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Abstract. In this paper, we study almost periodic (a.p.) solutions of discrete

dynamical systems. We first adapt some results on a.p. differential equations to a.p.
difference equations, on the link between boundedness of solutions and existence of

a.p. solutions. After, we obtain an existence result in the space of the Harmonic

Synthesis for an equation At(xt, ..., xt+p) = 0 when the dependance of A on t is a.p.
and when At and DAt are uniformly Lipschitz and satisfy another condition which

is exactly the extension of a simple one for the basic linear system. The main tools

for that are Nonlinear Functional Analysis and the Newton method.

Introduction. Almost periodic solutions (and the special case of quasi-periodic
solutions) of Dynamical Systems arise in numerous theories, from Dynamical Sys-
tems [6], Dynamical Economics [10], Chaos [1], Physics [15] and their references.
In [5], J. Blot and D. Pennequin have introduced and compared some current no-
tions of almost periodic (a.p.) sequences. They have introduced a notion of a.p.
sequences depending on a parameter and have shown an isomorphism between the
space of a.p. sequences depending on a parameter and a space of a.p. sequences
with values in a Banach space. They have built some variational principles, and
they have obtained some structure results and some existence results in special
cases: concave (or convex) functional, special linear equations or quantitavely per-
turbated equations.

Let us recall some notations and some facts [5]. We consider a Banach space E,
which will be in general RN . The reason for which we consider at the beginning
an abstract Banach space is that spaces of a.p. sequences with parameters can be
seen as spaces of a.p. sequences in a special (infinite dimensional) Banach space
[5]. The norm of E will be denoted by |.|, and when E = RN , we denote x · y the
standard scalar product of x, y ∈ RN . For A : Z × P → E, and t ∈ Z, we also
denote by At the function A(t, .). When it exists, the partial derivative w.r.t. the
second argument is written D2A and we also write DAt(x) := D2A(t, x). Now, for
f : R → E and α ∈ R, we denote by ταf the function f(.+α); this notation is also
avaliable for sequences (and α ∈ Z).
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A sequence x := (xt)t ∈ (E)Z is called almost periodic (a.p.) when one of the
following equivalent assertions holds:

• ∀ε > 0, ∃N ∈ N∗, ∀m ∈ Z, ∃p ∈ {m, · · · ,m+N}, ∀t ∈ Z,

|xt+p − xt| ≤ ε.

• There exists f ∈ AP 0(R;E) such that for any t ∈ Z, f(t) = xt.
• The fonction fx : R → E defined by fx(t+ u) = xt + u(xt+1 − xt) for t ∈ Z,
u ∈ [0; 1] is a.p.

• There exists a function ϕ ∈ C0(bZ,E) such that (ϕ ◦ in)(t) = xt for all t ∈ Z,
where bZ is the Bohr compactification of Z and in : Z → bZ is the canonical
injection.

We denote by AP (Z,E) the space of a.p. sequences. The function in the third
Point is called the canonical extension of x to AP 0(R,E). The function ϕ is unique
and denoted by ϕx. AP (Z,RN ) is a Banach space when it is endowed with the
norm:

‖x‖∞ := sup
t∈Z

|xt| = ‖fx‖∞.

Recall that bZ is a topological compact group, we denote by µbZ its Haar measure.
We can define the mean of the a.p. sequence by one of the equivalent formulae:

M{x} = M{xt}t := lim
T→+∞

1
T + 1

T∑
t=0

xt = M{fx} =
∫
bZ

ϕx(θ)dµbZ(θ).

We recall that, by denoting eα(t) := e2iπαt, for α ∈ [0; 1) and t ∈ Z, and eα :=
(eα(t))t and finally

cα(x) := M{e−α(t)xt}t
we have:

x ∼
∑

α∈[0;1)

cαeα.

AP (Z,RN ) can be endowed with the following scalar product:

< x, y >:= M{xt · yt}t
and its completion is denoted by B2(Z,RN ). We note ‖.‖ the norm of L2(bZ,RN )
and the norm of B2(Z,RN ). The following conditions are equivalent:

• x ∈ B2(Z,RN ).
•

∑
α

|cα(x)|2 < +∞.

• ϕx ∈ L2(bZ,RN ).
Moreover, ‖x‖ = ‖ϕx‖. B2(Z,RN ) and L2(bZ,RN ) are similar and be viewen as
spaces where Harmonic Synthesis is realized.
Let us consider a metric space P such that P is compact or P = ∪pKp with Kp

compact for all p and Kp ⊂ IntKp+1, where Int stands for interior. Let us consider
A : Z× P → RN . We say that A is u.a.p. and we note A ∈ APU(Z, P,RN ) if for
any K ⊂ P compact and any ε > 0 we have:

∃N ∈ N∗, ∀m ∈ Z, ∃p ∈ {m, ...,m+N}, ∀t ∈ Z,

sup
(t,α)∈Z×K

|A(t+ p, α)−A(t, α)| ≤ ε.

It can be shown that APU(Z, P,RN ), AP (Z, C0(P,RN )) and C0(bZ×P,RN ) are
isomorphic as Fréchet spaces (when they are embedded with their natural topolog-
ical vector space structure).
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The aim of this paper is to explore some new equations. In Section 1, we prove
the link between a.p. sequences studied in [5] and the Bochner property, and ex-
tend it to a.p. sequences depending on a parameter. In Section 2, we prove a
criterion of almost periodicity of bounded solutions, closed to the Amerio one in
continuous time. The idea to look for a.p. solutions (in AP (Z,RN )) by studying
first bounded solutions is classical for differential equations and justified by the fact
that all bounded a.p. solutions of the basic linear system xt+1 = Axt + bt (where
A is constant and b a.p.) are a.p. In Section 3, we give a condition for existence of
a B2(Z,RN ) solution to the quite general equation:

At(xt, ..., xt+p) = 0

when A and D2A satisfy some growth properties and a conditions which generalizes
a simple condition for the basic linear system.

1. The Bochner condition for sequences. A natural extension of the classical
Bochner criterion for sequences is given by the following proposition.

Proposition 1.1. A sequence x is a.p. if and only if, for any (hn)n ∈ ZN, there
exists a subsequence (hφ(n))n such that (τhφ(n)x)n converges uniformly on Z.

Proof. To prove this, we use the link between fx and x. If x is a.p., so is fx and
thus there exists a subsequence (hφ(n))n such that (τhφ(n)fx)n converges uniformly
on R. But if t ∈ Z, fx(t + hφ(n)) = xt+hφ(n) since hφ(n) ∈ Z and so we obtain
the result. Now, we prove the controverse. First, we see that x is bounded: if not,
there would exist for any n, hn such that |xhn

| ≥ n for any n, and so (τhn
x0)n has

no convergent subsequence. So x is bounded, let us show that fx is a.p. Given a
sequence (kn)n ∈ RN, we set kn = hn + ζn with hn ∈ Z and ζn ∈ [0; 1). By taking
two times a subsequence if necessary, we may assume that:

sup
t∈Z

|fx(t+ hn)− fx(t)| ≤ 1/n

and that:

|ζn − ζ| ≤ 1
2n‖x‖∞

, ζ ∈ [0; 1].

From this, we obtain that

sup
x∈R

|fx(x+ hn)− fx(x)| ≤ 1/n

and since fx is 2‖x‖∞-Lipschitzian:

sup
x∈R

|fx(x+ ζn)− fx(x+ ζ)| ≤ 2‖x‖∞|ζn − ζ| ≤ 1/n.

Thus, we have for any x ∈ R:

|fx(x+kn)−fx(x+ζ)| ≤ |fx(x+kn)−fx(x+hn+ζ)|+|fx(x+hn+ζ)−fx(x+ζ)| ≤ 2/n

thus (τknfx)n converges uniformly on R to τζfx, and so fx is a.p., and we can
conclude that x is a.p.

Now, we extend it to the parametric case. Let us consider A : Z × P → RN . We
can assert:

Proposition 1.2. A is a.p. if and only if for any (hn)n ∈ ZN, there exists a
subsequence (hφ(n))n such that for all K ⊂ P compact, (A(.+ hφ(n), .))n converges
uniformly on Z×K.
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Proof. Since APU(Z, P,RN ) is isomorphic to AP (Z, C0(P,RN )), the result is
clear if P is compact. Now, we consider the case when P = ∪pKp with Kp compact
for any p and Kp ⊂ Int(Kp+1). Assume first that A ∈ APU(Z, P,RN ). By
induction, we can find for any p a strictly increasing function φp : N → N such
that for any n ≥ 1 and any p: (A(. + h(φ0◦...◦φp)(n), .))n is uniformly convergent
on Kp. If we set ψ(n) := (φ0 ◦ ... ◦ φn)(n) we thus have that (A(. + hψ(n), .))n is
uniformly convergent on any Kp. Since any compact is a subset of some Kp, we
have the result. For the other implication, note that the compact case gives that
A ∈ APU(Z,Kp,RN ) for any p, and so we have the result.

2. Bounded solutions and Almost periodicity. A reason for looking for a.p.
solutions by studying bounded solutions is given by the basic linear case. In this
section, we look for solutions in AP (Z,RN ).

2.1. The basic linear case. We begin with the case of sums:

Lemma 2.1. Let x be a.p. Then the sequence (
∑t
j=0 xj)t is a.p. iff it is bounded.

It is known that for a.p. functions, their indefinite integrals are a.p. iff they are
bounded. An easy computation shows that:∫ t+1

0

fx(u)du =
x0 + xt+1

2
+

t∑
j=0

xj .

Proof. Since fx is a.p., the indefinite integral of fx is a.p. if and only if it is
bounded: the lemma is proven.
Now, we study the basic linear case. As in continuous time, we have:

Proposition 2.2. Let A be a N × N matrix, and b an a.p. sequence with values
in RN . Then a solution of:

xt+1 = Axt + bt

is almost periodic if and only if it is bounded. Moreover, if A has no eigenvalue
with modulus 1, there exists a unique a.p. solution.

Proof. An a.p. solution is bounded, just the controverse need to be shown. There
exist a triangular matrix T and an invertible matrix T such that A = PTP−1. Let
us consider y defined by yt := P−1xt. y is a.p. (resp. bounded) iff x is a.p. (resp.
bounded) and y is solution of the following triangular system:

yt+1 = Tyt.

So we see that if Proposition (2.2) is true for N = 1, then it is always true. So we
now just consider the scalar case. Let a ∈ C be given and b a.p. We can assume
that a 6= 0, since if a = 0 the result is clear. We have three cases.
Case 1. If |a| > 1, any solution can be written

xt = at

x0 +
t−1∑
j=0

bj
aj+1

 .
Since |at| goes to +∞ when t→ +∞, a bounded solution satisfies necessarly:

x0 = −
+∞∑
j=0

bj
aj+1

.
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Note that the sum is convergent since (bj)j is bounded and |a| > 1. So the only
possibility for a solution to be bounded is to have the form:

xt = at
+∞∑
j=t

bj
aj+1

.

From this, it is clear that this solution is bounded and it is also a.p. since:

|xt+p − xt| ≤
supτ |bτ+p − bτ |

|a| − 1

so the only bounded solution in this case is a.p.
Case 2. If |a| < 1 the reasoning is similar.
Case 3. We now consider the case |a| = 1. The general solution is written as:

xt = at

x0 +
t−1∑
j=0

bj
aj+1

 .
Since (at)t is bounded (and a.p.) in this case, we see that there is bounded ( resp.
a.p.) solutions iff the sequence (

∑t−1
j=0

bj

aj+1 )t is bounded (resp. a.p.). But in view
of the preceeding lemma, since ( bt

at+1 )t is a.p., these facts are equivalent, and the
proof is complete. Note that in this case there exists an a.p. solution if and only if
all solutions are a.p.

Corollary 2.3. We consider the equation:
p∑
j=0

ajxt+j = bt

with aj ∈ R, b ∈ AP (Z,R), and we assume that there exists s ∈ {0, ...p} such that:

|as| >
∑
j 6=s

|aj |.

Then there exists a unique solution in AP (Z,R) to the equation.

Proof. The characteristic polynomial is P (z) :=
∑p
j=0 ajz

j . It is sufficient to
prove that P has no zero with modulus 1. If there exists such a zero, z0, we have
asz

s
0 = −

∑
j 6=s ajz

j
0 and so |as| ≤

∑
j 6=s |aj |, which is impossible. So, P has no

zero with modulus 1, and the lemma is proven.

Remark 2.4. When A has an eigenvalue whose modulus is 1, the equation may
have no a.p. solution. For instance:

xt+1 + xt = (−1)t

has no a.p. solution.

2.2. Some nonlinear systems. Now, we consider some nonlinear systems. We
shall establish a criterion closed to the Amerio one for almost periodicity of bounded
solutions.
We consider a system:

xt+1 = At(xt) (2.1)
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with A ∈ APU(Z,RN ,RN ). Let F be the hull of A, i.e. B ∈ F if and only if there
exists (hn)n ∈ ZN such that A(.+hn, .) → B uniformly on R×K for any compact
K. To B ∈ F , we associate the following system:

yt+1 = Bt(yt) (2.2)

We now fix a connected compact set K, and we note D = R×K. For a system as
(2.1), we say that x is a separated solution on D if either it is the only one solution
such that Gr(x) ⊂ D or if for any such solution y, there exists ρ = ρ(y) > 0
such that for any t, ‖xt − yt‖ ≥ ρ. Note that since fx − fy = fx−y, we also have
‖fx(t)− fy(t)‖ ≥ ρ for any t ∈ R.

Lemma 2.5. The following assertions hold.
1. If Φ is a subset of all x a.p. such that Gr(x) ⊂ D, then the set {fx, x ∈ Φ}

is relatively compact in any normed vector space C0([a, b];RN ), with −∞ <
a < b < +∞.

2. If (2.1) has only separated solutions, there is a finite number of solutions.
3. If (2.1) has a solution x such that Gr(x) ⊂ D, then (2.2) has a solution y

such that Gr(y) ⊂ D.
4. If (2.1) has a solution x such that xt ∈ K for t ≥ t0, then (2.2) has a solution

y such that yt ∈ K for any t.
5. If any system (2.2) a separated solutions, then there exists σ > 0 such that

for any B ∈ F , for any yi, i = 1, 2 solutions of the system (2.2), we have for
any t, ‖y1

t − y2
t ‖ ≥ σ.

Proof.
1. Define M := supζ∈K ‖ζ‖. Since for any t, ‖xt‖ ≤ M and ‖xt+1 − xt‖ ≤ 2M ,
we have, by construction of fx, ‖fx(t)‖ ≤M for any t ∈ R and ‖fx(u)− fx(v)‖ ≤
2M‖u− v‖. Thus, this familly is equicontinuous and equibounded, and the Ascoli
theorem gives the result.
2. Consider the familly of all separated solutions. If it is infinite, we can choose
a infinite familly (fx(n))n with distincts terms which converges uniformly on any
compact sets (cf. 1.). Thus the limit is a solution of the equation, but is not
separated, which leads a contradiction.
3. Consider any B ∈ F . Let (hn)n ∈ ZN such that A(.+ hn, .) → B. By the point
1. of this Lemma, the familly fn := fx(. + hn) has a subsequent which converges
uniformly on any compacts. The limit is a solution to the problem.
4. Let us consider x(n) := (xt−n)t. Let α ∈ Z and N(α) := t0 − α. The familly
{fx(n) ;n ≥ N(α)} is equibounded and equicontinuous, thus there exists a sequence
(kn)n ∈ ZN such that uniformly on any compacts we have fx(. + kn) → fy and
A(. + kn, Y ) → C(., Y ). Then yt+1 = C(t, yt), t ≥ α for any α and we can apply
the point 3. of this Lemma to this equation.
5. Let σ > 0 the term of the separation condition for (2.1). Given two solutions
zi (i = 1, 2) of (2.1), there exists a common sequence (hn)n such that (zi(.+ hn))n
converges uniformly to a sequence (yit)t. We have:

σ ≤ inf
t∈R

‖fz1(t)− fz2(t)‖ ≤ ‖y1
t − y2

t ‖

thus y1 and y2 are distincts. So, for any B, equations (2.1) and (2.2) have the same
number of solutions and the σ for equation (2.1) is valid for (2.2).
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Theorem 2.6. If all systems (2.2) possess separated solutions, then all solutions
are a.p.

Proof. Let us consider x a solution of (2.1) and a sequence (hn)n ∈ ZN. We
have to prove that a subsequence of (fx(. + hn))n is uniformly convergent on the
whole real line. Following the proof of Lemma 2.5, 3., we can assume that fx(. +
hn) → fz uniformly on any compacts subsets. We assume that the conclusion
does not hold. We have uniformly A(. + hn, .) → B, thus zt+1 = B(t, zt). By
Lemma 2.5, 4., there exists ρ > 0 such that if (yit)t are two solutions of (2.1),
inft ‖z1

t − z2
t ‖ ≥ 2ρ. For n < p, consider φn,p(t) := ‖fx(t + hn) − fx(t + hp)‖ and

In,p = φ−1
n,p(cl(B(0; ρ))), where cl stands for closure. φn,p is continuous, In,p is

closed, nonempty for sufficiently large (n, p) (since 0 ∈ In,p for large n, p). Let us
consider δn,p := supt∈In,p

φn,p(t). We have δn,p ≤ ρ and limn,p→+∞ δn,p 6= 0 (if not,
(fx(.+ hn))n would be uniformly convergent). So lim sup δn,p =: 2α > 0. Thus, we
have monotones increasing sequences (nr)r, (pr)r such that δnr,pr

≥ 3α/2 i.e. there
exists for any r, tr such that: φnr,pr

(tr) ≥ α. Thus:

α ≤ ‖fx(tr + hnr )− fx(tr + hpr )‖ ≤ ρ

and passing to subsequences if necessary we can find two vectors U, V such that
fx(tr + hnr

) → U and fx(tr + hpr
) → V , and thus α ≤ ‖U − V ‖ ≤ ρ.

Passing to subsequences if necessary, we may assume that fx(. + tr + hnr )r → z1

and fx(. + tr + hpr
) → z2 solutions of equations such that zit+1 = Bit(z

i
t) with

α ≤ ‖z2
0 − z1

0‖ ≤ ρ. Immediatly, we see that B2 = B1, and since z2
0 6= z1

0 , we must
have for all t, ‖z2

t − z1
t ‖ ≥ 2ρ, which gives the contradiction.

As a consequence, we obtain the following result which is closed to Favard’s one in
continuous time:

Corollary 2.7. We consider a linear system

xt+1 = Atxt + bt (2.3)

and we assume that A and b are a.p. We assume that for any Ξ in the Hull of A,
the system:

xt+1 = Ξtxt
has just the trivial solution as bounded solution. Then, any solution bounded solu-
tion of (2.3) is a.p.

Proof. We see that there exists at most one bounded solution, since the difference
between 2 solutions is solution of: xt+1 = Atxt. Let (hn)n ∈ ZN be such that
τhnA→ Ξ and C := lim τhnb. Each system

xt+1 = Ξtxt + Ct

has a bounded solution (cf 2.5, 3) which is unique so separated. Thus, any solution
of (2.3) is a.p.

3. A quite general case with growth conditions. We now consider the equa-
tion:

At(xt, ..., xt+p) = 0 (3.4)
where A : bZ× (RN )p+1 → RN is supposed to satisfy:

(H1) D2A exists, A and D2A are Caratheodory.
(H2) (At(0))t ∈ L2(bZ;RN ) and (DAt(0))t ∈ L2(bZ;RN ×RN ).
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(H3) There exists c > 0 such that for all t, At and DAt are c−Lipschitzian, i.e.:
• ∀(t, x, y) ∈ Z×RN ×RN , |A(t, x)−A(t, y)| ≤ c|x− y|
• ∀(t, x, y) ∈ Z×RN ×RN , ‖DAt(x)−DAt(y)‖L ≤ c|x− y| where ‖.‖L is

the operator norm of End(RN ) associated to |.|.
(H4) ∃γ > 0, ∃s ∈ {0, ..., p}, ∃ε ∈ {−1; 1}, ∀v ∈ RN , ∀(t, α) ∈ Z× (RN )p+1:

ε vTDs+1At(α)v ≥

γ +
∑
j 6=s

sup
(τ,β)

‖Dj+1Aτ (β)‖L

 |v|2

where vT is the transpose of v.

Remark 3.1. From (H2) and (H3) we deduce in particular that there exists d ∈
L2(bZ,R) such that:

∀(t, x) ∈ Z×RN , max{|A(t, x)|; ‖DAt(x)‖L} ≤ c|x|+ d(t).

The aim of this section is to prove:

Theorem 3.2. Under (3), equation (3.4) possesses a solution in B2(Z,RN ).

By changing A into −A if necessary, we may assume that ε = 1. We just
consider this case in the proof. We consider any b ∈ AP (Z,RN ) and we consider
the equation:

At(xt, ..., xt+p) = bt. (3.5)
We define φb : L2(bZ,RN ) → (L2(bZ,RN ))′ by setting

φb(x) :=
[
v 7→

∫
bZ

(At(xt, ..., xt+p)− bt).vt+sdµbZ(t)
]
,

thus (3.4) is φ0(x) = 0. We shall first prove:

Proposition 3.3. There exists C > 0 depending only on A such that if φb(x) = 0
possesses a solution, then for all b′ such that ‖b′ − b‖ ≤ C, the equation φb′(x) = 0
possesses a solution.

Note that if this proposition is valid, the theorem is also true. Indeed, we consider
a chain (bj)0≤j≤p such that b0 := (At(0))t, ‖bj+1 − bj‖ ≤ C and bp := 0. By
induction, any equation φbj

(x) = 0 has a solution, so the last one has a solution.

First, to prove Proposition 3.12, we need the following lemmas.

Lemma 3.4. φb is well defined, continuous and Gâteaux-differentiable.

Proof. Since (At)t are uniformly Lipchizian, the Nemytskii operator NA satisfies
NA(L2(bZ,RN )(p+1)) ⊂ L2(bZ,RN ) and is continuous (the results of [9], chap 2.
are also true with Lp(bZ,Rq)), and so φb is well defined. By using the Cauchy-
Schwarz-Buniakovski inegality, we obtain:

‖φb(x)− φb(y)‖2L2′ ≤
∫
bZ

|At(xt, ...xt+p)−At(yt, ...yt+p)|2 dµbZ(t)

and since the Nemytskii operator on A is continuous, the term in right goes to 0
when y → x.
We now look at the derivative. Fix x and consider the bilinear form

β(h, v) :=
∫
bZ

p∑
j=0

(Dj+1At(xt, ..., xt+p)ht+j).vt+sdµbZ(t).
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A natural candidate to be the Gâteaux-differential is β(h, .). Let us consider:

ξ(θ) :=
∥∥∥∥φb(x+ θh)− φb(x)

θ
− β(h, .)

∥∥∥∥
L2(bZ;RN )′

.

By the Cauchy-Schwarz-Buniakovski inequality we obtain:

ξ(θ)2 ≤
∫
bZ

ψ(θ, t)dµbZ(t)

where:

ψ(θ, t) :=

∣∣∣∣∣∣At(xt + θht)−At(xt)
θ

−
p∑
j=0

Dj+1At(xt, ..., xt+p)ht+j

∣∣∣∣∣∣
2

goes to 0 when θ → 0, and ψ(θ, t) is dominated by 8c2|ht|2 ∈ L1(bZ,R) in view of
the mean value theorem: the Lebesgue Theorem gives the results.

Lemma 3.5. The Gâteaux-differential DGφb(x) is invertible for any x, and there
exists a constant M depending only on A such that for any b, x, we have ‖DGφ

−1
b (x)‖ ≤

M.

Proof. Given L ∈ (L2(bZ;RN ))′, we have to search a h such that for any
v, we have β(h, v) = L(v). Since L is linear continuous and β is bilinear con-
tinuous, and we use the Lax-Milgram theorem. Let us note for j 6= s, Mj :=
sup(τ,β) ‖Dj+1Aτ (β)‖L. We note that:

β(v, v) =
∫
bZ

p∑
j=0

(Dj+1Lt(xt, ..., xt+p)vt+j).vt+sdµbZ(t) ≥

∫
bZ

vTt+sDs+1At(xt, ..., xt+p)vt+sdµbZ(t)−
∑
j 6=s

Mj

∫
bZ

|vt+j |.|vt+s|dµbZ(t)

by using the Cauchy-Schwarz-Buniakovski inegality in RN and the definition of the
operator norm. By using (H4) and the Cauchy-Schwarz-Buniakovski inequality in
L2(bZ;RN ), we obtain:

β(v, v) ≥

γ +
∑
j 6=s

Mj

 ∫
bZ

|vt+s|2dµbZ(t)−
∑
j 6=s

[
Mj

(∫
bZ

|vt+j |2dµbZ(t)
)1/2

(∫
bZ

|vt+s|2dµbZ(t)
)1/2

]
= γ‖v‖2L

and since γ > 0, we have the ellipticity. Thus, DGφb(x) is invertible. We have now,
if h = DGφ

−1
b (x)(L):

γ‖h‖2 ≤ β(h, h) = L(h) ≤ ‖L‖ ‖h‖
and so we can take M := γ−1.

Now we can complete the proof of Proposition 3.12. We shall apply Newton’s
method. The first remark to do is that in the Newton Theorem ([7], 7.5.1 p.161),
just the continuity of the function and the mean value theorem are invoqued, so
the theorem is also valid with a function which is just continuous and Gâteaux-
differentiable. We take for x(0) a solution of φb(x) = 0, and let us set φ0 :=
‖φb′(x(0))‖. To apply the theorem we have to find r > 0 and β ∈ (0; 1) such that
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2cr ≤ β/M and Mφ0/r ≤ 1−β. By a simple computation we see that it is possible
if and only if:

φ0 ≤ C :=
γ2

8c
where C depends only on A. But, φ0 ≤ ‖b− b′‖, so if ‖b− b′‖ ≤ C, we can find a
solution to φb′(x) = 0.

Remark 3.6. If we consider the basic linear case with N = 1, i.e. we consider the
equation:

p∑
j=0

ajxt+j = bt

then (H1)-(H3) are true and (H4) is exactly the condition given in 2.3. In par-
ticular, we see that the condition can not be strenghtened by assuming that γ ≥ 0
(cf. Remark 2.4).

Even if the equation is an Euler equation, (H4) does not imply and is not implied
by concavity or convexity of the Lagrangian. For instance, consider the equation
with N = 1:

bxt−1 + (a+ c)xt + bxt+1 = dt

where a, b, c ∈ R and d is a.p., which is Euler equation for the Lagrangean:

Lt(x, y) :=
ax2 + 2bxy + cy2

2
+ dtx.

(H1)-(H3) are true and an easy computation show for instance that when a > 0,
c > 0 and |b| ∈ (

√
ac; a+c2 ), the condition (H4) is valid but the functional Lt is not

convex nor concave.
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