
Sankhya manuscript No.
(will be inserted by the editor)

Asymptotics for regression models under loss of
identifiability

Joseph Rynkiewicz

Sankhya A, 78(2), pp 155-179, 2016

Abstract This paper discusses the asymptotic behavior of regression models under
general conditions, especially if the dimensionality of the set of true parameters is
larger than zero and the true model is not identifiable. Firstly, we give a general
inequality for the difference of the sum of square errors (SSE) of the estimated re-
gression model and the SSE of the theoretical true regression function in our model.
A set of generalized derivative functions is a key tool in deriving such inequality.
Under suitable Donsker condition for this set, we provide the asymptotic distribution
for the difference of SSE. We show how to get this Donsker property for parametric
models even though the parameters characterizing the best regression function are
not unique. This result is applied to neural networks regression models with redun-
dant hidden units when loss of identifiability occurs and gives some hints on how
penalizing such models to avoid over-fitting.

Keywords regression models · Donsker class · loss of identifiability · multilayer
neural networks

Mathematics Subject Classification (2000) 62H10 · 62F12

1 Introduction

This paper discusses the asymptotic behavior of the sum of square errors (SSE) for
regression models under general conditions. The asymptotics of the SSE is an sig-
nificant problem in estimation theory and, under some regularity conditions, the con-
vergence toward a law proportional to a χ2 law is well known if the true model is
identifiable. However, if there is a loss of identifiability in parameters i.e. fθ = fθ ′ for
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Tel.: +33-144078705
Fax: +33-144078704
E-mail: joseph.rynkiewicz@univ-paris1.fr



2 Joseph Rynkiewicz

some θ 6= θ ′, where fθ is the regression function, the Hessian matrix of the regres-
sion model may be singular and the asymptotics of the SSE is unknown. There are
many regression models with loss of identifiability such as reduced rank regression
(Fukumizu (1999)), radial basis functions (Hagiwara (2002)) and multilayer neural
networks models (White (1992)). The behavior of the SSE in such models has not
been clarified completely and many statistical methods such as model selection need
special considerations. Our results on SSE have not been obtained by computational
learning theory (Anthony and Bartlett (1999), Vapnik (1998)) which focuses on esti-
mation error rather than the degree of over-fitting. While this approach benefits from
being free from the previously mentioned loss of identifiability problem, it is not
suitable for the detailed analysis of over-fitting and estimated parameters. In this ap-
proach an upper bound is obtained for the estimation error and the bound is used
to evaluate the accuracy of the estimated model in terms of generalization capabil-
ity (Anthony and Bartlett (1999), Devroye et al (1996)). The main technique is to
consider the worst case that is bounded by considering the supremum of the differ-
ence between the generalization error and the training error over all possible models.
Although this simplifies the mathematical problem so that the detailed properties of
specific estimated parameters are not required, it makes it difficult to analyze over-
fitting.

This paper provides a general approach for deriving the asymptotic of the SSE in
these types of regression models. Let F be the family of possible regression functions
and suppose that we observe a random sample

(X1,Y1), · · · ,(Xn,Yn),

from the distribution P of a vector (X ,Y ), with Y a real random variable. The regres-
sion model can be written as:

Y = f0(X)+ ε, E (ε |X ) = 0, E
(
ε

2 |X
)
= σ

2 < ∞. (1)

We assume that the true regression function f0 belongs to the set F :

f0 = arg min
f∈F
‖Y − f (X)‖2,

where

‖g(Z)‖2 :=
√∫

g(z)2dP(z)

is the L 2 norm for an square integrable function g. This assumption may seem to
be strong, but it is related to the choice of the explanatory variable X . Indeed, if X
is poorly chosen (say X and Y are independents), then any statistical model with an
intercept contains the true regression function.

A natural estimator of f0 is the least square estimator (LSE) f̂ that minimizes the
SSE:

f̂ = arg min
f∈F

n

∑
t=1

(Yt − f (Xt))
2. (2)
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f̂ is expected to converge to the function f0 under suitable conditions. If F is a
parametric family and Θ is a set of possible parameters, F = { fθ ,θ ∈Θ}, the LSE
is the parameter θ̂ that minimizes

θ̂ = argmin
θ∈Θ

n

∑
t=1

(Yt − fθ (Xt))
2. (3)

Let us write Θ0 the set of parameters realizing the best regression function f0: ∀θ ∈
Θ0, fθ = f0. If the set F is large enough, it may be possible that the dimension of the
interior of the set Θ0 is larger than zero and various difficulties arise in analyzing the
statistical properties of estimators of f0. This is for example the case if F contains
multilayer neural networks with redundant hidden units (see Fukumizu (2003)).

Under loss of identifiability of the parameters, the asymptotics for likelihood
functions has been studied by Liu and Shao (2003) who improve the method of
Dacunha-Castelle and Gassiat (1999) and Dacunha-Castelle and Gassiat (1997). The
authors establish a general quadratic approximation of the log-likelihood ratio in a
neighborhood of the true density, which is valid with or without loss of identifiabil-
ity. In this paper, we will use a similar idea, but here we are interested in regression
functions, not in density functions, so we will introduce generalized derivative func-
tions:

d f (x) =
f (x)− f0(x)

‖ f (X)− f0(X)‖2
, f 6= f0. (4)

Under some general regularity conditions, this paper shows that

lim
n→∞

(
n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(
Yt − f̂ (Xt)

)2
)

= σ
2 sup

d∈D
max

{
W (d)2;0

}
, (5)

where D is the set of L 2 limits of the generalized derivative functions d f as ‖ f (X)−
f0(X)‖2 → 0 and (W (d))d∈D a centered Gaussian process with covariance being
the scalar product in L2(P). Such a result allows, for example, to fully explicit the
asymptotic behavior of the SSE when regression functions are multilayer neural net-
works, even if F is too big and contains neural networks with redundant hidden
units realizing the true regression function f0. Let us recall that a feedforward neural
network is defined as follows: Let x = (x1, · · · ,xd)

T ∈ Rd be the vector of inputs,
wi := (wi1, · · · ,wid)

T ∈ Rd be the parameter vector of the hidden unit i and φ a sig-
moid function. The function represented by the network with k hidden units can be
written:

fθ (x) = β +
k

∑
i=1

aiφ
(
wT

i x+bi
)
,

with θ = (β ,a1, · · · ,ak,b1, · · · ,bk,w1, · · · ,wk) the parameter vector of the model. In
this case, under suitable assumptions, a centered Gaussian process {W (d),d ∈ D}
with continuous sample paths exists so that

lim
n→∞

(
n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − fθ (Xt))
2

)
= σ

2 sup
d∈D

max
{
(W (d))2 ;0

}
.
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This result shows that the degree of over-fitting is bounded in probability, but depends
on the size of the asymptotic set D . In order to reduce the over-fitting, we will see that
we need to control the size of the limit index functions D . Our computation of the
exact form of elements of D will show that this can be done by reducing the number
of hidden units and limiting the size of input parameters w1, · · · ,wk.

All our results are a consequence of a very general inequality: For all regression
functions f ∈F , f 6= f0, if εt := Yt − f0(Xt) is the noise for index t then

n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − f (Xt))
2 ≤

(
∑

n
t=1 εt d f (Xt )√

n

)2

∑
n
t=1(d f (Xt ))

2

n

(6)

Moreover, if S =
{

d f , f ∈F , f 6= f0
}

is a Donsker class, 1√
n ∑

n
t=1 εtd f (Xt) con-

verges uniformly to some zero-mean Gaussian process and we get the previous limit
result (5). Note that, even when the set F is a regular parametric bounded family,
the function θ 7→ d fθ (x) may be not extendable by continuity in θ0 ∈Θ0, hence the
Donsker property of the set of generalized derivative functions has to be carefully
studied. This problem also occurs for the generalized score functions Sθ of Liu and
Shao (2003), although it was not mentioned by the authors.

The paper is organized as follows: Section 2 establishes the asymptotic distribu-
tion of the SSE for regression models if the set of generalized derivative functions S
is Donsker. In the next section, we show how to get the Donsker property for S in the
parametric case under loss of identifiability. As an example, section 4 characterizes
the asymptotic distribution of regression using neural networks with redundant hid-
den units and gives some hints on how to select a good model using this distribution.
The long proofs of our results are postponed to section 5.

2 Asymptotic distribution of the SSE

In this section we establish a quadratic approximation to SSE in a neighborhood
of the true regression function f0. Here, the set F is not assumed to be parametric,
hence our results may be applied to a more general framework such as non-parametric
regression models. For the sake of simplicity, we consider identically distributed in-
dependent variables, but all the following results can be easily generalized to geomet-
rically mixing stationary sequence of random variables as in Olteanu and Rynkiewicz
(2012) or Gassiat (2002). For example, our results may be applied to non-linear au-
toregressive models using multilayer neural networks as in Yao (2000). Under fairly
general conditions (including the regularity conditions of this paper) the LSE is con-
sistent, so the asymptotic distribution of SSE is determined by the local properties of
the regression function in a small L 2-neighborhood of the true regression function
f0.

Firstly, we present some definitions.

Definition 1 Let P be a probability measure.

– We will use the abbreviation P f =
∫

f dP for an integrable function f .



Asymptotics for regression models 5

– For a square integrable function g,

‖g(Z)‖2 :=
√∫

g(z)2dP(z)

is the L 2 norm.
– For a vector x = (x1, · · · ,xk), let us write |x| =

√
x2

1 + · · ·+ x2
k for the Euclidean

norm. The envelope function of a class of functions F is defined as

F(x)≡ sup
f∈F
| f (x)| .

– A family of random sequences

{Yn(g),g ∈ G ,n = 1,2, · · ·}

is said to be uniformly OP(1) if for every δ > 0, there exist constants M > 0 and
N(δ ,M) such that

P

(
sup
g∈G
|Yn(g)| ≤M

)
≥ 1−δ

for all n≥ N(δ ,M).
– A family of random sequences

{Yn(g),g ∈ G ,n = 1,2, · · ·}

is said to be uniformly oP(1) if for every δ > 0 and ε > 0 there exists a constant
N(δ ,ε) such that

P

(
sup
g∈G
|Yn(g)|< ε

)
≥ 1−δ

for all n≥ N(δ ,ε).

2.1 Upper bound for the SSE

We prove this lemma which gives a very general upper bound for the sum of square
errors.

Lemma 1 For all regression functions f ∈F with f 6= f0 and d f defined in (4):

n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − f (Xt))
2 ≤

(
∑

n
t=1 εt d f (Xt )√

n

)2

∑
n
t=1(d f (Xt ))

2

n

.
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Proof We have

∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2 =

∑
n
t=1 (Yt − f0(Xt))

2− (Yt − f (Xt))
2 =

∑
n
t=1 (Yt − f0(Xt))

2− (Yt − f0(Xt)+ f0(Xt)− f (Xt))
2 =

∑
n
t=1 2εt ( f (Xt)− f0(Xt))− ( f (Xt)− f0(Xt))

2 .

Since ‖ f0(Xt)− f (Xt)‖2 is independent of the index t due to identical distribution for
Xt ’s, let us write

A = ‖ f0(Xt)− f (Xt)‖2×
√

∑
n
t=1

(
f (Xt )− f0(Xt )
‖ f (Xt )− f0(Xt )‖2

)2

and

Z =
∑

n
t=1 εt

f (Xt )− f0(Xt )
‖ f (Xt )− f0(Xt )‖2√

∑
n
t=1

(
f (Xt )− f0(Xt )
‖ f (Xt )− f0(Xt )‖2

)2
,

then remark that 0≤ (Z−A)2⇔ 2AZ−A2 ≤ Z2 implies that

n

∑
t=1

(Yt − f0(Xt))
2− (Yt − f (Xt))

2 ≤

(
∑

n
t=1 εt

f (Xt )− f0(Xt )
‖ f (Xt )− f0(Xt )‖2√

n

)2

∑
n
t=1

(
f (Xt )− f0(Xt )
‖ f (Xt )− f0(Xt )‖2

)2

n

.

�

2.2 Approximation of the SSE

Define the limit set of derivatives D as the set of functions d ∈ L2(P) such that one
can find a sequence ( fn) ∈F satisfying ‖ fn(X)− f0(X)‖2 −−−→

n→∞
0 and

‖d− d fn‖2 −−−→
n→∞

0. With such ( fn), define, for all t ∈ [0,1], ft = fn, where n ≤ 1
t <

n+1. We thus have that, for any d ∈D , there exists a parametric path ( ft)0≤t≤α with
α a strictly positive real number, such that for any t ∈ [0,α], ft ∈F , t 7→ ‖ ft(X)−
f0(X)‖2 is continuous, tends to 0 as t tends to 0 and ‖d− d ft‖2→ 0 as t tends to 0.
Using the reparameterization

‖ fu(X)− f0(X)‖2 = u, (7)

for any d ∈D , there exists a parametric path ( fu)0≤u≤α such that:∫
( fu− f0−ud)2 dP = o(u2). (8)

Now, let us introduce some assumptions:

B-1 Let u be defined as (7), the map u 7→ P(Y − fu(X))2 admits a second-order

Taylor expansion with strictly positive second derivative ∂ 2P(Y− fu(X))2

∂u2 at u = 0.
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B-2 The set of generalized derivative functions S =
{

d f , f ∈F , f 6= f0
}

is a Donsker
class.

We have then the main theorem of this paper, whose proof is postponed to section 5:

Theorem 1 Under (B-1) and (B-2)

sup
f∈F

(
n

∑
t=1

(Yt − f0(Xt))
2− (Yt − f (Xt))

2

)
= sup

d∈D

(
max

{
1√
n

n

∑
t=1

εtd(Xt);0

})2

+oP(1).

Even when the set of possible regression functions F is not parametric, this theorem
proves the tightness of the SSE, if the set S is a Donsker class. Hence, the rate
of convergence of the LSE f̂ toward f0 will be of order 1√

n which is the rate of
parametric models.

Now, define (W (d))d∈D the centered Gaussian process with covariance the scalar
product in L2(P), an immediate application of Theorem 1 gives:

Corollary 1 Under (B-1) and (B-2),

sup
f∈F

(
n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − f (Xt))
2

)

converges in distribution to

σ
2 sup

d∈D
(max{W (d);0})2 .

As we see, the Donsker property of the set of generalized derivative functions S
is fundamental for the results above. van der Vaart (1998) gives several examples
of Donsker class of functions, this property depends on the “size” of the class. A
relatively simple way to measure the size of a class S is in terms of entropy. In the
next section we will show how to measure it for parametric models under loss of
identifiability.

3 Donsker property for S

This section will give a framework for the demonstration of Donsker property for
the set of generalized derivative functions S for parametric models with compact
possible set of parameters and under loss of identifiability. Note that this framework
could be easily adapted to likelihood ratio test and generalized score functions of Liu
and Shao (2003).

First, we recall the notion of bracketing entropy. Consider the set S endowed
with the norm ‖·‖2. For every η > 0, we define an η-bracket by
[l, u] = { f ∈S , l ≤ f ≤ u} such that ‖u− l‖2 < η . The η-bracketing entropy is

H[·] (η ,S ,‖·‖2) = ln
(
N[·] (η ,S ,‖·‖2)

)
,
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where N[·] (η ,S ,‖·‖2) is the minimum number of η-brackets necessary to cover S .
With the previous notations if∫ 1

0

√
H[·] (η ,S ,‖·‖2)dη < ∞,

then, according to the Theorem 19.5 of van der Vaart (1998), the set S is Donsker.
Moreover, if the number of η-brackets necessary to cover S , N[·] (η ,S ,‖·‖2), is a
polynomial function of 1

η
, then S will be Donsker, so we will prove this sufficient

condition.
In general, if a class of function

F =
{

fθ ,θ ∈Θ ⊂ RD, Θcompact
}

is parametric and regular, a function G ∈ L2(P) exists such that∣∣ fθ1(x)− fθ2(x)
∣∣≤ |θ1−θ2|G(x)

and according to van der Vaart (1998), if 0 < η < diamΘ , a constant K exists such
that

N[·] (η ,F ,‖·‖2)≤ K
(

diamΘ

η‖G‖2

)D

.

However, even if the set F is parametric, compact and regular, the set

S =

{
d fθ =

fθ − f0

‖ fθ − f0‖2
,θ ∈Θ , fθ 6= f0

}
is not regular, since θ 7→ d fθ (x) is, in general, not extendable by continuity in pa-
rameters realizing the best regression function f0. Hopefully, we can show that the
number of η-brackets necessary to cover S is a polynomial function of 1

η
by another

method, similar to Olteanu and Rynkiewicz (2012).
Let us assume:

C-1 A function G ∈ L2(P) exists such that for any fθ1 and fθ2 in F∣∣ fθ1(x)− fθ2(x)
∣∣≤ |θ1−θ2|G(x). (9)

C-2 A reparameterization θ 7→ (φ ,ψ) exists such that for positive integers (q0,q1)
and linearly independent functions g

β 0
i
, g′

β 0
i
, g′′

β 0
i
, i = 1, ...,q0, gβ j , j = 1, · · · ,q1

the difference of regression functions can be written:

fθ − f0 =

f(φ ,ψ)− f0 = (φ −φ0)
T ∂ f(φ0 ,ψ)

∂φ
+ 1

2 (φ −φ0)
T ∂ 2 f(φ0 ,ψ)

∂φ2 (φ −φ0)+o(‖ f(φ ,ψ)− f0‖2
2)

= ∑
q0
i=1 αigβ 0

i
+∑

q1
i=1 νigβi +∑

q0
i=1 δ T

i g′
β 0

i
+∑

q0
i=1 γT

i g′′
β 0

i
γi +o

(
‖ f(φ ,ψ)− f0‖2

2
)
.

(10)

We can now state the result:

Proposition 1 Under (C-1) and (C-2) a positive integer k exists so that the number

of η-brackets N[·] (η ,S ,‖·‖2) covering S is O
(

1
η

)k
.
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Proof For proving that N[·] (η ,S ,‖·‖2) is a polynomial function of 1
η

, we have to
split S into two sets of functions: A set in a neighborhood of the true regression
function f0 and a second one at a distance at least η of f0. For a sufficiently small
η > 0, we consider Fη ⊂F , a L 2-neighborhood of f0:
Fη = { fθ ∈F , ‖ fθ − f0‖2 ≤ η , fθ 6= f0}. S is split into Sη =

{
d fθ , fθ ∈Fη

}
and S \Sη .

On S \Sη , it can be easily seen that

∥∥∥d fθ1
−d fθ2

∥∥∥
2
≤
∥∥ fθ1 − fθ2

∥∥
2∥∥ fθ1 − f0
∥∥

2

+

∥∥∥∥∥ fθ2 − f0∥∥ fθ1 − f0
∥∥

2

−
fθ2 − f0∥∥ fθ2 − f0

∥∥
2

∥∥∥∥∥
2

for every fθ1 , fθ2 ∈F \Fη . By (9), if |θ1−θ2| ≤ η3, a positive constant C exists
such that ∥∥ fθ1 − fθ2

∥∥
2 ≤Cη

3.

Then, by the definition of Sη ,∥∥∥∥ fθ2− f0
‖ fθ1− f0‖2

− fθ2− f0
‖ fθ2− f0‖2

∥∥∥∥
2

≤
∥∥∥∥ fθ2− f0
‖ fθ2− f0‖2

+Cη3 −
fθ2− f0
‖ fθ2− f0‖2

∥∥∥∥
2

≤ ‖
fθ2− f0‖2

η

(
1− 1

1+Cη2

)
=
∥∥ fθ2 − f0

∥∥
2 (Cη +o(η))

and, if the set F is compact, a positive constant M exists so that∥∥∥d fθ1
−d fθ2

∥∥∥
2
≤Cη

2 +
∥∥ fθ2 − f0

∥∥
2 (Cη +o(η))≤Mη .

Finally, we get:

N[·] (η ,S \Sη ,‖·‖2) = O

(
1

η3

)D

= O

(
1
η

)3D

where D is the dimension of parameter vectors of the model.
It remains to prove that the bracketing number is a polynomial function of ( 1

η
) for

Sη . The idea is to reparameterize the model in a convenient manner which will allow
a Taylor expansion around the identifiable part of the true value of the parameters,
then, using this Taylor expansion, we can show that the bracketing number of Sη is
a polynomial function of 1

η
. Indeed, according to the assumption C-2 we have the

approximation (10). Now, using the linear independence of functions gβi , g
β 0

i
, g′

β 0
i
,

g′′
β 0

i
, for every vector v = (αi,δi,γi, i = 1, · · · ,q0,ν j, j = 1, · · · ,q1) of norm 1,

(
v,(βi)1≤i≤q1

)
7→

∥∥∥∥∥ q0

∑
i=1

αigβ 0
i
+

q1

∑
i=1

νigβi +
q0

∑
i=1

δ
T
i g′

βi
+

q0

∑
i=1

γ
T
i g′′

βi
γi

∥∥∥∥∥
2

> 0.

Using the compacity of sets

V =
{

v = (αi,δi,γi, i = 1, · · · ,q0,ν j, j = 1, · · · ,q1) , |v|= 1
}

and{
(βi)1≤i≤q1

}
,
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m > 0 exists so that for all (βi)1≤i≤q1 and v ∈ V ,

∥∥∥∥∥ q0

∑
i=1

αigβ 0
i
+

q1

∑
i=1

νigβi +
q0

∑
i=1

δ
T
i g′

βi
+

q0

∑
i=1

γ
T
i g′′

βi
γi

∥∥∥∥∥
2

≥ m.

At the same time, since

∥∥∥∥∥ f(φt ,ψt )− f0∥∥ f(φt ,ψt )− f0
∥∥

2

∥∥∥∥∥
2

= 1,

the Euclidean norm of coefficients (αi,δi,γi, i = 1, · · · ,q0,νi, i = 1, · · · ,q1) in the de-
velopment of

f(φt ,ψt )− f0
‖ f(φt ,ψt )− f0‖2

is upper bounded by 1
m +1. This fact implies that Sη can

be included in

H =

{
∑

q0
i=1

(
αigβ 0

i
+δ T

i g′
β 0

i
+ γT

i g′′
β 0

i
γi

)
+∑

q1
i=1 νigβi +C,

|(αi,δi,γi, i = 1, · · · ,q0,νi, i = 1, · · · ,q1)| ≤ 1
m +1, |C| ≤ 1

m +1
}

and a positive integer d exists so that N[·] (η ,H ,‖·‖2) = O
(

1
η

)d
. Finally, the

positive integer k of the proposition will be equal to max(3D,d). �

4 Application to regression with neural networks

Feedforward neural networks or multilayer perceptrons (MLP) are well known and
popular tools to deal with non-linear regression models. White (1992) reviews the sta-
tistical properties of MLP estimation in detail, however, he eludes a significant point:
The asymptotic behavior of the estimator when the MLP in use has redundant hid-
den units. When the noise of the regression model is assumed Gaussian, Amari et al
(2006) provide several examples of the behavior of the likelihood ratio test statis-
tic (LRTS) in such cases. Fukumizu (2003) shows that, for unbounded parameters,
the LRTS can have an order lower bounded by O(log(n)) with n the number of ob-
servations instead of the classical convergence property to a χ2 law. Hagiwara and
Fukumizu (2008) investigate relation between LRTS divergence and weight size in
a simple neural networks regression problem with Gaussian noise. They show that
the degree of over-fitting is strongly related to the size of the inputs weights, which
is the reason why regularization techniques like “weight decay” (see Ripley (1996)),
penalizing the model by the size of the parameters, work so well. In practice, the set
of possible parameters of the MLP regression model is bounded and the behavior of
LRTS and more generally the SSE is still unknown. In this section, we derive the
distribution of the SSE if the parameters are in a compact (bounded and closed) set.
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4.1 The model

Let x = (x1, · · · ,xd)
T ∈ Rd be the vector of inputs and

wi := (wi1, · · · ,wid)
T ∈ Rd be the parameter vector of the hidden unit i. The MLP

function with k hidden units can be written :

fθ (x) = β +
k

∑
i=1

aiφ
(
wT

i x+bi
)
,

with θ = (β ,a1, · · · ,ak,b1, · · · ,bk,w1, · · · ,wk) the parameter vector of the model. The
transfer function φ will be assumed bounded and two times differentiable. We assume
also that the first and second derivatives of the transfer function φ : φ

′
and φ

′′
are

bounded like for sigmoid functions, the most used transfer functions. Moreover, in
order to avoid a symmetry on the signs of the parameters, we assume that, for 1≤ i≤
k, ai ≥ 0. Let Θ ⊂ R×R+k×Rk×(d+1) be the compact set of possible parameters,
the regression model (1) is then

Y = fθ0(X)+ ε,

with X a random vector and

θ0 =
(
β

0,a0
1, · · · ,a0

k ,b
0
1, · · · ,b0

k ,w
0
1, · · · ,w0

k
)

a parameter vector such that fθ0 = f0. Note that the set of parameters Θ0 realizing
the true regression function f0 may belong to a non-null dimension sub-manifold if
the number of hidden units is overestimated. Suppose, for example, that we have a
multilayer perceptron with two hidden units and the true function f0 is given by a
perceptron with only one hidden unit, say f0 = a0 tanh(w0x), with x ∈ R. Then, any
parameter vector θ in the set:{

θ
∣∣w2 = w1 = w0,b2 = b1 = 0,a1 +a2 = a0}

realizes the function f0. Hence, classical statistical theory for studying the LSE can
not be applied because it requires the identification of the parameters (up to some
permutations and sign symmetries) so that the Hessian matrix of the SSE with respect
to the parameters will be definite positive in a neighborhood of the parameter vector
realizing the true regression function. Let us denote k0 the minimal number of hidden
units to realize the true regression function f0. We will compare the SSE of over-
determined models against the true model :

n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − fθ (Xt))
2 ,

when the loss of identifiability occurs (i.e. when k > k0).
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4.2 Asymptotic distribution of the difference of SSE

Let us give simple sufficient conditions for which the Donsker property holds for the
set of generalized derivative functions. For any accumulation sequence of parameter
θn leading to f0, the assumption H-1 allows the regression functions ( fθn) to be in
a L 2-neighborhood of f0, in the same spirit of locally conic models of Dacunha-
Castelle and Gassiat (1999). H-1 will hold naturally with “weight decay” penaliza-
tion. Moreover, if the probability distribution Q of the variable X admits a strictly
positive density with respect to the Lebesgue measure, it is shown in section 5 that
the assumption H-3 will be true for the sigmoid transfer function.

H-1: Let { fθ ,θ ∈Θ} be a set of MLP functions with bounded and two times dif-
ferentiable transfer function φ . Assume that the first and second order derivatives
(φ
′

and φ
′′
) of this transfer function are also bounded. Moreover, assume that Θ

is a closed ball of R×R+k×Rk×(d+1) for some positive integers (k,d), and its
interior contains parameters realizing the true regression function f0.

H-2: EQ(|X |4)< ∞.
H-3: Let k be a strictly positive integer, for distinct (wi,bi)1≤i≤k with
∀i ∈ {1, · · · ,k}, |wi| 6= 0, the functions of the set

(
1,
(

x jxlφ
′′
(wi

T x+bi)
)

1≤l≤ j≤d, 1≤i≤k
,
(

x jφ
′′
(wi

T x+bi)
)

1≤ j≤d, 1≤i≤k

φ
′′
(wi

T x+bi)1≤i≤k,
(

x jφ
′
(wi

T x+bi)
)

1≤ j≤d, 1≤i≤k(
φ
′
(wi

T x+bi)
)

1≤i≤k
,
(
φ(wi

T x+bi)
)

1≤i≤k

)

are linearly independent in the Hilbert space L 2(Q).

Then, We get the following result which is proven in section 5:

Theorem 2 Let the map Ω : L 2(Q)→L 2(Q) be defined as Ω( f ) = f
‖ f‖2

. Under
the assumptions H-1, H-2 and H-3, a centered Gaussian process {W (d),d ∈D} with
continuous sample paths and a covariance kernel P(W (d1)W (d2)) = P(d1d2) exists
so that

lim
n→∞

n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − fθ (Xt))
2 = σ

2 sup
d∈D

(max{W (d);0})2 .
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The index set D is defined as D = ∪tDt , the union runs over any possible vector of
integers t =

(
t1, · · · , tk0+1

)
∈ Nk0+1 with 0≤ t1 ≤ k− k0 < t2 < · · ·< tk0+1 ≤ k and

Dt =
{

Ω

(
γ +∑

k0

i=0 εiφ(w0
i

T X +b0
i )

+∑
k0

i=0 φ
′
(w0

i
T X +b0

i )(ζ
T
i X +αi)

+δ (i)∑
k0

i=1 φ
′′
(w0

i
T X +b0

i )×((
∑

ti+1
j=ti+1 ν j

T XXT ν j +η jν j
T X +η j

2
))

+∑
k
i=tk0+1+1 µiφ(wi

T X +bi)
)
,

γ,ε1, · · · ,εk0 ,α1, · · · ,αk0 ,ηt1 , · · · ,ηtk0+1
∈ R,

µtk0+1+1, · · · ,µk ∈ R+;ζ1, · · · ,ζk0 ,νt1 , · · · ,νtk0+1
∈ Rd ,

(wk0+1+1,bk0+1+1), · · · ,(wk,bk) ∈Θ\
{
(w0

1,b
0
1), · · · ,(w0

k0 ,b0
k0)
}}

.

δ (i) = 1 if a vector q exists so that:
q j ≥ 0, ∑

ti+1
j=ti+1 q j = 1, ∑

ti+1
j=ti+1

√q jν j = 0 and ∑
ti+1
j=ti+1

√q jη j = 0, otherwise δ (i)= 0.

This theorem shows that the degree of over-fitting is bounded in probability, but
depends on the size of the asymptotic set D . In order to reduce the over-fitting we
then need to control the size of the limit functions in D , this can be done by two
different ways:

1. Reduce the number k of hidden units thanks to an information criterion like the
BIC (see Schwarz (1978)).

2. Reduce the size of the inputs weights (wi,bi)1≤i≤k. Indeed, it is empirically known
that the output of a large estimated network tends to have high curvature. This
is caused by the over-fitting that occurs in the over-realizable case by the ex-
treme values of the input weights (see Hagiwara and Fukumizu (2008)). How-
ever, note that the size of the weights has to be large enough so that Θ contains
(w0

i ,b
0
i )1≤i≤k0 . So, we need to find a trade-off for this penalization.

In summary, Theorem 2 provides the following guidelines for the regularization of
such models: Use both an information criterion to limit the number of hidden units
and a penalization term proportional to the size of the inputs weights only. Fine tuning
of these penalizations may be assessed thanks to cross-validation procedures (see
Arlot and Celisse (2010)).

5 Proofs

5.1 Proofs of section 2

We prove here the Theorem 1. We have

∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2 =

∑
n
t=1 (Yt − f0(Xt))

2− (Yt − f (Xt))
2 = 2‖ f (X)− f0(X)‖2 ∑

n
t=1 εtd f (Xt)

−‖ f (X)− f0(X)‖2
2 ∑

n
t=1 d f 2(Xt).
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As soon as ∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2 ≥ 0,

2‖ f (X)− f0(X)‖2 ∑
n
t=1 εtd f (Xt)≥ ‖ f (X)− f0(X)‖2

2 ∑
n
t=1 d f 2(Xt)

so

sup
f∈F ,∑n

t=1(Yt− f0(Xt ))
2−∑

n
t=1(Yt− f (Xt ))

2≥0
‖ f (X)− f0(X)‖2≤ 2 sup

f∈F
max

{
∑

n
t=1 εtd f (Xt)

∑
n
t=1 d f 2(Xt)

;0
}
.

(11)
Since, S is Donsker

sup
f∈F

1
n

(
n

∑
t=1

εtd f (Xt)

)2

= OP(1) (12)

and S admits an envelope function F such that P(F2)< ∞, S2 =
{

d2
f , f ∈F , f 6= f0

}
is Glivenko-Cantelli and

sup
f∈F

∣∣∣∣∣1n n

∑
t=1

d2
f (Xt)−1

∣∣∣∣∣= oP(1). (13)

Then, one may apply inequality (11) to obtain

sup
f∈F ,∑n

t=1(Yt− f0(Xt ))
2−∑

n
t=1(Yt− f (Xt ))

2≥0
‖ f (X)− f0(X)‖2 =

1√
n

OP (1) . (14)

By lemma 1,

sup
f∈F

n

∑
t=1

(Yt − f0(Xt))
2−

n

∑
t=1

(Yt − f (Xt))
2 ≤ sup

f∈F

(
max

{
∑

n
t=1 εt

f0(Xt )− f (Xt )
‖ f0(Xt )− f (Xt )‖2√

n ;0

})2

∑
n
t=1

(
f0(Xt )− f (Xt )
‖ f0(Xt )− f (Xt )‖2

)2

n

.

Using (13), we obtain that

sup f∈F ∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2

≤ sup f∈F

(
max

{
∑

n
t=1 εt

f0(Xt )− f (Xt )
‖ f0(Xt )− f (Xt )‖2√

n ;0

})2

+oP(1).

Let Fn =
{

f ∈F : ‖ f (X)− f0(X)‖2 ≤ n−1/4
}

. Using (14), we obtain that

sup f∈F ∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2

≤ sup f∈Fn

(
max

{
∑

n
t=1 εt

f0(Xt )− f (Xt )
‖ f0(Xt )− f (Xt )‖2√

n ;0

})2

+oP(1).

Let us write ‖d f −D‖2 = infd∈D ‖d f − d‖2, we have sup f∈Fn
‖d f −D‖2 −−−→

n→∞
0,

thus, for a sequence un decreasing to 0, and with

∆n =
{

d f −d : f ∈Fn, d ∈D ,‖d f −d‖2 ≤ un
}
,
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we obtain that

sup f∈F ∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2

≤ supd∈D

(
max

{
∑

n
t=1 εt d(Xt )√

n + supδ∈∆n
∑

n
t=1 εt δ (Xt )√

n ;0
})2

+oP(1).

But, using the Donsker property, the definition of ∆n and the property of asymptotic
stochastic equicontinuity of empirical processes indexed by a Donsker class, we get:

sup
δ∈∆n

∑
n
t=1 εtδ (Xt)√

n
= oP(1),

and
sup f∈F ∑

n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2

≤ supd∈D

(
max

{
∑

n
t=1 εt d(Xt )√

n ;0
})2

+oP(1).
(15)

Since S admits a square integrable envelope function, a function m exists such
that for u1 and u2 belonging to a parametric path converging to a limit function d:∣∣(y− fu1(x))

2− (y− fu2(x))
2∣∣≤ m(x,y)|u1−u2|.

Moreover, along a path, the map

u 7→ P(Y − fu(X))2

admits a second-order Taylor expansion with strictly positive second derivative
∂ 2P(Y− fu(X))2

∂u2 at u = 0, and we can use classical normal asymptotic theorem for M-
estimators (see Theorem 5.23 of van der Vaart (1998)) along this parametric paths, to
obtain a sequence of finite subsets Dk increasing to D such that

sup f∈F ∑
n
t=1 (Yt − f0(Xt))

2−∑
n
t=1 (Yt − f (Xt))

2

≥ supd∈Dk

(
∑

n
t=1 εt d(Xt )√

n

)2
+oP(1)

for any k. Therefore, equality holds in (15). �

5.2 Proofs of section 4

We prove the assumption (H-3) for the for the sigmoid transfer function

φ(t) =
1

1+ e−t
.

Note that MLP with sigmoid transfer functions or hyperbolic tangent transfer func-
tions are equivalent, because a one-to-one correspondence between the two kinds of
MLP exists as 1

1+e−t = (1+ tanh(t/2))/2. The proof is an extension of the results of
Fukumizu (1996). We define the complex sigmoid function on C by φ(z) = 1

1+e−z .
The singularities of φ are{

z ∈ C
∣∣∣z = (2n+1)π

√
−1,n ∈ Z

}
,

all of which are poles of order 1. Next, we review fundamental propositions in com-
plex analysis.
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Proposition 2 Let φ be a holomorphic function on a connected open set D in C and
p be a point in D. If a sequence {pn}∞

n=1 exists in D so that pn 6= p, limn→n pn = p
and φ(pn) = 0 for all n ∈ N then φ(z) = 0 for all z ∈ D.

Proposition 3 Let φ be a holomorphic function on a connected open set D in C, and
p be a point in D. Then the following equivalence relations hold:

– p is a removable singularity

⇔ lim
z→p

f (z) ∈ C.

– p is a pole
⇔ lim

z→p
| f (z)|= ∞.

– p is an essential singularity

⇔ lim
z→p
| f (z)| does not exist.

Let (β ,a1, · · · ,ak,b1, · · · ,bk,w1, · · · ,wk) be a parameter vector such that
i 6= j⇒ (bi,wi) 6=(b j,w j) and for all i , |wi| 6= 0. By the lemma 3 of Fukumizu (1996),

a basis of Rd
(

x(1), · · · ,x(d)
)

exists so that

1. For all i ∈ {1, · · · ,k} and all h ∈ {1, · · · ,d}

wT
i x(h) 6= 0.

2. For all i1, i2 ∈ {1, · · · ,k}, i1 6= i2 and all h ∈ {1, · · · ,d}

bi1 +wT
i1x(h) 6=±

(
bi2 +wT

i2x(h)
)
.

For l, 1≤ l ≤ d and i ∈ {1, · · · ,k} let us write m(l)
i := wT

i x(l). We set

S(l)i =

{
u ∈ C

∣∣∣∣∣u =
(2n+1)π

√
−1−bi

m(l)
i

,n ∈ Z

}
.

Clearly the points in S(l)i are the singularities of φ

(
m(l)

i u+bi

)
. Note that these points

are poles of order 1 for

φ(m(l)
i u+bi) =

1

1+ e−
(

m(l)
i u+bi

) ,
of order 2 for

φ
′(m(l)

i u+bi) =−
e−
(

m(l)
i u+bi

)
(

1+ e−
(

m(l)
i u+bi

))2
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and 3 for

φ
′′(m(l)

i u+bi) =
e−
(

m(l)
i u+bi

)
(

1+ e−
(

m(l)
i u+bi

))2 +2
e−2

(
m(l)

i u+bi

)
(

1+ e−
(

m(l)
i u+bi

))3 .

Let be D(l) :=C−∪1≤i≤kS(l)i . Holomorphic functions on D(l) are defined as follows:

Ψ (l)(u) := α0 +∑
k
i=1 αiφ(m

(l)
i u+bi)

+∑
k
i=1 ∑

d
j=1 βi jφ

′
(m(l)

i u+bi)x
(l)
j u+∑

k
i=1 εiφ

′
(m(l)

i u+bi)

+∑
k
i=1 ∑

d
j,r=1, j≤r γi jrφ

′′
(m(l)

i u+bi)x
(l)
j x(l)r u2

+∑
k
i=1 ∑

d
j=1 ηi jφ

′′
(m(l)

i u+bi)x
(l)
j u+∑

k
i=1 ρiφ

′′
(m(l)

i u+bi)

The functions in the set(
1,
(

x jxlφ
′′
(wi

T x+bi)
)

1≤l≤ j≤d, 1≤i≤k
,
(

x jφ
′′
(wi

T x+bi)
)

1≤ j≤d, 1≤i≤k

φ
′′
(wi

T x+bi)1≤i≤k,
(

x jφ
′
(wi

T x+bi)
)

1≤ j≤d, 1≤i≤k(
φ
′
(wi

T x+bi)
)

1≤i≤k
,
(
φ(wi

T x+bi)
)

1≤i≤k

)
are linearly independent if the following property is verified :

∀u ∈ D(l),Ψ (l)(u) = 0⇔ all αi,εi,βi j,ρi,ηi j and γi jr are equal to 0.

Let us assume that ∀u ∈D(l),Ψ (l)(u) = 0, then, by proposition 3, all the points in S(l)i
are removable singularities. Let us write

p(l)i :=
π
√
−1−bi

m(l)
i

∈ S(l)i .

Clearly , for 1 ≤ i ≤ k− 1, p(l)k /∈ S(l)i , because for all i1, i2 ∈ {1, · · · ,k}, i1 6= i2 and
all h ∈ {1, · · · ,d}

bi1 +wT
i1x(h) 6=±

(
bi2 +wT

i2x(h)
)
.

So, Ψ (l)(u) can be written as:

Ψ (l)(u) = αkφ(m(l)
i u+bi)+

(
∑

d
i=1 βkix

(l)
i u+ εk

)
φ
′
(m(l)

k u+bk)

+
(

∑
d
i, j=1, i≤ j γki jx

(l)
i x(l)j u2 +∑

d
i=1 ηkix

(l)
i u+ρk

)
φ
′′
(m(l)

k u+bk)

+Ψ
(l)

k−1(u),

where
Ψ

(l)
k−1(u) := α0 +∑

k−1
i=1 αiφ(m

(l)
i u+bi)

+∑
k−1
i=1 ∑

d
j=1 βi jφ

′
(m(l)

i u+bi)x
(l)
j u+∑

k−1
i=1 εiφ

′
(m(l)

i u+bi)

+∑
k−1
i=1 ∑

d
j,r=1, j≤r γi jrφ

′′
(m(l)

i u+bi)x
(l)
j x(l)r u2

+∑
k−1
i=1 ∑

d
j=1 ηi jφ

′′
(m(l)

i u+bi)x
(l)
j u+∑

k−1
i=1 ρiφ

′′
(m(l)

i u+bi).
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The point p(l)k is a regular point of Ψ
(l)

k−1(u) while φ(m(l)
k u+wk0) has a pole of order

1 at p(l)k , φ
′
(m(l)

k u+wk0) has a pole of order 2 at p(l)k and φ
′′
(m(l)

k u+wk0) has a pole

of order 3 at p(l)k . Since p(l)k is a removable singularity of Ψ (l)(u), we have:

αk = 0, εk = 0, ∑
d
i=1 βkix

(l)
i = 0 and

ρk = 0,∑d
i=1 ηkix

(l)
i = 0,∑d

i, j=1, i≤ j γki jx
(l)
i x(l)j = 0.

As a resultΨ (l)(u)=Ψ
(l)

k−1(u). Applying the same argument successively to p(l)k−1, · · · , p(l)1 ,
we obtain, for all 1≤ i≤ k, 1≤ j ≤ r ≤ d:

αi = 0,
εi = 0,

∑
d
j=1 βi jx

(l)
j = 0,

ρi = 0,

∑
d
j=1 ηi jx

(l)
j = 0,

∑
d
j,r=1, j≤r γi jrx

(l)
j x(l)r = 0,

and α0 = 0.

Since
(

x(1), · · · ,x(d)
)

form a basis of Rd , we have βi j = 0 and ηi j = 0 for all 1≤ i≤ k
and 1≤ j ≤ d.

For γi jr, we get:

d

∑
j,r=1, j≤r

γi jrx
(l)
j x(l)r =

d

∑
r=1

(
r

∑
j=1

γi jrx
(l)
j

)
x(l)r = 0,

and, since
(

x(1), · · · ,x(d)
)

form a basis of Rd , for all l ∈ {1, · · · ,d}:

γi11x(l)1 = 0,
...

∑
r
j=1 γi jrx

(l)
j = 0,

...

∑
d
j=1 γi jdx(l)j = 0

and γi jr = 0 for all 1 ≤ i ≤ k, 1 ≤ j ≤ r ≤ d. This proves that the assumption H-3
holds for sigmoid functions �

Now, in order to prove the theorem 2, we have to check that the assumptions C-1
and C-2 of proposition 1 are true under the assumptions H-1, H-2 and H-3. Then, we
conclude thanks to theorem 1 and the computation of the set D . Since fθ are MLP
functions, it is easy to see that assumption H-1 implies assumption C-1. To prove
C-2, we will get an asymptotic development of the generalized derivative functions.
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Reparameterization. The idea is similar of the reparameterization of finite mixture
models in Liu and Shao (2003). Under assumption H-3, if k0 is the minimal number
of hidden units to get the true function, the writing of f0 with a neural network with
k0 hidden units is unique, up to some permutations:

f0 = β
0 +

k0

∑
i=1

a0
i φ

(
w0

i
T

x+b0
i

)
. (16)

Then, for a θ ∈Θ , if fθ = f0, a vector of integers t = (ti)1≤i≤k0+1 exists so that 0≤
t1 ≤ k−k0 < t2 < · · ·< tk0+1 ≤ k and, up to permutations, we have w1 = · · ·= wt1 = 0
if t1 > 0,

(
wti+1 = · · ·= wti+1 = w0

i
)

1≤i≤k0 ,
(
bti+1 = · · ·= bti+1 = b0

i
)

1≤i≤k0 ,(
∑

ti+1
j=ti+1 a j = a0

i

)
1≤i≤k0

. Moreover, β +∑
t1
i=1 aiφ(bi) = β 0 if t1 > 0 else β = β0.

For 1≤ i≤ k0, let us define si = ∑
ti+1
j=ti+1 a j−a0

i and, if ∑
ti+1
ti+1 a j 6= 0, let us write

q j =
a j

∑
ti+1
ti+1 a j

. If ∑
ti+1
ti+1 a j = 0, q j will be set at 0. Moreover, let us write γ = β +

∑
t1
i=1 aiφ(bi)−β 0 if t1 > 0 else γ = β −β0.

Then, we get the reparameterization θ 7→ (Φt ,ψt) with

Φt =
(

γ,(w j)
tk0+1
j=t1

,(b j)
tk0+1
j=t1

,(si)
k0

i=1,(a j)
k
tk0+1+1

)
,

ψt =
(
(q j)

tk0+1
j=t1

,(wi,bi)
k
i=1+tk0+1

)
.

With this parameterization, for a fixed t, Φt is an identifiable parameter and all the
non-identifiability of the model will be in ψt . Namely, fθ will be equal to:

fθ = (γ +β 0)+∑
k0

i=1(si +a0
i )∑

ti
j=ti−1+1 q jφ(wT

j x+b j)

+∑
k
i=tk0+1+1 a jφ(wT

i x+bi).

So, for a fixed t, f(Φ0
t ,ψt) = f0 if and only if

Φ0
t =

(0, w0
1, · · · ,w0

1︸ ︷︷ ︸ , · · · , w0
k0 , · · · ,w0

k0︸ ︷︷ ︸, b0
1, · · · ,b0

1︸ ︷︷ ︸ , · · · , b0
k0 , · · · ,b0

k0︸ ︷︷ ︸,
t2− t1 tk0+1− tk0 t2− t1 tk0+1− tk0

0, · · · ,0︸ ︷︷ ︸ 0, · · · ,0︸ ︷︷ ︸).
k0 k− tk0+1

Now, by H-1, the second derivative of the transfer function is bounded and a constant
C exists so that we have the following inequalities:

∀(θi,θ j) ∈ {b1, · · · ,bk,w11, · · · ,wkd}2 , sup
θ∈Θ

‖∂ 2 fθ (X)

∂θi∂θ j
‖ ≤C(1+ |X |2).

So, thanks to assumption H-2, the second order derivative of the function f(Φt ,ψt ) with
respect to the components of Φt will be dominated by a square integrable function.
Then, by assumption H-3 and a Taylor expansion around the identifiable parame-
ter Φ0

t , we get the following expansion for the numerator of generalized derivative
functions:
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Lemma 2 For a fixed t, in the neighborhood of the identifiable parameter Φ0
t :

f(Φt ,ψt )(x)− f0(x) = (Φt −Φ0
t )

T f
′

(Φ0
t ,ψt )

(x)

+0.5(Φt −Φ0
t )

T f
′′

(Φ0
t ,ψt )

(x)(Φt −Φ0
t )+o(‖ f(Φt ,ψt )− f0‖2

2),

with
(Φt −Φ0

t )
T f
′

(Φ0
t ,ψt )

(x) = γ +∑
k0

i=1 siφ(w0
i

T x+b0
i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j

(
w j−w0

i
)T xa0

i φ
′
(w0

i
T x+b0

i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j

(
b j−b0

i
)

a0
i φ
′
(w0

i
T x+b0

i )

+∑
k
i=tk0+1+1 aiφ(wi

T x+bi)

and
(Φt −Φ0

t )
T f
′′

(Φ0
t ,ψt )

(x)(Φt −Φ0
t ) =

∑
k0

i=1 ∑
ti+1
j=ti+1 q j(w j−w0

i )
T xxT (w j−w0

i )a
0
i φ
′′
(w0

i
T x+b0

i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j(w j−w0

i )
T x(b j−b0

i )φ
′′
(w0

i
T x+b0

i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j(b j−b0

i )
2φ
′′
(w0

i
T x+b0

i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j(w j−w0

i )
T xsiφ

′
(w0

i
T x+b0

i )

+∑
k0

i=1 ∑
ti+1
j=ti+1 q j(b j−b0

i )siφ
′
(w0

i
T x+b0

i ).

This development is obtained by a straightforward calculation of the derivatives
of f(Φt ,ψt )− f0 with respect to the components of Φt up to the second order.

So, the numerator of generalized derivative functions can be written like (10) and
the assumption C-2 is true. The proposition 1 can be applied to this model and the
polynomial bound for the growth of bracketing number shows the Donsker property
of generalized derivative functions, hence the assumption B-2 of theorem 1 is true.
Moreover, under C-2, the map

Φt 7→ P(Y − f(Φt ,ψt )(X))2

admits a second-order Taylor expansion with strictly positive second derivative
∂ 2P(Y− f(Φt ,ψt )(X))2

∂Φ2
t

at Φt = Φ0
t , so the assumption B-1 is also true and we can apply

Theorem 1 and corollary 1.

Asymptotic index set D The set of limit score functions D is defined as the set of func-
tions d so that one can find a sequence (Φn,ψn)n=1,··· satisfying ‖ f(Φn,ψn)− f0‖2→ 0
and ‖d− d f(Φn ,ψn)

‖2 → 0. This limit function depends on the development obtained
in lemma 2.

Let us define the two principal behaviors for the sequences f(Φn,ψn) which influ-
ence the form of functions d :

– If the second order term is negligible with respect to the first one:

f(Φn,ψn)− f0 = (Φn−Φ
0)T f ′

(Φ0
t ,ψn)

+o(‖ f(Φn,ψn)− f0‖2).
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– If the second order term is not negligible with respect to the first one:

f(Φn,ψn)− f0 = (Φn−Φ0)T f ′
(Φ0

t ,ψn)
+

0.5(Φn−Φ0)T f ′′
(Φ0,ψn)

(Φn−Φ0)+o(‖ f(Φn,ψn)− f0‖2
2).

In the first case, a set t =
(
t1, · · · , tk0+1

)
exists so that the limit function of d f(Φn ,ψn)

will be in the set:

D1 =
{

Ω

(
γ +∑

k0

i=1 εiφ(w0
i

T X +b0
i )+∑

k0

i=1 φ
′
(w0

i
T X +b0

i )(ζ
T
i X +αi)

+∑
k
i=tk0+1+1 µiφ(wi

T X +bi)
)
,

γ,ε1, · · · ,εk0 ,α1, · · · ,αk0 ∈ R,µtk0+1+1, · · · ,µk ∈ R+;
ζ1, · · · ,ζk0 ∈ Rd ,

(wk0+1+1,bk0+1+1), · · · ,(wk,bk) ∈Θ\
{
(w0

1,b
0
1), · · · ,(w0

k0 ,b0
k0)
}}

In the second case, an index i exists so that :

ti+1

∑
j=ti+1

q j(ν j−w0
i ) = 0 and

ti+1

∑
j=ti+1

q j(η j−b0
i ) = 0,

otherwise, the second order term will be negligible compared to the first one. So

ti+1

∑
j=ti+1

√
q j×
√

q j(ν j−w0
i ) = 0 and

ti+1

∑
j=ti+1

√
q j×
√

q j(η j−b0
i ) = 0.

Hence, a set t =
(
t1, · · · , tk0+1

)
exists so that the set of functions d will be:

D2 =
{

Ω

(
γ +∑

k0

i=1 εiφ(w0
i

T X +b0
i )

+∑
k0

i=1 φ
′
(w0

i
T X +b0

i )(ζ
T
i X +αi)

+δ (i)∑
k0

i=1 φ
′′
(w0

i
T X +b0

i )×((
∑

ti+1
j=ti+1 ν j

T XXT ν j +η jν j
T X +η j

2
))

+∑
k
i=tk0+1+1 µiφ(wi

T X +bi)
)
,

γ,ε1, · · · ,εk0 ,α1, · · · ,αk0 ,ηt1 , · · · ,ηtk0+1
∈ R,

µtk0+1+1, · · · ,µk ∈ R+;ζ1, · · · ,ζk0 ,νt1 , · · · ,νtk0+1
∈ Rd ,

(wk0+1+1,bk0+1+1), · · · ,(wk,bk) ∈Θ\
{
(w0

1,b
0
1), · · · ,(w0

k0 ,b0
k0)
}}

where δ (i) = 1 if a vector q exists so that
q j ≥ 0, ∑

ti+1
j=ti+1 q j = 1, ∑

ti+1
j=ti+1

√q jν
t
j = 0 and ∑

ti+1
j=ti+1

√q jη j = 0, otherwise δ (i)= 0.
Hence, the limit index set functions will belong to D .
Conversely, let d be an element of D , since function d is not null, one of its

components is not equal to 0. Let us assume that this component is γ , but the proof
would be similar with any other component. The norm of d is the constant 1, so any
component of d is determined by the ratio: ε1

γ
, · · · , 1

γ
νk0+1.
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Then, since Θ contains a neighborhood of the parameters realizing the true re-
gression function f0, we can chose

θn = (β n,an
1, · · · ,an

k ,w
n
1, · · · ,wn

k ,b
n
1, · · · ,bn

k) 7→ (Φn
t ,ψ

n
t )

so that:
∀i ∈ {1, · · · ,k0} : sn

i
βn−β 0

n→∞−→ εi
γ
,

∀i ∈ {1, · · · ,k0} : ∑
ti
j=ti−1+1

qn
j

βn−β 0

(
wn

j −w0
i

)
n→∞−→ 1

γ
ζi,

∀i ∈ {1, · · · ,k0} : ∑
ti
j=ti−1+1

qn
j

βn−β 0

(
bn

j −b0
i

)
n→∞−→ 1

γ
αi,

∀ j ∈ {t1, · · · , tk0+1} :
√

qn
j

βn−β 0

(
wn

j −w0
i

)
n→∞−→ 1

γ
ν j,

∀ j ∈ {t1, · · · , tk0+1} :
√

qn
j

βn−β 0

(
bn

j −b0
i

)
n→∞−→ 1

γ
η j,

∀ j ∈ {tk0+1 +1, · · · ,k} :
√

qn
j

βn−β 0 an
j

n→∞−→ 1
γ

µ j.

�
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