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Joël BLOT∗ and Denis PENNEQUIN∗

Abstract
We study the almost periodic solutions of Euler equations

and of some more general Difference Equations. We consider
two different notions of almost periodic sequences, and we es-
tablish some relations between them. We build suitable se-
quences spaces and we prove some properties of these spaces.
We also prove properties of Nemytskii operators on these spaces.
We build a variational approach to establish existence of almost
periodic solutions as critical points. We obtain existence the-
orems for nonautonomous linear equations and for an Euler
equation with a concave and coercive lagrangian. We also use
a Fixed Point approach to obtain existence results for quasi-
linear Difference Equations.
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Introduction

In this paper, we study the almost periodic (a.p.) solutions of two

kinds of Differences Equations:
p∑

j=0

Dj+1Lt−j(xt−j, · · · , xt+p−j) = 0 (1)

∗CERMSEM, M.S.E., Université Paris 1 Panthéon-Sorbonne, 106-112 Bd de
l’Hôpital, 75647 Paris cedex 13, France.
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when Lt : IRN × IRN → IR, Dj denotes partial differential, and the

dependance of Lt upon t is a.p. (precisely Section 2) and:∑
τ∈I

at,τxt+τ − φt(xt+τ1 , · · · , xt+τp) = 0 (t ∈ ZZ) (2)

when I is a finite subset of ZZ, τ1, · · · , τp are distincts integers and and

the dependance of φt upon t is a.p.

Euler Equations (1) arise in numerous theories: in Mechanics (cf. [2]

and references therein), in Macroeconomics (cf. [11], [12] and refer-

ences therein) and in others fields of Physics (cf. [16] and references

therein). Some nonlinear Euler equations are particular cases of (2).

To study these problems, we use tools from Nonlinear Functional Anal-

ysis; Variational technics for (1), Fixed Point technics for (2). And so

we build a Calculus of Variations in mean in discrete time in the spirit

of this one of the continuous time ([3], [4] and references therein).

First, by using the more common notion of a.p. sequence (Definition

1.1), when the Lagrangian is concave we can obtain results on the

structure of the set of the a.p. solutions of (1). In a second time, by

using the notion of Besicovitch a.p. sequence, the better topological

properties of the space of such a.p. sequences permit us to prove some

existence results. To work on (2), we use the theory of Unbounded

Linear Operators and a Fixed Point Theorem.

Now, we describe the contents of the paper. In Section 1, we describe

the different notions of a.p. sequences that we use. We give properties

of the spaces of such a.p. sequences. In Section 2, we study the Nemyt-

skii Operators defined on the spaces of a.p. sequences, since they are

the fundamental tool to our functional analytic approach. In Section

3, we establish Variational Principles to rely the a.p. solutions of (1)
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and critical points of functionals defined on spaces of a.p. sequences.

In Section 4, we establish a result about the structure of the set of

a.p. solutions of (1) when the Lagrangian is concave. In Section 5, we

establish existence results of a.p. solutions of (1) by using technics in

the spirit of the direct methods of Calculus of Variations for (1) and

a Fixed Point method for (2).

1 Spaces of Almost Periodic Sequences

In this section, we successively describe several notions of almost pe-

riodic sequences, and we show the links beetween these notions. We

denote by IL one of the sets IN , IN∗ or ZZ and by IE a Banach space.

Definition 1.1 [[6] p.45] A sequence x := (xt)t ∈ IEIL is called almost

periodic (a.p.) when the following assertion holds:

∀ε > 0, ∃N ∈ IN∗, ∀m ∈ IL, ∃p ∈ {m, · · · , m + N}, ∀t ∈ IL,

‖xt+p − xt‖ ≤ ε.

Remark that ZZ is a topological group, and when IL = ZZ, this defi-

nition corresponds to this one of almost periodicity on a group ([15]

p.133) which is equivalent to the Von Neumann one.

AP (IL; IE) stands for the space of almost periodic sequences from IL

in IE.

If x = (xt)t, we denote by fx the function fx : conv(IL) → IE (where

conv denotes the convex hull in IR) defined by:

∀t ∈ IL, ∀u ∈ [0; 1], fx(t + u) := xt + u.(xt+1 − xt). (3)

A sequence x ∈ IEIL is a.p. if and only if there exists f ∈ AP 0(IR; IE)

(the space of Bohr a.p. functions from IR to IE, [1]) such that f |conv(IL)=
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fx (for IL = ZZ, see [6] p.47.)

Recall that an almost periodic function is completely determinated by

its restriction on [1; +∞). Consequently, it is equivalent to consider

a.p. sequences indexated by IN , IN∗ or ZZ. In the following, we just

consider a.p. sequences with IL = ZZ. Endowed with the supremum

norm ‖x‖
l∞(ZZ)

:= sup
t∈ZZ ‖xt‖, AP (ZZ; IE) is a Banach space.

We can prove that AP (ZZ; IE) is isometrically isomorphic to

AP 0(ZZ; IE)/ ∼, where (f ∼ g) ⇔ ((f − g) |IL= 0).

If we denote by eα the function t 7→ e2iπαt from IR into lC, where

α ∈ IR, one has eα ∼ e{α}, where {α} is the fractional part of α. So,

to study a.p. sequences, it is sufficient to consider all the sequences

{êα : α ∈ [0; 1)}, where êα := (eα(t))t.

Each x ∈ AP (ZZ; IE) possesses a mean value (see [6] p.48):

M{x} := M{xt}t := lim
T→+∞

1

2T + 1

T∑
t=−T

xt

which equals the mean value of the a.p. function fx defined in (3).

Now, we recall some facts about the Mauclaire almost periodic (m.a.p.)

sequences. First we denote by bZZ the Bohr compactification of ZZ ([9]

p.1, [10] p.30). bZZ is a compact topological group such that these

exists an one-to-one continuous homomorphism in : ZZ → bZZ with

in(ZZ) dense in bZZ.

Definition 1.2 A sequence x = (xt)t is a m.a.p. sequence when there

exists ϕ ∈ C0(bZZ; IE) such that ϕ ◦ in(t) = xt.

Such a function is unique and will be denoted by ϕx. APM(ZZ; IE)

stands for the space of m.a.p. sequences from ZZ in IE. Endowed with
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the supremum norm, it is a Banach space. An element of APM(ZZ; IE)

is completely determinated by its values on IN or IN∗ ([9] p.4).

Each x ∈ APM(ZZ; IE) possesses a mean value defined as follows:

MM{x} := MM{xt}t :=
∫

bZZ
ϕx(θ)dµ(θ)

where ϕx is defined in (1.2) and µ is the normalized Haar measure of

bZZ.

Proposition 1.3 There exists an isometrical isomorphism of Banach

spaces:

Θ : APM(ZZ; IE) −→ AP (ZZ; IE).

Proof. First, we see that Φ : APM(ZZ; IE) → C0(bZZ; E) such that

Φ(x) = ϕx is an isometrical isomorphism of Banach spaces. So, it is

sufficient to have one beetween C0(bZZ; IE) and AP (ZZ; IE).

If χ is a character of bZZ, we have for some α ∈ [0; 1), χ ◦ in = χα,

where χα(t) := e2iπαt for all t ∈ ZZ.

Set P (bZZ; E) := {∑p
j=1 ajχ

(j); ai ∈ IE; χ(j) ∈ (bZZ)′}. By using the

Weierstrass theorem and the paracompactedness of IE, we know that

P (bZZ; IE) is dense in C0(bZZ; IE). We set, for
∑p

j=1 ajχαj
∈ P (bZZ; E),

Ξ

 p∑
j=1

ajχαj

 =
p∑

j=1

aj êα.

Ξ is an isometry, so it is one-to-one and continuous, and can uniquely

be extended in an isometrical homomorphism Ξ beetween C0(bZZ; IE)

and AP (ZZ; IE). We have next to prove that Ξ is onto. Let us con-

sider x ∈ AP (ZZ; IE). There exists a sequence (Pn)n of trigonometric

polynomials on AP 0(IR; IE) such that limn→+∞ ‖fx − Pn‖∞ = 0. So

(Pn)n is a Cauchy sequence, and since we have:∥∥∥(Pn+p(t))t − (Pn(t))t

∥∥∥
l∞(ZZ)

≤ ‖Pn+p − Pn‖
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the sequence ((Pn(t))t)n is a Cauchy sequence in AP (ZZ; IE). If Pn =∑
j∈In

an
j eαj

, set Πn :=
∑

j∈In
an

j χ{αj}. One has Ξ(Πn) = (Pn(t))t and

since Ξ is an isometry, we see that (Πn)n is a Cauchy sequence on

C0(bZZ; IE), so it has a limit f . By continuity of Ξ, one has Ξ(f) = x.

One set Θ := Ξ ◦ Φ−1 to conclude.

In [16] (and references therein), Zaslavski uses a different notion of

a.p. sequence. Zaslavski a.p. sequences are also a.p. sequences in

the before described sense, but for instance (sin(t))t is not Zaslavski

almost periodic (since for all m ≥ 1, the set {sin(mt); t ∈ ZZ} is dense

on [−1; 1]).

We now describe Hilbert spaces such as Besicovitch spaces. Thourough

this section, IE will be an Hilbert space, whose scalar product will be

denoted by · for simplicity.

AP (ZZ; IE) can be endowed with the following scalar product:

〈x | y〉2 := M{xt · yt}t.

The associated norm will be denoted by ‖.‖2. The AP (ZZ; IE) Hilbert

completion with respect to this scalar product will be denoted by

B2(ZZ; IE). A representation of this completion can be seen as fol-

lows. We note that AP (ZZ; IE) ⊂M2(ZZ; IE), where M2(ZZ; IE) is the

Marcinkiewicz space ([13], [14]):

M2(ZZ; IE) :=

(xt)t : lim sup
T→+∞

1

2T + 1

T∑
t=−T

‖xt‖2 < +∞

 .
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On M2(ZZ; IE),

p(x) :=

lim sup
T→+∞

1

2T + 1

T∑
t=−T

‖xt‖2

1/2

is a semi-norm, and if B2(ZZ; IE) is the closure of AP (ZZ; IE) into

M2(ZZ; IE) with respect to this semi-norm, one has B2(ZZ; IE) = B2(ZZ; IE)/p.

And so, B2(ZZ; IE) is a set of equivalent classes of sequences. More-

over, another representation of B2(ZZ; IE) can be obtained by using

Harmonic Analysis:

B2(ZZ; IE) =

x : ∃(λα)α ∈ `2([0; 1); IE), x ∼2

∑
α∈[0;1)

λαêα

 ,

where x ∼2
∑

α∈[0;1) λαêα stands for:

M


∥∥∥∥∥∥x−

∑
α∈[0;1)

λαêα

∥∥∥∥∥∥
2
 = 0.

For the m.a.p. sequences, we consider:

B2
M(ZZ; IE) :=

{
x : ∃ϕ ∈ L2(bZZ; IE) , ∀t ∈ ZZ, ϕ ◦ in(t) = xt

}
.

Recall that L2(bZZ; IE) is the completion of C0(bZZ; IE) with respect

to L2 norm. So, since for all x ∈ APM(ZZ; IE) we have:

‖ϕx‖
L2(bZZ;IE)

= ‖Θ(x)‖2,

the spaces B2(ZZ; IE) and B2
M(ZZ; IE) are isometrically isomorphic as

Hilbert spaces.

2 A.p. Sequences Depending on Param-

eters and Nemytskii Operators

In the following, P is a compact subset or an open subset of IRk, for

k ≥ 1.
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If P is open, let us consider the family:

Kn := {x ∈ P : ‖x‖ ≤ n and d(x; P c) ≥ 1/n}.

All Kn are compact in IRk, P = ∪nKn and Kn ⊂ Int(Kn+1) for all n.

Definition 2.1 A sequence x(.) = [α 7→ (xt(α))t] ∈ IEZZ×P is said to

be a.p. in t ∈ ZZ, uniformly in α ∈ P if for all K compact subset of

IRk such that K ⊂ P and for all ε > 0, one has:

∃N ≥ 1, ∀m ∈ ZZ, ∃τ ∈ {m, · · · , m+N}, sup
t∈ZZ

sup
α∈K

‖xt+τ (α)−xt(α)‖ ≤ ε.

We denote by APU(ZZ; P ; IE) the subset of all these sequences. If P

is compact, APU(ZZ; P ; IE) is a Banach space with the norm:

‖x(.)‖APU := sup
(t,α)∈ZZ×P

‖xt(α)‖

and if P is open, APU(ZZ; IE) is a Fréchet space with the family of

semi-norms (pn)n, where:

pn(x(.)) := sup
(t,α)∈ZZ×Kn

‖xt(α)‖.

The space C0(bZZ× P ; IE) is endowed with the norm

‖f‖
C0(ZZ×P ;IE)

:= sup
(t,α)∈ZZ×P

‖f(t, α)‖

if P is compact, and with the family (πn)n, where

πn(f) := sup
(t,α)∈ZZ×Kn

‖f(t, α)‖

if P is open.

Proposition 2.2 There exists an isometrical isomorphism of Fréchet

spaces beetween APU(ZZ; P ; IE) and C0(bZZ× P ; IE).
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Proof. It is sufficient to prove it when P is compact. We will set the

proof into three steps.

1. The mapping x 7→ (xt(.))t is an isometrical isomorphism of Fréchet

spaces beetween APU(ZZ; P ; IE) and AP (ZZ; C0(P ; E)).

Indeed, it is clearly an homomorphism which is isometric, so one-to-

one. It is also onto: if we consider φ ∈ AP (ZZ; C0(P ; E)), and if we

set x such that xt(α) := φ(t)(α). One has x ∈ APU(ZZ; P ; IE) and x

is solution of the problem.

2. There exists an isometrical isomorphism of Fréchet spaces beetween

AP (ZZ; C0(P ; IE)) and C0(bZZ; C0(P ; IE)) (see Proposition 1.3).

3. There exists an isometrical isomorphism of Fréchet spaces beetween

C0(bZZ × P ; IE)) and C0(bZZ; C0(P ; IE)). Let us consider f 7−→ [t 7→
f(t, .)]. It is clearly well defined and an isometrical homomorphism.

We next prove that this homomorphism is onto. Consider

λ ∈ C0(bZZ; C0(P ; IE)) and (t0; α0) ∈ bZZ × P . If we put f(t, α) :=

(λ(t))(α), one has:

‖f(t, α)− f(t0, α0)‖ ≤ ‖f(t, α)− f(t0, α)‖+ ‖f(t0, α)− f(t0, α0)‖ ≤

≤ ‖λ(t)− λ(t0)‖C0(P ;IE) + ‖λ(t0)(α)− λ(t0)(α0)‖.

Consider ε > 0. Since λ(t0) ∈ C0(P ; IE), there exists a neighbourhood

V2 of α0 in P such that if α ∈ V2, one has: ‖λ(t0)(α)−λ(t0)(α0)‖ ≤ ε/2.

Since λ ∈ C0(bZZ; C0(P ; IE)), there exists a neighbourhood V1 of t0 in

P such that if t ∈ V1, one has ‖λ(t)− λ(t0)‖C0(P ;IE) ≤ ε/2. If (t, α) ∈
V1 × V2, one has: ‖f(t, α)− f(t0, α0)‖ ≤ ε, so f ∈ C0(ZZ× P ; IE).

Given L ∈ APU(ZZ; IRk; IR), we consider the Nemystkii operator NL :

AP (ZZ; IRk) −→ AP (ZZ; IR) such that NL(x) := (L(t, xt))t.
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Proposition 2.3 NL is well defined, and

NL ∈ C0(AP (ZZ; IRk); AP (ZZ; IR)).

Proof. By Proposition 2.2, we see that L is associated to L̃ ∈
C0(bZZ × IRk; IR) and ϕx ∈ C0(bZZ; IRk). So, [t 7→ L̃(t, ϕx(t))] ∈
C0(bZZ; IR) and we conclude that NL is well defined.

Now, we prove that NL is continuous. Fix x ∈ AP (ZZ; IRk) and set

K the closed ball in IRk of center 0 and radius ‖x‖
`∞(ZZ)

+ 1. Since

bZZ ×K is compact, it can be endowed with a uniform structure ([5]

p. T.G. II.28, Corollaire 1.). L̃ is uniformly continuous (on bZZ ×K,

so given ε > 0, there exists U vicinity in bZZ and η ∈ (0; 1) such that:

[
(p, q) ∈ U, (x, y) ∈ K2, | x− y |≤ η

]
=⇒

[
| L̃(p, x)− L̃(q, y) |≤ ε

]
.

Set x := x(p), p = q and taking the sup, we have:

[
‖x− y‖ ≤ η

]
=⇒

[
‖NL(x)−NL(y)‖ ≤ ε

]
.

In the following, Lt := L(t, .) and we shall assimilate APU(ZZ; IRk; IR)

and C0(bZZ× IRk; IR).

Let us consider the following assumption:

(H1) for all t ∈ ZZ, Lt ∈ C1(IRk; IR) and D2L ∈ C0(bZZ× IRk; IR).

Proposition 2.4 Under (H1) , NL is of class C1 and:

N ′
L(x) · h = (D2L(t, xt).ht)t .

Proof. Fix x. By using the mean value inequality, we have:

| L(t, xt + ht)− L(t, xt)−D2L(t, xt).ht |≤
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≤ sup
θ∈(0;1)

|D2L(t, xt + θht)−D2L(t, xt)| | ht | .

Let K be the same compact as in the previous proof. For all ε > 0,

there exists η ∈ (0; 1) and an vicinity U in bZZ such that:

[
(t, s) ∈ U, (x, y) ∈ K2, | x− y |≤ η

]
=⇒ [| D2L(t, x)−D2L(s, y) |≤ ε] .

Set x := xt, y := xt + θht, s = t and taking the sup, we have:

[‖h‖`∞ ≤ η] =⇒
[

sup
θ∈[0;1]

|D2L(t, xt + θht)−D2L(t, xt)|
]
≤ ε

and so we have:

[‖h‖`∞ ≤ η] =⇒ [|NL(x + h)−NL(x)− (D2L(t, xt).ht)t| ≤ ε‖h‖`∞ ] .

Continuity of N ′
L follows from the continuity of ND2L.

Now we consider the case of B2(ZZ; IE) (when IE is an Hilbert space),

by the identification of this space with L2(bZZ; IE). We consider a

Caratheodory function (see [7]) L : bZZ× IRk → IR such that:

(H2) ∀(t, x) ∈ bZZ× IRk, | L(t, x) |≤ a | x |2 +b(t)

where a > 0 and b ∈ L1(bZZ; IR).

We define a Nemytskii operator NL : L2(bZZ; IRk) → L1(bZZ; IR) as

follows:

NL(ϕ) := [θ 7→ L(θ; ϕ(θ))].

Proposition 2.5 Under (H2), NL is well defined, bounded and con-

tinuous.

Proof. ‖NL(ϕ)‖
L1(bZZ;IR)

≤ a‖ϕ‖2
L2(bZZ;IRk)

+ ‖b‖
L1(bZZ;IR)

< +∞ and

so NL is well defined and bounded. If NL is not continuous, there
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exists ϕ, (ϕn)n such that ϕn → ϕ in L2(bZZ; IRk) and (NL(ϕn))n has

not NL(ϕ) as adherence value. Since NL is bounded, there exists a

dominated subsequence NL(ϕnk
)k. The Lebesgue Theorem shows that

NL(ϕnk
) → NL(ϕ) in L1 as k → +∞, which leads a contradiction.

Remark 2.6 As in [7], it can be shown that if NL maps L2 in L1

such an estimation must hold.

We now also do the following assumption:

(H3) : for all t, L′
t exists, is Caratheodory, and satisfies:

| D2L(t, α) |≤ c | α | +d(t)

where c > 0 and d ∈ L1(bZZ; IR).

Proposition 2.7 Under (H3), NL is of class C1, and:

N ′
L(ϕ).h = [θ 7→ D2L(θ; ϕ(θ))h(θ)].

Proof. [θ 7→ D2L(θ; ϕ(θ))h(θ)] is L1 as product as two L2 functions.

Set:

R(h) := NL(ϕ + h)−NL(ϕ)−D2L(., ϕ).h.

Since:

NL(ϕ + h)−NL(ϕ) =
∫ 1

0
D2L(·, ϕ + th).hdt

one has: ∫
bZZ

| R(h) | dµ ≤

≤
∫

bZZ

∣∣∣∣∫ 1

0
(D2L(θ; ϕ(θ) + th(θ))−D2L(θ; ϕ(θ))) h(θ)dt

∣∣∣∣ dµ(θ) ≤

‖h‖
L2(bZZ;IRk)

[∫ 1

0

∫
bZZ

(D2L(θ; ϕ(θ) + th(θ))−D2L(θ; ϕ(θ)))2 dtdµ(θ)
]1/2

Since ND2L is continuous, the integrand goes to 0 when h → 0 and we

conclude by using the Lebesgue theorem.
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3 Variational Principles

Consider a positive integer N .

First, we consider a Lagrangian L which satisfies (H1) with k =

(p + 1)N . From L, we define a functional J : AP (ZZ; IRN) → IR as

follows:

J(x) := M{Lt(xt, · · · , xt+p)}t.

Lemma 3.1 J is of class C1, and:

J ′(x) · h = M


 p∑

j=0

Dj+1Lt(xt−j, · · · , xt+p−j)

 .ht


t

.

Proof. Consider the bounded linear operator T : AP (ZZ; IRN) →
AP (ZZ; IRN)p+1 such that: T ((xt)t) := (xt, · · · , xt+p)t. We have:

J := M◦NL ◦ T

and J is C1 a superposition of C1 operators, and from the Chain Rule

we have:

J ′(x) · h = M


p∑

j=0

Dj+1Lt(xt, · · · , xt+p).ht+j


and since the mean is invariant under translations, we have:

M{Dj+1Lt(xt, · · · , xt+p).ht+j}t = M{Dj+1Lt−j(xt−j, · · · , xt−j+p).ht}t

and the lemma is proven.

Proposition 3.2 The following assertions are equivalent:

1. x is a AP (ZZ; IRN) a.p. solution of (1).

2. x is a critical point of J on AP (ZZ; IRN).
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Proof. By using Lemma 3.1, it is sufficient to prove that (1) implies

(2). Put (ht)t := (
∑p

j=0 Dj+1Lt(xt−j, · · · , xt+p−j))t which is possible

since (
∑p

j=0 Dj+1Lt(xt−j, · · · , xt+p−j))t ∈ AP (ZZ; IRN). We have:

M{| ht |2}t = 0 i.e. :
∫

bZZ

(
ϕh(θ)

)2
dµ(θ) = 0.

Since
(
ϕh(.)

)2
is continuous nonnegative, we have

(
ϕh(θ)

)2
= 0 for all

θ. And so (2) is proven.

Now, we consider L which satisfies (H2) and (H3) with k = (p+1)N .

From L, we define a functional J : B2(ZZ; IRN) → IR as follows:

J(x) := M{Lt(xt, · · · , xt+p)}t.

Lemma 3.3 J is of class C1, and:

J ′(x) · h = M


 p∑

j=0

Dj+1Lt(xt−j, · · · , xt+p−j)

 .ht


t

.

The proof is the same as the proof of Lemma 3.1.

Proposition 3.4 The following assertions are equivalent:

1. x is a B2(ZZ; IRN) a.p. solution of (1).

2. x is a critical point of J on B2(ZZ; IRN).

Proof. As in Proposition 3.2, we just have to prove that (1) implies

(2). Put (ht)t := (
∑p

j=0 Dj+1Lt(xt−j, · · · , xt+p−j))t which is possible

since (
∑p

j=0 Dj+1Lt(xt−j, · · · , xt+p−j))t ∈ B2(ZZ; IRN). We have:

M{| ht |2}t = 0 i.e. :
∫

bZZ

(
ϕh(θ)

)2
dµ(θ) = 0

i.e.
(
ϕh(.)

)2
= 0 in L2(bZZ; IR). And so (2) is proven.
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4 Structure Results on AP (ZZ; IRN)

In this section, we give some structure results on the set of a.p. so-

lutions in AP (ZZ; IRN) of the Euler equation (1). The main tool will

be the variational structure of the problem. When the Lagrangian is

concave, this concavity is not simply usable on (1) but it becomes a

simple and powerfull tool in the variational viewpoint.

Theorem 4.1 The two following assertions hold:

1. If Lt is concave (convex) for all t, then the set of solutions is a

convex closed subset of AP (ZZ; IRN).

2. If Lt is strictly concave (convex) for all t, then there is at most

one solution in AP (ZZ; IRN) of (1).

Proof. Assume for instance that Lt is concave for all t. By using

Lemma 3.1, it is equivalent to study the set of critical points of the

functional J , denoted by C(J).

Assumption 1 is a consequence of the fact that the concavity of Lt

and the linearity of the mean imply the concavity of J .

2. Consider x, y ∈ C(J). We have to prove that x = y. Set:

zt := Lt

(
xt + yt

2
, · · · , xt+p + yt+p

2

)
−Lt(xt, · · · , xt+p) + Lt(yt, · · · , yt+p)

2

We have for all t, zt ≥ 0.If M{z} = 0, we have ϕz = 0 since this

function is nonnegative (by 1.) and continuous. So, we have zt = 0

for all t, and by strict concavity of Lt for all t, x = y. By contraposing,

it follows that if x 6= y, M{z} > 0, and:

J
(x + y

2

)
−

J(x) + J(y)

2
= M{z} > 0

which is not possible.
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5 Results in B2(ZZ; IRN)

In this Section, we study the a.p. solutions (in B2(ZZ; IRk)) of the

Euler equation (1). Like in the previous Section, we use a variational

viewpoint but here the Hilbert structure of B2(ZZ; IRN) permits us

to obtain existence theorem by using direct methods of Calculus of

Variations.

Theorem 5.1 (A linear case) We consider the following Euler equa-

tion:

Mtxt+1 + Λtxt + Mt−1xt−1 = Nt.

We assume that (Λt)t, (Mt)t ∈ AP (ZZ; IR) and (Nt)t ∈ AP (ZZ; IRN)

and that there exists ε ∈ {−1; 1} and α > 0 such that for all t ∈ ZZ,

we have: εLambdat ≥ α.Then (1) possesses a unique a.p. solution on

B2(ZZ; IRN) when one of the following condition is fulfilled:

1. ε = 1 and ‖(Mt)t‖`∞(ZZ)
< inf

t∈ZZ Λt.

2. ε = −1 and ‖(Mt)t‖`∞(ZZ)
< − sup

t∈ZZ Λt.

Proof. This Euler equation is associated to the Lagrangian:

Lt(x, y) := Λt | x |2 +2Mtx · y + 2Nt · x.

By changing L on −L, it is sufficient so assume that ε = 1. We choose

α := inft Λt. x is a critical point when it satisfies:

(∀y ∈ B2(ZZ; IRN)) a(x, y) = `(y)

where:

a(x, y) := M{Λtxt · yt + Mt(xt · yt+1 + xt+1 · yt)}t

16



and:

`(y) := −2M{Nt · yy}t.

By using the Cauhy-Schwarz inequality, we see that a (resp. `) is a

bilinear (resp. linear) continuous form. The Lax-Milgram theorem

prove us that such an equation has solutions when a is elliptic.

We have :

a(x, x) ≥ αM{| xt |2}t − 2‖(Mt)t‖`∞(ZZ)
M{| xt · xt+1 |}t

and since the Cauchy-Schwarz inequality shows :

M{| xt · xt+1 |}t ≤ ‖x‖2
2

we obtain :

a(x, x) ≥ (α− ‖(Mt)t‖`∞(ZZ)
)‖x‖2

2

which gives ellipticity, since α− ‖(Mt)t‖`∞(ZZ)
> 0 by assumption.

We now consider coercive concave problems.

Theorem 5.2 (The concave-coercive case) If the Lagrangian L satis-

fies assumption (H2) , and the two following conditions:

1. For all t ∈ ZZ, Lt is concave.

2. There exists (αi)i ∈ IRp+1 with
∑

i αi > 0 and γ ∈ L1(bZZ; IR)

such that for all t ∈ ZZ:

Lt(x1, · · · , xp) ≤ −
( p∑

i=1

αi | xi |2
)

+ γ(t).

Then there exists a B2(ZZ; IRN) a.p. solution of (1).
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Proof. By using Proposition 3.4, it is equivalent to search max-

ima of J , whose set is denoted by Argmax(J). First, we see that

J(x) ≤ −(
∑

i αi)‖x‖2
2 +M{| γt |}t, and so: lim‖x‖2→+∞ J(x) = −∞.

Set σ := sup
x∈B2(ZZ;IRN )

J(x). Since lim‖x‖2→+∞ J(x) = −∞ and J

is concave, we have σ < +∞. For all positive integer n, there exists

x(n) s.t. J(x(n)) ≥ σ − 1/n. Since lim‖x‖2→+∞ J(x) = −∞, (x(n))n is

bounded in the Hilbert space B2(ZZ; IRN), and so has a weakly con-

vergent subsequence (x(nk))k. If x is the limit, since J is concave, we

have:

J(x) ≥ lim
k→+∞

J
(
(x(nk))k

)
= σ

and so x ∈ Argmax(J).

Theorem 5.3 (A quasi-linear case) Let I be a finite subset of ZZ, for

any τ ∈ I, (at,τ )t ∈ `∞(ZZ; IR), τ1, · · · , τp ∈ ZZ distincts integers, φ ∈
APU(ZZ; (IRN)p; IRN). We assume that:

(i) α :=
∑
τ∈I

inft(a
2
t,τ )−

∑
τ 6=τ ′

‖a·,τ‖`∞‖a·,τ ′‖`∞ > 0.

(ii) ∀(t, x1, · · · , xp, y1, · · · , yp) ∈ ZZ× (IRN)2p

‖φt(x1, · · · , xp)− φt(y1, · · · , yp)‖ ≤ λ
p∑

j=1

‖xj − yj‖

(iii) pλ < α1/2.

Then, the equation (2) as a solution in B2(ZZ; IRN). There exists just

one solution which satisfies:

‖x‖2 ≤
‖(φt(0))t‖2

α1/2 − pλ
.
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Proof. We define a bounded linear operator A on B2(ZZ; IRN) by the

formula:

Ax :=

(∑
τ∈I

at,τxt+τ

)
t

.

1. We prove that A satisfies ∀x, ‖Ax‖2 ≥ α1/2‖x‖2.

Indeed, we have:

‖Ax‖2
2 = M


∥∥∥∥∥∑

τ

at,τxt+τ

∥∥∥∥∥
2


t

=

= M

∑
τ

a2
t,τ‖xt+τ‖2 +

∑
τ 6=τ ′

at,τat,τ ′xt+τ · xt+τ ′


t

By using Cauchy-Schwarz inequality and the fact that mean is invari-

ant under translation, we get:

M

∑
τ

a2
t,τ‖xt+τ‖2 +

∑
τ 6=τ ′

at,τat,τ ′xt+τ · xt+τ ′


t

≥ α‖x‖2.

This fact shows that A is into.

2. We prove that A is onto.

To prove this, let us first evaluate A∗. We have:

〈Ax | y〉2 = M
{∑

τ∈I

at,τxt+τ · yt

}
= M

{∑
τ∈I

at−τ,τxt · yt−τ

}
= 〈x | A∗y〉2

and so:

A∗y =

(∑
τ∈I

at−τ,τyt−τ

)
t

.

Thus, we have:

‖A∗y‖2
2 = M


∥∥∥∥∥∑

τ∈I

at−τ,τyt−τ

∥∥∥∥∥
2


and the same calculation as in (i) shows that for all y:

‖A∗y‖2 ≥ α1/2‖y‖2.
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Thus, by [8] Theorem II.4.4. p.63, we know that A is onto.

3. We prove that ‖A−1‖ ≤ α−1/2.

We have in fact:

‖A−1‖ = sup
y 6=0

‖A−1y‖2

‖y‖2

= sup
x 6=0

‖x‖2

‖Ax‖2

=

(
inf
x 6=0

‖Ax‖2

‖x‖2

)−1

and since infx 6=0
‖Ax‖2
‖x‖2 ≥ α1/2, the result holds.

4. An estimation.

For any τ , we set Sτ the shift operator: Sτ (x) := (xt+τ ). We show there

that Nφ ◦ (Sτ1 , · · · , Sτp) is pλ-lipschitzian. We set S := (Sτ1 , · · · , Sτp)

for simplicity.

‖Nφ ◦ S(x)−Nφ ◦ S(y)‖2
2 =

M
{
‖φt(xt+τ1 , · · · , xt+τp)− φt(yt+τ1 , · · · , yt+τp)‖2

}
t
≤

≤ λ2M


 p∑

j=1

‖xt+τj
− yt+τj

‖

2


t

≤ λ2pM


p∑

j=1

‖xt+τj
− yt+τj

‖2


t

=

= (λp)2‖x− y‖2
2

thus the result holds.

5. Conclusion.

The considered equation can be written:

Ax−Nφ ◦ S(x) = 0

and since A is bijective, it is equivalent to:

x− A−1 ◦ Nφ ◦ S(x) = 0.

We consider now the continuous nonlinear operator T := A−1 ◦Nφ ◦S.

We see that T is a contraction, since:

‖Tx−Ty‖2 = ‖A−1(Nφ◦S(x)−Nφ◦S(y))‖2 ≤
‖Nφ ◦ S(x)−Nφ ◦ S(y)‖2

α1/2
≤
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≤ pλ

α1/2
‖x− y‖2.

Let us set:

r :=
‖(φt(0))t‖2

α1/2 − pλ

and let be B the closed ball of center 0 and radius r in B2(ZZ; IRN).

We show that T maps B into B. Indeed, if ‖x‖2 ≤ r, we have:

‖T (x)‖2 ≤ ‖T (x)− T (0)‖2 + ‖T (0)‖2 ≤
pλ

α1/2
‖x‖2 +

‖(φt(0))t‖2

α1/2
≤ r.

The Banach-Picard Contraction Theorem shows that T has a unique

fixed point on B.

The following corollary shows that assumption (iii) can be relaxed

in some cases.

Corollary 5.4 With the notations of the previous theorem, we as-

sume condition (ii) of the previous theorem and these conditions:

(0’) ∃τ0 ∈ I ∩ {τ1, · · · , τp}, a0 := inft at,τ0 > 0.

(i’) α + ρ2 + 2ρ

( ∑
τ 6=τ0

‖a.,τ0‖`∞ − a0

)
> 0 with ρ ∈ [0; a0].

(iii’) α− p2λ2 + 2ρ

( ∑
τ 6=τ0

‖a.,τ0‖`∞ − a0 − p2λ

)
− (p2 − 1)ρ2 > 0.

Then equation (2) has a solution.

Remark 5.5 When condition (0’) is satisfied, condition (iii’) can be

less restrictive than (iii). For instance, when a0 >
∑

τ 6=τ0

‖a.,τ0‖`∞−p2λ,

a small ρ > 0 give a better condition.
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Proof. Let k ∈ {1, · · · , p} be the index such that τ0 = τk, Â :=

A − ρSτ0 , φ̂ := [(x1, · · · , xp) 7→ φ(x1, · · · , xp) − ρxk]. Our equation is

equivalent to:

Â(x)−
(
Nφ̂ ◦ S(x)

)
= 0.

We apply the previous theorem to this equation. Since a0 − ρ ≥ 0,

we see that assumption (i’) gives condition (i) for the operator Â.

The function φ̂ is λ + ρ lipschitzian, then the condition to apply the

previous theorem is α′ − p2(λ + ρ)2 > 0, where α′ is the α associated

to Â. We have:

α′−p2(λ+ρ)2 = α+2ρ

∑
τ 6=τ0

‖a.,τ0‖`∞ − a0

+ρ2−p2(λ2−2λρ+ρ2) > 0

by assumption (iii’).

Conclusion

The paper introduces several sequences spaces and nonlinear func-

tional analytic viewpoints (notably a variational approach) in order to

study the almost periodic oscillations in Difference Equations. These

new tools and methods are open to be developped.
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