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The data space

Data belong to a subset X of an Euclidean space (typically Rp).
For some results, we need to assume that the subset is bounded
and convex.
Two different settings from a theoretical point of view :

Ï continuous setting : the input space X is modeled by a
probability distribution with density function f ;

Ï or

Ï discrete setting : the input space X has N data points
x1, . . . ,xN in Rp (Here discrete setting means a finite subset of
the input space).

The data can be stored or available on-line.
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Neighborhood structure

K units on a regular lattice (string : 1-dim or grid : 2-dim).
If K = {1, . . . ,K }, neighborhood function h is defined on K ×K .
If it is time-dependent, it will be denoted by h(t).

Ï hkk = 1, h symmetric

Ï hkl depends only on the distance dist(k, l) between units k
and l on the lattice and decreases with increasing distance.

Several choices, the most classical : the step function with value
1 if the distance between k and l is less than a specific radius
(this radius can decrease with time), and 0 otherwise.
Another very classical choice is a Gaussian-shaped function

hkl(t) = exp

(
−dist2(k, l)

2σ2(t)

)
,

where σ2(t) can decrease over time to reduce the intensity and
the scope of the neighborhood relations.

3 / 59



Theoretical
and Applied

Aspects of the
Self-

Organizing
Maps

Marie
Cottrell1 &
Madalina

Olteanu1 &
Fabrice Rossi1

& Nathalie
Villa-

Vialaneix2

SOM for
numerical
data

Theoretical
study of SOM

SOM Variants

Probabilistic
views of SOM

Non
numerical
data

Maps
Stochasticity

In practice...

Examples of neighborhood functions

FIGURE – Neighborhood functions
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On-line SOM, continuous or discrete settings
[Kohonen, 1982, 1995]

A prototype mk ∈Rp is attached to each unit k, initial values of
the prototypes are chosen at random and denoted by
m(0) = (m1(0), . . . ,mK (0)). The SOM algorithm (on-line
stochastic version) is defined as follows :

1. At time t, a data point x is randomly drawn (according to
the density function f or in the finite set X ),

2. Best matching unit definition

ct(x) = arg min
k∈{1,...,K }

‖x−mk(t)‖2, (1)

3. Prototypes update

mk(t +1) = mk(t)+ε(t)hkct (x)(t)(x−mk(t)), (2)

where ε(t) is a learning rate (positive, <1, constant or
decreasing). 5 / 59
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Clustering

Ï Cluster Ck : set of inputs closer to mk than to any other one
Ï Partition (or Voronoï tesselation) with neighborhood

structure between the clusters.

FIGURE – Voronoï tesselation

Data x ∈ Ck ⇐⇒ mk is the winning prototype
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SOM properties

Ï Quantization property : The prototypes represent the data
space as accurately as possible, as do other quantization
algorithms.

Ï Self-organization property : The prototypes preserve the
topology of the data : close inputs belong to the same cluster
(as in any clustering algorithm) or to neighbor clusters.

To get a better quantization, the learning rate ε decreases with
time as well as the scope of the neighborhood function h.
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Theoretical concerns

Ï Algorithm very easy to define and to use.

Ï Large amount of works and empirical evidences.

Ï But many theoretical properties without complete proof
and open problems [Cottrell et al., 1998] and [Fort, 2005].

When t tends to +∞, the Rp-valued stochastic processes
(mk(t))k=1,...,K can have :
oscillations, explosion to infinity, CV in distribution to an
equilibrium process, CV in distribution or almost sure to a finite
set of points in Rp, etc.

Ï Is the algorithm convergent in distribution or almost surely,
when t tends to +∞?

Ï What happens when ε is constant ? when it decreases ?

Ï If a limit state exists, is it stable ?

Ï How to characterize the organization ?
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Mathematical tools

Ï The Markov Chain theory for constant ε and h : to study
the convergence and the limit states.

Ï If the algorithm converges in distribution, this limit is an
invariant measure for the Markov Chain;

Ï If there is strong organization, it has to be associated to an
absorbing class.

Ï The Ordinary Differential Equation method (ODE)
Equation (2) for each k ∈K can be written in a vector form :

m(t +1) = m(t)−ε(t)Φ(x,m(t)), (3)

whereΦ is a stochastic term.
Then, the ODE (Ordinary Differential Equation) which
describes the mean behavior of the process is

dm

dt
=−φ(m), (4)

where φ(m) is the expectation ofΦ(.,m).
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ODE associated to SOM

The kth−component of φ is

φk(m) =
K∑

j=1
hkj

∫
Cj

(x−mk)f (x)dx, (5)

for the continuous setting or

φk(m) = 1

N

K∑
j=1

hkj

∑
xi∈Cj

(xi −mk) = 1

N

N∑
i=1

hkc(xi)(xi −mk), (6)

for the discrete setting.
Possible limit states are solutions of equation

φ(m) = 0.

If the zeros of function φ are minima of a function ( energy
function), one can apply the gradient descent methods.
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Mathematical tools and difficulties

Ï The Robbins-Monro algorithm theory is used when the
learning rate decreases under conditions∑

t
ε(t) =+∞ and

∑
t
ε(t)2 <+∞. (7)

Some remarks explain why the original SOM algorithm is
difficult to study :

Ï For p > 1, it is not possible to define any absorbing class
which could be an organized state ;

Ï Although m(t) can be written down as a classical stochastic
process, [Erwin et al., 1992a, Erwin et al., 1992b] have
shown that it does not correspond to an energy function,
that it is not a gradient descent algorithm in the
continuous setting ;

Ï Finally, no demonstration takes into account the variation
of the neighborhood function. All the existing results are
valid for a fixed scope and intensity of the function h.

11 / 59
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Simplest case : p = 1,X = [0,1], string lattice,
uniform density, constant ε
[Cottrell, Fort, 1987]

Theorem
If ε is a constant <1/2 and if the neighborhood are {k−1,k,k+1},

Ï The number of badly ordered triplets is a decreasing
functional ;

Ï The set of ordered sequences (increasing or decreasing
sequences, i.e. organized ones) is an absorbing class ;

Ï The hitting time of the absorbing class is almost surely
finite ;

Ï The process m(t) converges in distribution to a monotonous
stationary distribution which depends on ε.
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Why is the number of non ordered triplets
decreasing

0

1

j−1 j j+1 j−1 j j+1 j−1 j j+1 j−1 j j+1

Four examples of triplets of prototypes (mj−1,mj,mj+1). The neighbors of j are j−1
and j+1. The values of the prototypes are on the y-axis, in [0,1].
On the left, the first two triplets are not ordered. SOM will order them with a
strictly positive probability.
At right, the last two triplets are well ordered and SOM will never disorder them.
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Simplest case : p = 1,X = [0,1], string lattice,
uniform density, decreasing ε

Theorem
If ε−→ 0 and satisfies the Robbins-Monro conditions∑

t
ε(t) =+∞ and

∑
t
ε(t)2 <+∞. (8)

after ordering, the process m(t) a.s. converges towards a constant
monotonous solution of an explicit linear system.
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General one-dimensional case, organization
[Fort, 2005, Cottrell et al., 1998]

Hypothesis on the data distribution and/or the neighborhood
function are relaxed. The density is no longer uniform.

Theorem
One assumes that the setting is continuous and that the
neighborhood function is strictly decreasing from some distance
between the units.

Ï The set of ordered sequences (increasing or decreasing
sequences, i.e. organized ones) is an absorbing class ;

Ï If ε is constant, the hitting time of the absorbing class is
almost surely finite.

15 / 59



Theoretical
and Applied

Aspects of the
Self-

Organizing
Maps

Marie
Cottrell1 &
Madalina

Olteanu1 &
Fabrice Rossi1

& Nathalie
Villa-

Vialaneix2

SOM for
numerical
data

Theoretical
study of SOM

SOM Variants

Probabilistic
views of SOM

Non
numerical
data

Maps
Stochasticity

In practice...

General one-dimensional case, convergence

Theorem
One assumes that the setting is continuous, the density is
log-concave, the neighborhood function is time-independent and
strictly decreasing from some distance between the units.

Ï If the initial state is ordered, there exists a unique stable
equilibrium point (denoted by x∗) ;

Ï If ε is constant and the initial disposition is ordered, there
exists an invariant distribution which depends on ε and
which concentrates on the Dirac measure on x∗ when
ε−→ 0 ;

Ï If ε(t) satisfies the Robbins-Monro conditions (8) and if the
initial state is ordered, then m(t) is almost surely convergent
towards this unique equilibrium point x∗.
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Two remarks about the general one-dimensional
case

Ï The hypotheses on the density are not very restrictive, but
some important distributions, such as the χ2 or the power
distribution, do not fulfill them.

Ï Even if the one-dimensional case is more or less
well-known, nothing is proved either about the choice of a
decreasing function for ε(t) to ensure ordering and
convergence simultaneously, or for the case of decreasing
neighborhood function.
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General multidimensional case, continuous setting

Unfortunately, it is not possible to find absorbing classes when
the dimension is larger than 1.
For example, in dimension 2, with 8 neighbors, the figure shows
the x- and y-coordinates are ordered but that it is possible (with
positive probability) to disorder the prototypes.

B

A

C

A is a neighbor of C, but B is not a neighbor of C. If C is very often
the best matching unit, B is never updated, while A becomes
closer and closer to C. Finally, the y coordinate of A becomes
smaller than that of B and the disposition is disordered.
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General multidimensional case, continuous setting

Let p be the data dimension. Assume that h and ε are constant.
Sadeghi (2001) proves

Theorem
If the probability density function f is positive on an interval, the
algorithm weakly converges to a unique probability distribution
which depends on ε.

Assuming p = 2 and denoting by F++ the set of the prototypes
with simultaneously increasing coordinates, these two
apparently contradictory results hold.

Theorem
Ï for a constant ε and very general hypotheses on the density f ,

the hitting time of F++ is finite with a positive probability
(Flanagan, 1996),

Ï but in the 8-neighbor setting, the exit time is also finite with
positive probability (Fort & Pages, 1995).
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General multidimensional case, discrete setting
[Ritter et al., 1992]

For the continuous setting, we know that SOM is not a gradient
descent algorithm (Erwinn).
But the discrete setting is quite different, since the stochastic
process m(t) derives from an energy function (h is not
time-dependent).

Ï It is a very important case, since for the applications, the
data are discrete (as for data mining, data clustering).

Ï Then for discrete setting, SOM is a gradient descent
process associated to

E(m) = 1

2N

N∑
i=1

K∑
k=1

hkc(xi)‖mk −xi‖2. (9)
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Extended distortion

Ï This result does not ensure the convergence : the gradient
of the energy function is not continuous on the boundaries
of the clusters.

Ï This energy combines two criteria : Clustering criterium
and correct Organisation criterium.

Ï In the 0-neighbor setting, SOM reduces to the VQ process,
the energy reduces to

E(m) = 1

2N

N∑
i=1

‖mc(xi) −xi‖2.

, the gradient is continuous. But the algorithm converges to
one of the local minima,

Ï This energy function is called extended distortion.

21 / 59



 

7 census of 

the French 

Rhône Valley 

districts from 

1936 to 

1990), 1783 

districts 

 

During a 

week, at each 

quarter-hour 

1 if he works, 

0 if not 

 

So the 

dimension 

4×24×7=672 

 

 

The 

characters 

are 

transformed 

into 256-dim 

vectors. 

 

10 super-

classes. 

digit 5 is 

missing, 

it  belongs 

to the same 

class than 

digit 3. 

 



 

96 ciountries 

in 1996  

7 economic 

indexes 

Super-classes 

 

Clustering of 

all the data 

At left poor 

countries 

At right rich 

ones 

 

Consumptions  

of Canadian 

households 

according to 

20 categories 

Classification of the profiles on a 10 by 10 cylinder

The distance between two profiles is computed with the same weight for each half-hour
The weather  does not  influence the profile : it acts only on the mean and the variance
Classification of the profiles, (vectors in R48, with  norm 1, and sum 0)

 

Electricity 

consumptions 

observed 

each half an 

hour over 24 

hours 

 



Theoretical
and Applied

Aspects of the
Self-

Organizing
Maps

Marie
Cottrell1 &
Madalina

Olteanu1 &
Fabrice Rossi1

& Nathalie
Villa-

Vialaneix2

SOM for
numerical
data

Theoretical
study of SOM

SOM Variants

Probabilistic
views of SOM

Non
numerical
data

Maps
Stochasticity

In practice...

Batch SOM
[Kohonen, 1995]

The possible limit states are solutions of the ODE equation
φ(m) = 0, so it is natural to compute its solutions.
For the continuous setting

m∗
k =

∑K
j=1 hkj

∫
Cj

xf (x)dx∑K
j=1 hkj

∫
Cj

f (x)dx
.

In the discrete setting, the analogous is

m∗
k =

∑K
j=1 hkj

∑
xi∈Cj

xi∑K
j=1 hkj|Cj|

=
∑N

i=1 hkc(xi)xi∑N
i=1 hkc(xi)

.

The limit prototypes m∗
k are the weighted means of all the

inputs which belong to the cluster Ck or to its neighboring
clusters. The weights are given by the neighborhood function h.
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Definition of the Batch SOM

Random initial values of the prototypes ;
Ï Construction of all the clusters (nearest neighbors) ;
Ï Update of all the prototypes

mk(t +1) =
∑K

j=1 hkj(t)
∫

Cj(mk (t))
xf (x)dx∑K

j=1 hkj(t)
∫

Cj(mk (t))
f (x)dx

(10)

for the continuous setting, and

mk(t +1) =
∑N

i=1 hkct (xi)(t)xi∑N
i=1 hkct (xi)(t)

(11)

for the discrete case.
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Theoretical properties of Batch SOM

Ï Batch SOM is quasi-Newtonian algorithm associated to the
extended distortion and converges to a local minimum of
it.

Ï In the 0-neighbor setting, Batch SOM reduces to Forgy
process (k-means), which converges towards a local
minimum of the distortion.
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Relations between these 4 clustering algorithms

Stochastic Deterministic

0 neighbor VQ, SCL Forgy, moving centers

With neighbors SOM Batch SOM

Ï SOM and Batch SOM preserve the data topology : neighbor
data belong to the same cluster or to neighbor clusters ;

Ï Hence the visualization properties of the Kohonen maps,
while 0-neigbor algorithms (Forgy and VQ) have not ;

Ï SOM depends very little on the initialization, while Batch
SOM is very sensitive ;

Ï Batch SOM is deterministic and often preferred for
industrial applications.
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Hard assignment in the Heskes’s rule
[Heskes, 1999]

Ï In the continuous setting, the on-line SOM is not a gradient
algorithm, and in the discrete setting, the the gradient of the
energy function is not continuous

Ï To overcome these problems, Heskes modifies the rule for
computing the best matching unit (BMU) in the on-line
version of the SOM

Ï Equation (1) becomes

ct(x) = arg min
k∈{1,...,K }

K∑
j=1

hkj(t)‖x−mk(t)‖2 (12)

Ï Then, this modified SOM is a gradient descent process of
the energy function

E(m) = 1

2

K∑
j=1

K∑
k=1

hkj(t)
∫

x∈Cj(m)
‖x−mk(t)‖2f (x)dx (13)

.
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Comparison of both rules

The regularity properties of the energy function and of its
gradient are summarized as discussed in Heskes, 1999.

Discrete setting Continuous setting

Kohonen rule Energy : discontinuous Energy : continuous

(but finite on V )

Gradient : discontinuous Gradient : discontinuous

(infinite on V )

Heskes rule Energy : continuous Energy : continuous

Gradient : discontinuous Gradient : continuous

(finite on V )

29 / 59
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Soft Topographic Mapping (STM)
[Heskes, 1999, Graepel, 1998]

Ï The energy function in the discrete SOM can be written :

E(m,c) = 1

2

K∑
k=1

N∑
i=1

cik

K∑
j=1

hkj(t)‖mj(t)−xi‖2

where cik is equal to 1 iif xi belongs to cluster k.

Ï Crisp assignment is smoothed by considering cik ≥ 0 such
that

∑K
k=1 cik = 1, so that cik is the P(xi ∈ Ck).

Ï Deterministic annealing scheme to avoid the local
minima : the energy function is transformed into a “free
energy” cost function,

F(m,c,β) = E(m,c)− 1

β
S(c) ,

where β is the annealing parameter.
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Soft Topographic Mapping (STM)

Ï For fixed β and h, the minimization of the free energy leads
to iterating over two steps

P(xi ∈ Ck) = exp(−βeik)∑K
j=1 exp(−βeij)

, (14)

where eik = 1
2

∑K
j=1 hjk(t)‖xi −mj(t)‖2

mk(t +1) =
∑N

i=1 xi
∑K

j=1 hjk(t)P(xi ∈ Cj)∑N
i=1

∑K
j=1 hjk(t)P(xi ∈ Cj)

(15)

Ï If β≈ 0, there is only one global minimum computed by
gradient descent or EM schemes

Ï When β→+∞, the free energy tends to be E(m,c)
Ï Deterministic annealing minimizes the free energy, starting

from a small β, to finally get (with increasing β) an
approximation of the global minimum of E(m,c)

Ï When β→+∞, the classical batch SOM is retrieved, and
most of the local minima are avoided 31 / 59
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Comparison between the SOM-inspired
probabilistic models

Consider a mixture of K Gaussian distributions, centered on
the prototypes, with equal covariance matrix

Ï In Regularized EM, [Heskes, 2001], the constraint is
enforced by a regularization term on the data space
distribution

Ï In Variational EM, [Verbeek et al., 2005] the constraint is
induced at the latent variable level (via approximating
p(Z|X ,Θ) by a smooth distribution)

Ï In Generative Topographic Mapping, the constraint is
induced on the data space distribution, because the centers
of the Gaussian distributions are obtained by mapping a
fixed grid to the data space via a nonlinear smooth mapping

All the probabilistic variants enable missing data analysis and
easy extensions to non numerical data
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Extensions for non numerical data

Until this point : the data were described by numerical variables

SOM algorithm may be adapted to :

Ï survey data (variables are qualitative, they are answers to
questions with multiple choices) ;

Ï data described by a dissimilarity matrix or a kernel
(observations are known by their pairwise relations :
graphs, qualitative time series, ...)
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Contingency Tables, KORRESP algorithm
Cottrell et Letrémy, 1993, 2005

The data : a contingency table (two qualitative variables) T = (tij)
with p rows and q columns.

Ï Scaling of the rows and of the columns as in Factorial
Correspondence Analysis
The scaled contingency table denoted by T sc :

tsc
i,j =

ti,j√
ti.t.j

.

Ï Definition of an extended data table X by associating to
each row the most probable column and to each column
the most probable row

Ï Simultaneous classification of the rows and of the columns
onto a Kohonen map, by using the extended data table X as
input for the SOM algorithm
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Contingency table, KORRESP Algorithm

X =

columns rows

columns

rows

most probable
row

most probable
column

scaled column

scaled row

Ï Assignment uses the scaled rows or columns

Ï Prototypes update uses the extended rows or columns

Ï Alternating draw of a row or of a column
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Generalization to general survey data

Three kinds of data

Ï Simple contingency table crossing two questions

Ï Burt Table, i.e. full contingency table for any number of
questions

Ï Complete disjunctive table that contains the answers of all
the individuals

KORRESP deals with all these kinds of tables, viewed as
"contingency tables".
The scaling step allows us to use the Euclidean distance instead
of the χ2 distance and to take into account the weighting as in
FCA.
After convergence, rows and columns items are simultaneously
classified as in FCA, but on only one map.
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In practice...

Example : Presidential elections 2002
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Non numerical data, Median SOM
[Kohohen and Somervuo, 1998]

The data : are described by a symmetric (dis)similarity matrix
D = (δ(xi,xj))i, j=1,...,N , in a discrete setting. Observations (xi) do
not necessarily belong to a vector space.
Median SOM : optimal prototypes are restricted to the data
points instead of X .
Discrete optimization scheme, in batch mode :

1. Assignment of all data to their best matching units :
c(xi) = argminkδ(xi,mk(t)) ;

2. Update of all the prototypes within the dataset
mk(t) = argminxi

∑N
j=1 hc(xj)k(t)δ(xi,xj).

Ï The algorithm explores a finite set so it is convergent to a
local minimum of the energy function.

Ï Strong limitations
Ï Restriction of the prototypes to the dataset ;
Ï Large computational cost.
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Dissimilarity data,“relational” SOM
[Hammer and Hasenfuss, 2010, Olteanu and Villa-Vialaneix, 2015a, Rossi, 2014]

If the data are described by a (dis)similarity matrix
D = (δ(xi,xj))i, j=1,...,n, [Goldfarb, 1984] shows that the context is
pseudo-Euclidean :

Theorem
There exist two Euclidean spaces E1 and E2 and ψ1 : {xi} → E1,
ψ2 : {xi} → E2 such that

δ(xi,xj) = ‖ψ1(xi)−ψ1(xj)‖2
E1
−‖ψ2(xi)−ψ2(xj)‖2

E2
.
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Dissimilarity data,“relational” SOM

Principle : to use the data representation in E = E1 ⊗E2, where
ψ(x) = (ψ1(x),ψ2(x)).

Ï The prototypes are expressed as convex combinations of
the (ψ(xi)) :

mk(t) =
N∑

i=1
γt

kiψ(xi)

where γt
ki ≥ 0 and

∑
iγ

t
ki = 1

Ï The distance : ‖ψ(xi)−mk(t)‖2
E

can be expressed with D
and the γ (

Dγt
k

)
i −

1

2
(γt

k)T Dγt
k

For the on-line framework,
Ï The prototypes update concerns the coordinates (γk) only :

γt+1
k = γt

k +ε(t)hkct (xi)(t)
(
1i −γt

k

)
(16)

where xi is the current observation and 1il = 1 iif l = i
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Dissimilarity data, "Relational Batch SOM

In the batch framework, the prototypes update concerns the
coordinates (γk) only :

mk(t +1) =
N∑

i=1

hkct (xi)(t)∑N
j=1 hkct (xj)(t)

ψ(xi) ⇔ γt+1
ki = hkct (xi)(t)∑N

j=1 hkct (xj)(t)
(17)

For the γ, the updating step is identical to the original SOM or
to the original Batch SOM algorithm.

If the dissimilarities are in fact given by Euclidean distances
between data points in Rp, the relational SOM is strictly
equivalent to the original SOM.
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Particular case of Kernel SOM
[Aronszajn, 1950, Villa and Rossi, 2007, Mac Donald and Fyfe, 2000]

Ï The data can be described by a kernel matrix
K = (K (xi,xj))i,j=1,...,N

Ï A kernel K is a particular case of symmetric similarity
measure, positive semi-defined and satisfying

∀M > 0, ∀ (xi)i=1,...,M ∈X , ∀ (αi)i=1,...,M ,
∑
i,j
αiαjK (xi,xj) ≥ 0.

Ï Observe that a kernel matrix K is an Euclidean distance
matrix, but a dissimilarity matrix D may not necessarily be
transformed into a kernel matrix

For Kernel data, [Aronszajn, 1950] proves

Theorem
There exists a Hilbert space H , also called feature space, and a
mapping ψ : X →H , called feature map, such that
K (xi,xj) = 〈ψ(xi),ψ(xj)〉H (dot product in H )
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Particular case of Kernel SOM

Ï The prototypes are expressed as convex combinations of
the (ψ(xi)) :

mk(t) =
N∑

i=1
γt

kiψ(xi)

where γt
ki ≥ 0 and

∑
iγ

t
ki = 1

Ï The distance :

‖ψ(xi)−mk(t)‖2 = (
γt

k

)T
Kγt

k −2Kiγ
t
k +Kii ,

where Ki is the ith row of K and
(
γt

k

)T =
(
γt

k,1, ...,γt
k,N

)
Ï The prototypes updates are the same as before, acting only

on the γ
Ï If the dissimilarity is the squared distance induced by the

kernel, kernel SOM and relational SOM are strictly
equivalent

Ï Fully equivalent to the original SOM algorithm in the
feature Euclidean space, and suffer the same theoretical
limitations 43 / 59



Theoretical
and Applied

Aspects of the
Self-

Organizing
Maps

Marie
Cottrell1 &
Madalina

Olteanu1 &
Fabrice Rossi1

& Nathalie
Villa-

Vialaneix2

SOM for
numerical
data

Theoretical
study of SOM

SOM Variants

Probabilistic
views of SOM

Non
numerical
data

Maps
Stochasticity

In practice...

The characters in "Les misérables"

The graph : graph of co-occurrences (in a same chapter) of the
77 characters in the Victor Hugo’s novel “Les misérables”
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In practice...

The characters in "Les misérables"

Dissimilarity : length of the shortest path between two vertices
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The characters in "Les misérables"

The size of the clusters is proportional to the number of
characters.
Principle : [Olteanu and Villa-Vialaneix, 2015b]

Ï Relational SOM

Ï Hierarchical clustering of the prototypes to build
“super-classes”
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The characters in "Les misérables"

The initial graph is colored
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The characters in "Les misérables"

Graph projection : each super-class is represented by a circle
with a radius proportional to the number of vertices it contains.
The width of the edges is proportional to the number of
connections between two super-classes
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In practice...

Example 2 : Professional trajectories

The data : “Generation 98” à 7 ans - 2005, CEREQ, Centre
Maurice Halbwachs (CMH). 16 040 young people leaving initial
training in 1998 are observed during 94 months. Each month,
the nature of their activity is recorded (non-fixed term contracts,
fixed term contracts, training program, unemployment, public
contract,...)

Dissimilarity between recorded sequences : Edit Distance, also
called Optimal Distance.
See [Olteanu and Villa-Vialaneix, 2015a] for details

Up west : exclusion of the
labor market
East : quick integration
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the nature of their activity is recorded (non-fixed term contracts,
fixed term contracts, training program, unemployment, public
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Example 2 : Professional trajectories
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Stochasticity of the results

Finding : several runs of the on-line SOM algorithm provide
different resulting maps, even with the same initialization.

Three tracks :

Improve the stability as in the following papers
[Petrakieva and Fyfe, 2003, Saavedra et al., 2007,
Vrusias et al., 2007, Baruque and Corchado, 2011,
Mariette et al., 2014, Mariette and Villa-Vialaneix, 2016]

or
Use this stochasticity to qualify the reliability of the results with
stability index [de Bodt et al., 2002]

or
Distinguish stable pairs and fickle pairs of data points to
improve the interpretation and the visualization as in
[Bourgeois et al., 2015] for medieval text mining
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SOM in practice...

Ï Batch SOM for numerical data or relational data is
implemented in yasomi
http://yasomi.r-forge.r-project.org

Ï KORRESP and on-line SOM for numerical data or relational
data are implemented in SOMbrero (CRAN)
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In practice...

Conclusion

SOM and Batch SOM are Clustering algorithms with very
interesting properties

Ï The complexity is linear with respect to the number of data,
well adapted to Big Data context ;

Ï Nice properties of visualization of the data and of the
clusters ;

Ï Easy use with missing data, and estimation of these missing
data ;

Ï Interesting initialization and acceleration of 0-neighbor
algorithms.

The relational version provides an interesting alternative for
non numerical data, but its complexity is increased and its
interpretability decreased (representation of the results,
prototypes interpretations).
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Thank you for your
attention
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Some extra slides
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SOM and regularized EM
[Heskes, 2001]

Ï Consider a mixture of K Gaussian distributions, centered
on the prototypes, with covariance matrix 1

β I
Ï Maximizing the likelihood is equivalent to minimize the VQ

distortion, so there is not any topology preservation
Ï A regularization term penalizes prototypes that do not

respect the prior structure
Ï Applying the EM principle to the regularized (log)likelihood

leads to an algorithm that resembles the batch SOM one.
Ï But the final algorithm is significantly different from the

batch SOM :
Ï Crisp assignments are replaced by probabilistic ones
Ï The neighborhood function is fixed

Ï Increasing β progressively implies to reduce the
neighborhood function during the EM algorithm, but this
might have consequences that remain untested
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SOM and variational EM
[VerBeek et al., 2005]

Ï As before, let us assume a mixture model (e.g. a
K -components Gaussian isotropic mixture), let us denote
the parameter vector byΘ

Ï The hidden (latent) variables Z are the assignment ones
which map each data point x to a component of the mixture
(a cluster)

Ï An arbitrary distribution q is chosen on variables Z
Ï The log likelihood logp(X |Θ) is equal to the sum of :

Ï The complete log likelihood, Eq logp(X ,Z|Θ)
Ï The entropy of q, H(q)
Ï The Kullback-Leibler divergence, KL(q|p(Z|X ,Θ)), between q

and the posterior distribution of the hidden variables
knowing the data points
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In practice...

SOM and variational EM

Ï To use the EM algorithm, the posterior distribution of the
hidden variables knowing the data points has to be known.
The variational approach consists in replacing this
distribution by a simpler one

Ï Verbeek et al. constrain p(Z|X ,Θ) to a subset of probability
distributions that fulfill topological constraints
corresponding to the prior structure of the SOM

Ï In addition, VerBeek et al. study the effects of shrinking the
neighborhood function during training and conclude that
it improves the quality of the solutions
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In practice...

The Generative Topographic Mapping (GTM)
[Bishop et al., 1998]

Ï Mixture model inspired by the SOM rather than an
adaptation

Ï Uniform prior distribution on a fixed grid which is mapped
via an explicit smooth nonlinear mapping to the data
space

Ï The constraints induced on the data space are quite similar
to the SOM constraints

Ï Once the model has been specify (by choosing the
nonlinear mapping), its parameters are estimated via an
EM algorithm

Ï The obtained algorithm is quite different from the SOM, but
GTM can be reformulated in a way that is close to the batch
SOM with probabilistic assignments (as in e.g. the STM)
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Soft Topographic Maps for non numerical data
[Graepel et al., 1998]

Ï [Graepel et al., 1998] define an extension of STM for kernels
and dissimilarities data

Ï The updates for the prototype coefficients are then
expressed as

γki(t +1) =
∑K

j=1 hjk(t)P(xi ∈ Cj)∑N
l=1

∑K
j=1 hjk(t)P(xl ∈ Cj)

, (18)

where mk(t) =∑N
i=1γ

t
kiψ(xi) and ψ is the embedding map

Ï It is only in a Batch mode
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