Master 2 M.O. 2020 - 2021

Time Series Tutorial n^0 2 : How to identify a white noise and generate ARMA and GARCH processes?

The aims of this tutorial is a to provide a first tool to identify a white noise and to generate both the classical ARMA and GARCH processes.

Identification of a white noise: test of portemanteau

	Vizualization of the independance
x=rnorm(50)	Generate a Gaussian white noise.
r = acf(x)	Correlogram of x
,	It represents empirical auto-correlations for consecutive lags
	$0, 1, 2, \dots$ Dots represent 95% confidence intervals of Z/\sqrt{n} ,
	where Z is $\mathcal{N}(0,1)$ r.v. and n is the length of x.
	Why? Which test is associated to the confidence interval? Can we consider x as a white noise?
y=x[1:49]+x[2:50]	Generation of a new trajectory. Which kind of process is y ?
, , , , ,	What is the distribution of y ? Compute the correlations of y for any lag.
ry=acf(y)	Correlogram of y . Is it a white noise?
rho=ry\$acf[2]	Computation of the empirical correlation for lag 1.
v . []	Compare with the theoretical correlation.
	Goodness-of-fit tests
n=50; x=5*rnorm(n)-2	What is the law of x ?
hist(x,nclass=11)	Histogram which is a first estimation of the density of x . Why?
	Note the choice of numbers of classes of histogram.
qqnorm(x)	QQplot test (what is it?). Conclusion?
y=3*runif(100)+1	what is the law of y ?
qqnorm(y)	Conclusion?
dn=ks.test(x,"pnorm",-2,5)	Kolmogorov-Smirnov test where the distribution of x is compared to $\mathcal{N}(-2,5^2)$.
, , <u>,</u>	The $p-value$ provides a quantitative way for deciding from a test.
	Classicaly H_0 is accepted when $p-value \ge 0.05$.
ddn=ks.test(y,"pexp",3)	Test on y. What could we expect?
(0) 1 1 , ,	Test now if y follow a uniform law on $[-1,1]$.
ks.test(x,y)	Test the similarity of the distributions of x and y . Conclusion?
Box.test(x, lag = 8)	Use of a portemanteau test for testing the whiteness.
- (,0 - /	As usual, if $p - value \ge 0.05$, accept H_0 : White noise.
Box.test(x, lag = 8, "Ljung-Box")	Use of another portemanteau test, Ljung-Box, which is numerically more accurate.
X=x(2:n)-0.5*x(1:(n-1))	Which kind of process is generated? Apply the portemanteau tests. Result?
\ / \ \ //	I O III V I

Exercice 1: Generate 1000 trajectories of x and X, for n = 50, n = 200, n = 1000 and n = 5000. For each trajectory, apply both the portemanteau tests, for lag=5, lag=10, lag=log(n) and lag=sqrt(n), and save the p-values. Compare the results for finding a most efficient portemanteau test.

ARMA process

In the sequel, two different ways are followed for generating a trajectory of a ARMA process.

```
n=100; m=100; X=0
epsi=3*rnorm(n+m)
for (j in c(1:(n+m)))
X[j+1]=-0.3*X[j]+epsi[j+1]+0.7*epsi[j]
x=X[c((m+1):(n+m+1))]; tsplot(x)
```

Explain what is done here (in particular why using m?). Another way could be by writting these commands:

```
XX=arima.sim(100,model=list(ar=-.3,ma=.7))
```

Write the recurrent equation followed by this process. Draw this trajectory. Representation of its correlogram. Conclusion? Generate another trajectory using directly the recurrent equation. Generate a trajectory of a ARMA[2,2] process (chose the coefficients). Generate the same trajectory with a noise following a uniform distribution on [-1,1].

Correlograms

```
X=arima.sim(100,model=list(ar=-.3,ma=.7))
R=acf(X); R[1]
```

What is the theoretical formula of R[1]? Explain the obtained value from its asymptotic value (compute it from the equation of the ARMA process!). We are going to replicate this computation of the sample correlation for lag 1 many times for observing the asymptotic behavior of this estimator. This is the aim of the following Monte-Carlo experiment:

```
Res=c()
for (j in c(1:200))
{X=arima.sim(1000,model=list(ar=-.3,ma=.7))
R=acf(X)
Res=c(Res,as.numeric(R[1]$acf))}
hist(Res)
```

Explain what is done with this program and connect the result with theoretical results. Replace the law of the innovation by a uniform law on [-1, 1]. Conclusion?

In the sequel, we define and use an estimator of the parameters of a AR[1] process. If $X_{t+1} = \theta X_t + \xi_t$ for $t \in \mathbf{Z}$, with $|\theta| < 1$, then $\theta = \text{cov}(X_0, X_1)/\text{var}(X_0)$. Hence, an estimator of θ could be obtained:

$$\widehat{\theta} = \frac{\frac{1}{n} \sum_{i=1}^{n-1} X_i X_{i+1}}{\frac{1}{n} \sum_{i=1}^{n} X_i^2}.$$

Use the previous program for exhibiting the asymptotic behavior of $\widehat{\theta}$. Consider the cases n=100, n=500 and n=1000. How to check the \sqrt{n} convergence rate of this estimator?

For estimating the variance σ_{ξ}^2 of ξ_t , a natural estimator is:

$$\widehat{\sigma}_{\xi}^{2} = \frac{1}{n} \sum_{i=1}^{n-1} \left(X_{i+1} - \widehat{\theta} X_{i} \right)^{2}.$$

Exhibit also the asymptotic behavior of this estimator. Which convergence rate could be expected?

Write the conditional log-likelihood of (X_t) and compare the QMLE with the previous estimators.

GARCH process

Let X be a trajectory of length 100 of the following process:

$$X_t = \varepsilon_t \times \sigma_t$$
 and $\sigma_t^2 = 4 + 0.3 \times X_{t-1}^2 + 0.4 \times \sigma_{t-1}^2$,

where (ε_t) is a Gaussian standard white noise.

Generate directly this trajectory (as previously for ARMA process let run the routine m = 100 before for being close to a stationary process). Draw this trajectory and the correlogram.

Could you imagine the same kind of estimator than with AR process?