Socio-semanticNetworks

Socio-semantic frameworks
for techno-social systems

Nl

Ul
’llﬁl"l'“
w{!l~



Socio-technical systems?

~ webloggers, communities of scientists, software developers
and wiki contributors
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more broadly: socio-semantic systems involving agents

creafing and processing knowledge, exchanging information
connecting concepts in a distributed manner...



Social cognition?

Not immediately related to
cognitive psychology...

..rather, “information
production and processing in
a system of a (generally)
large number of individuals”
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Social cognition?

Not immediately related to 1. Social and applied
cognitive psychology... epistemology
..rather, “information a9l e
production and processing in anthropology

a system of a (generally)

large number of individuals” = 3 Social computing
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Social cognition?

— social factors influencing ] Social and qpphed
individual knowledge .
epistemology
— organization of cognitive

labor (distributed
cognition, e.g. scientific
communities)

——  nofion of collective

knowledge




Social cognition?

“Culture is acquired information, such as ‘
knowledge, beliefs, and values, thatis |
inherited through social learning, and
expressed in behaviors and artifacts.”

(Mesoudi, Whiten & Laland, 2004) {
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(...) explaining the capacity of some
representations to propagate until | 2
becoming precisely cultural, that is, 1

Cultural
revealing the Eig;zﬂlsdcl)f]tgh;ér) contagiosity.” | a n'l'h Io po | Ogy
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3. Social computing

/] 411 ] - PLALYAA
socio-informatics
essentially from large datasets of in vivo human behavior
* from government * from companies on * from online services in
agencies consumer behavior various contexts
(public health, economics, (supermarkets, transit (emails, discussion forums,
bibliographical networks, cell wikis, blogs, ...)

records, ...) phone, ...)



3. Social computing

' “socio-informatics”
essentially from large datasets of in vivo human behavior
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i



3. Social computing

“socio-informatics”
essentially from large datasets of in vivo human behavior
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3. Social computing

“socio-informatics”
essentially from large datasets of in vivo human behavior
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3. Social computing

“socio-informatics”
essentially from large datasets of in vivo human behavior
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o Knowing the shape of
social interactions

o Knowing the dynamics of
content
and being able to
describe “cultural items”




Social networks

 First period of development: 40s-70s U Ve

—  mathematical sociology and social science | -3 i EgRE i

—  tocused on “small” case-studies, : |
algebraic definitions | ————a




Social networks

 First period of development: 40s-70s | % e

—  mathematical sociology and social science | -3 i:

—  tocused on “small” case-studies, gl |
algebraic definitions W ——

~ Second period: the new science of networks, end of 90s-now

—  |arge-scale datasets, complex systems standpoint

— notion of “scale-free, small-world” networks,
distinct from random networks

— social networks as a key case: web pages, collaboration, ...



Social networks

- First period of development: 40s-70s | - 2+F =5

— mathemafical sociology and social science Ay My S

— focused on “small” case-studies, o
algebraic definitions P———

~ Second period: the new science of networks, end of 90s-now

—  |arge-scale datasets, complex systems standpoint

— notion of “scale-free, small-world” networks,
distinct from random networks

— social networks as a key case: web pages, collaboration, ...



Social networks: blogs

'~ (lassical stylized facts:

— power-law, topological
communities, transitivity,
patterns...

~ Morphogenesis models

— random, agent-based models
based on posting behavior
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Social networks: blogs

' (lossical stylized facis: £ ]
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~ Morphogenesis models

— random, agent-based models W— o
based on posting behavior




Dynamics of conversations

~ Dynamics of discussions




Dynamics of conversations

" Dynamics of term usage

— VS. source type
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Dynamics of conversations

" Dynamics of term usage

VS. |OC(Iﬁ0n _ HELLA: 08/18/2005-09/27/2005
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—  predictive

~—

" Dynamics of term usage

Dynamics of conversations
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Dynamics of conversations

" Dynamics of term usage
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Dynamics of sentences, called *

pal around with terrorists who targeted their own country

temrorists who would target their own country

palling around with terrorists who target their own country
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Dynamics of concepts

' Dynamics of disciplines
using citation networks ~ Menegemen

Marketing

Human-Computer Interface
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Dynamics of concepts s

~ Dynamics of disciplines

Time1

using citation networks oy
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ynamics of concepts

~ Dynamics of disciplines
using citation networks

Urology
Nephrology S Nephrology
Psychology — = - . Psychology
Neurology _J Idljfectiuus
-
Oncology Sncalogy
Medicine Neuroscience

Medicine

B

Molecular &

cell biolo
o Molecular &

cell biology
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Connecting structure & content

'~ Describing the topological structure of opinions

The US politicosphere (june 2009)




Socio-semantic morphology

' Diffusion cascade shapes in a blog network
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Socio-semantic morphology

' Diffusion cascade shapes in a blog network

o

2 GB G4 G5 G6

~ Unsupervised categorization

hhhhh




Co-evolution in blogspace

'~ US blogosphere during the presidential primaries in 2008
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Co-evolution in blogspace
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distributions of semantic dissimilarities triangles: over all possible

blog pairs crosses: over linked blogs

0:1[ [1:.2[[.2:.3[ [3:.4] [.4}.5[0_ (5.6([6:7[[7.8([8:9 [9:1]

'~ US blogosphere during the presidential primaries in 2008

semantic dissimilarity

between blogs / and J:

5(iaj) kAT




Social network vs. content

' Interactions are mostly repeated




Social network vs. content

Interactions are mostly repeated

|
|
~ New interactions more likely:

— with higher in-degree nodes

1075

—  with lower topological distance = .

— with higher semantic similarity o

—  “Narrow world”




Social network vs. content

' Interactions are mostly repeated
~ New interactions more likely: =~
— with higher in-degree nodes

————————————————

— with lower topological distance

— with higher semantic similarity

—  “Narrow world”

" Contraction




Social network vs. content

' Interactions are mostly repeated
~ New interactions more likely: =~
— with higher in-degree nodes

————————————————

— with lower topological distance

— with higher semantic similarity

L ”Narrow World” U 10 //
 Contraction —

p(a)

————————————————



Content vs. social network
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Content vs. social network

Number of tranmissions
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ontent vs. social network
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Socio-semantic influence effects

 high indegree nof
ndegree correlated with many
27.4

retweets

71

' influence is boosted by
focusing on a given fopic,

23.8

Retweets

6.7

26.4 Mentions

— ...even if most influential
Venn diagram of the top-100 influentials users can remain influent on
a variety of topics




Socio-semantic hypergraphs

' Limits when focusing on the level of individual

— influence of characteristics expressable af the mesolevel of the team only,
team formation processes # sum of individual rationalities
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Socio-semantic hypergraphs

' Limits when focusing on the level of individual

— influence of characteristics expressable af the mesolevel of the team only,
team formation processes # sum of individual rationalities
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" Collaboration also depends on cognitive properties

—  how teams are formed, given both social and semantic features?



Socio-semantic hypergraphs

~ Dynamic hypergraph on
socio-semantic teams & e o3
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Socio-semantic hypergraphs

~ Dynamic hypergraph on
1 K l'& @‘l,/’@ s\\\
socio-semantic teams 8 2oy &
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. Defining various '
IETTL .
hypergraphic indices... &@ o
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Socio-semantic hypergraphs
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Socio-semantic hypergraphs

~ Computing the socio-semantic correlation of teams

- e We observe no correlation |
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socio-semantic



Socio-semantic hypergraphs
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~ Computing the socio-semantic correlation of teams

We observe no correlation 1

contrarily to infuition, new semantic
associations do not stem more from

original teams than from repeated teams |

nano 1996-2010 [Q7]
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Towards experimental

~ We now have good knowledge of social network processes.

~ We sfill need to develop a solid framework to describe
local cognition processes.


mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
mailto:roth@ehess.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr
http://camille.roth.free.fr

