n

∑n
i=1Xi is the empirical mean. If the level of the test is 1 − α, and q1−α/2 is chosen such

that P(N (0, 1) ≥ q1−α/2) = α
2 , then one has that

Pm

(
−q1−α/2 ≤

Xn −m
σ0√
n

≤ q1−α/2

)
= 1− α ,

and, this leads to the confidence interval

IC =

[
Xn − q1−α/2

σ0√
n

; Xn + q1−α/2
σ0√
n

]
.

Case 2: the variance is unknown

Next, let (X1, ..., Xn) be an n-sample of N
(
m,σ2

)
. Suppose that both parameters, m and σ2 are unknown.

Then, still according to Fisher theorem,

Xn −m
S√
n

∼ St(n− 1) ,

where S2 = 1
n−1

∑n
i=1(Xi − Xn)2 is the empirical unbiased variance. If the level of the test is 1 − α, and

q1−α/2 is chosen such that P(St(n− 1) ≥ q1−α/2) = α
2 , then one has that

Pm

(
−q1−α/2 ≤

Xn −m
S√
n

≤ q1−α/2

)
= 1− α ,

and, this leads to the confidence interval

IC =

[
Xn − q1−α/2

S√
n

; Xn + q1−α/2
S√
n

]
.

Example

One of the characteristics of a machine may be considered as a random variable X distributed according to
N
(
m,σ2

)
, where m and σ2 are unknown. A sample of 16 machines is drawn at random, let x1, ..., x16 be

the observed values of this characteristic and let :

x =
1

16

16∑
i=1

xi , s
2 =

1

15

16∑
i=1

(xi − x)
2
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1. Compute a symmetric confidence interval of level 98% for m.

2. The values of the observed sample led to the confidence interval: [374 , 426]. Compute the estimations
x and s2 in the sample.

3. Propose a strategy for decreasing the amplitude of the interval.

4.2.2 Confidence intervals for the variance of a univariate Gaussian distribution

Case 1: the mean is known

Let (X1, ..., Xn) be an n-sample of N
(
m0, σ

2
)
. Suppose the mean m0 is known and the variance σ2 is the

parameter to be estimated. Then, according to Cochran theorem,∑n
i=1 (Xi −m0)

2

σ2
∼ χ2(n).

Next, using the qα/2 and q1−α/2 quantiles of a χ2(n) distribution, one may write that

Pσ2

(
qα/2 ≤

∑n
i=1 (Xi −m0)

2

σ2
≤ q1−α/2

)
= 1− α

and then derive the confidence interval

IC =

[∑n
i=1 (Xi −m0)

2

q1−α/2
;

∑n
i=1 (Xi −m0)

2

qα/2

]
.

Case 2: the mean is unknown

Let us also consider the more general case (X1, ..., Xn) be an n-sample of N
(
m,σ2

)
. Suppose that both

parameters, m and σ2 are unknown. Then, still according to Cochran theorem,∑n
i=1

(
Xi −Xn

)2
σ2

∼ χ2(n− 1).

Next, using the qα/2 and q1−α/2 quantiles of a χ2(n− 1) distribution, one may write that

Pσ2

(
qα/2 ≤

∑n
i=1

(
Xi −Xn

)2
σ2

≤ q1−α/2

)
= 1− α

and then derive the confidence interval

IC =

[∑n
i=1

(
Xi −Xn

)2
q1−α/2

;

∑n
i=1

(
Xi −Xn

)2
qα/2

]
.

Example

The machines of an industrial plant are tuned such that the mean diameter of the outcome production is
equal to 5cm. Suppose that the diameter X is a random variable distributed according to a Gaussian with
mean m = 5 and unknown variance σ2.
A random sample of 30 pieces is drawn at random and their diameter is measured, x1, ..., x30.

1. Give an estimate for the variance.

2. The values in the observed sample allowed to compute

30∑
i=1

(xi − 5)
2

= 1, 2

Which is the corresponding estimation of σ2?

3. Compute a unilateral confidence interval of level 95% for σ2.
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4.2.3 Confidence interval for a proportion

Examples

1. The statistical control of the quality found that, in a given industrial plant, among 100 pieces of the
outcome, 10 are defective, since they do not satisfy the production standards. What can one infer on
the entire production of defective pieces?

2. In a sample of 600 patients with bronchial cancer, 550 were found to be smokers. Build a confidence
interval for the proportion of smokers among bronchial-cancer patients. Do these results imply that
smoking is harmful?

4.3 Using asymptotically efficient estimates for building confi-
dence regions

Remark: If the statistical model (En, En,Pθ, θ ∈ Θ) is regular, under the usual conditions for the asymptotic
normality of the maximum likelihood estimate, one may show (using Slutsky lemma) that

π(θ̂n, θ0) =
√
n · (I1(θ̂n))1/2 ·

(
θ̂n − θ0

)
(l)−−−−→

n→∞
Np(0, Ip) ,

where Ip is the identity matrix of size p and (I1(θ))1/2 · (I1(θ))1/2 = I1(θ), for all θ ∈ Θ. Hence, for

large n, the probability distribution of π(θ̂n, θ0) may be approximated by the standard multidimensional
Gaussian distribution. But, if Z ∼ Np(0, Ip), with q1−α/2 the quantile of a standard univariate Gaussian

distribution of level 1− α/2, such that P(Z ∈ [−q1−α/2 ; q1−α/2]d) ≥ 1− α. It follows that the polyhedron
1√
n
· (I1(θ̂n))−1/2 · [−q1−α/2 ; q1−α/2]d recentered about θ̂n will represent the desired confidence region.

4.3.1 Exercices

Exercice 1: Consider (En, En, (Pθ)⊗n, θ > 0) a parametric model, such that Pθ has a density with respect
to the Lebesgue measure

fθ(x) =
1

ln 2
· 1

x
· 1]θ;2θ[(x) .

1. Show that the maximum likelihood estimate for θ is not unique.

2. Let us denote θ̂1
n = 1

2 max(X1, ..., Xn) and θ̂2
n = min(X1, ..., Xn). For each of these estimates, compute

their probability distributions and prove that they are consistent. Without entering into computation
details, explain why their are biased. Compute a confidence interval for θ.

Exercice 2: Let ((X1, Y1), ..., (Xn, Yn)) be an iid random sample, with Xi ∈ {0, 1} and Yi ∈ {0, 1}.
Suppose that the probability distribution of Yi conditionally to Xi = 0 is B(p0), with p0 ∈]0, 1[, and the
probability distribution of Yi conditionally to Xi = 1 is B(p1), with p1 ∈]0, 1[. Moreover, Xi ∼ B(1/2).

1. Show that this sample belongs to the exponential family.

2. Compute θ̂n, the maximum likelihood estimate of θ = (p0, p1). Show that θ̂n is consistent and asymp-
totically efficient.

3. Give a confidence region of level 95% for the parameter θ.
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