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Abstract

We build spaces of q.p. (quasi-periodic) functions and we establish some of their
properties. They are motivated by the Percival approach to q.p. solutions of
Hamiltonian systems. We use this approach to obtain some regularization theo-
rems of weak q.p. solutions of Differential Equations. For a large class of Differ-
ential Equations, the first theorem gives a result of density: a particular form of
perturbated equations have strong solutions. The second theorem gives a condi-
tion which insures that any essentially bounded solution is a strong one.
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Introduction

The question of the existence of a.p. (almost periodic) solutions of ODE
(Ordinary Differential Equations) is a hard problem. On the a.p. solutions
of dissipative systems, a large literature exists [26], but on the a.p. solutions
of Lagrangian Systems (or Hamiltonian systems), the situation is different.
During the last decennies, the methods of Nonlinear Functional Analysis
have provided powerful results to treat the existence of periodic solutions of
Hamiltonian systems [30]. After that, methods of Nonlinear Analysis have
arose to treat the existence of a.p. solutions of Hamiltonian Systems.

In this viewpoint, the question is to define spaces of the a.p. functions, func-
tionals or operators on these functions spaces such that the critical points of
functionals, or the fixed points of operators, coincide with the a.p. solutions
of the considered ODE.

About the spaces of a.p. functions, there exist several constructions.
Denoting by AP'(IRY) the (Banach) space of the Bohr-a.p. functions which
possess a Bohr-a.p. derivative, we can consider functionals of the form:
J(z) == M{L(-,z,2)}, where M{p} = Tll_r>r01o s [T o(t)dt and L+ IR x RN x
RN — IR such that their critical points in AP'(IRY) are exactly the a.p. so-
lutions of the Euler-Lagrange equation: L, (t,z(t), #(t)) = £ Lg(t, x(t), i(t)).
This approach, called Calculus of Variations in Mean Time, permits to ob-
tain results, essentially when L(¢,-,-) is convex (or concave), [9].

But AP(IRN) does not possess good properties, notably it is not reflexive.
And so, it becomes natural to build Hilbertian spaces of a.p. functions.
BY“2(IR") is the Hilbert space of the (classes of) Besicovitch-a.p. functions
which possess a Besicovitch-a.p. generalized derivative [10, 13]. Associ-
ated to this space, we have a notion of weak a.p. solution: L,(-,z,%) ~o
VL;(-,x,2), where Va denotes the generalized derivative of z, and ¢ ~q 9
means M{|¢ — 1|*} = 0. This notion of weak a.p. solution means also that
the Fourier-Bohr series of L, (-, z, %) is equal to the formal derivative of the
Fourier-Bohr series of L;(-, x, ).

This Hilbertian approach have permitted to obtain existence results of weak
a.p. solutions (in B%?) [12,13] and also resuls of density of strong a.p. solu-
tions [11] in the following sense: when b € AP(IRY), for each ¢ > 0, we can
find b. € AP°(IR"™) such that d(b,b.) < e and such that there exists a strong
a.p. solution to L, (t, z(t), #(t)) — L L;(t, z(t),2(t)) = b-(t).



The use of the space B2 can be considered like a step towards the strong a.p.
solutions. Naturally, it motivates the question of the regularization of weak
a.p. solutions into strong a.p. solutions. One of the difficulties in the use of
the space B%? is the absence of results like theorem of Sobolev imbeddings.
This is due to the presence of small divisors.

There exists an another viewpoint on the spaces of a.p. functions described
into the works of [4] which consider hilbertian spaces with an additional
restrictive condition on the Fourier-Bohr exponents in order to ensure a the-
orem of Sobolev imbedding. The counterpart of this gain is the unstability
of these spaces for nonlinear operators, that induces a notion of weak a.p.
solution with a correcting term in the ODE.

Some deep contributions to the study of of this type of functions spaces are
due to Avantaggiati and alii [2,3, 25].

In this short list of functions spaces useful to the study of the a.p. solutions
of ODE, we must talk about the spaces BP*(IRY), the spaces of the Bohr-
a.p. functions which possess bounded primitives until order k, introduced
by J. Mawhin [28], [29]. These spaces permit to obtain strong a.p. solu-
tions. Among the a.p. solutions, it is classical to distinguish the classes of
q.p. (quasi-periodic) functions. The q.p. functions are related to the famous
problem of the invariant tori and to the famous KAM method. There exists
perturbative methods to study the q.p. solutions of Lagrangian systems [15].
In a radically different spirit, there exists a variational approach due to Per-
cival [33].

In the present work, we adapt to the q.p. functions the spaces B2 and more
generally BP2. We give several equivalent constructions to these spaces, and
we establish a process of regularization (of the weak a.p. solutions) special
to the q.p. solutions.

Let w = (w1, ws, ...,wn) be a list of m Z-linearly independent real numbers.
Let F: RN — RN a Bohr q.p. (quasi-periodic) function depending
uniformly on parameters such that w is a Z-basis of its module of frequencies.
We assume that F' satisfies the following Lipschitz condition:

3c € (0,00),Vt € R,V(&); € (RY)?,¥(¢); € (RV),



p
[F(t, &1, &p) = F(t,C1y 0 G S €D 1€ — Gl (1)
i=1
From it, we formulate the following forced ordinary differential equation:

¢P(t) = F(t,q(t),....q" V(1) (2)

We seek q.p. solutions of (2) with a module of frequencies generated by w.

To study this problem, we associate to F a function ® : R™NP — RN
periodic with respect to its m first variables such that ®(tw,aq,...,q,) =
F(t,aq,...,ap), and we seek periodic solutions u : IR™ — R™ of the follow-
ing partial differential equation:

OPu(x) = ®(z,u(z), ..., 00 tu(x)), (3)

where du = 3" wja%‘j and OPu := 0P~ (O, u) .
=70

We shall use a notion of weak q.p. solution of (2), i.e. a solution of the
following equation:

Vg~ F(q, ... V') (4)
in the sense defined in [10] and [13] that we recall in Section 1.

We shall also use a notion of weak periodic solution of (3), i.e. a solution of
the following equation

OPu(x) = ®(z,u(z), ..., 00 'u(x)), (5)

which is an equality of distributions whose sense will be precised in Section
2.

The idea to use (3) to study (2) was expressed in [33], but, in this paper,
Percival does not build any existence result by using this idea. In [6, 7],
Berger and Zhang constructed adequate functions spaces and provided some
existence results of weak and strong q.p. solutions of forced second-order
Lagrangian systems (with coercive potentials) by using this way.
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Now we describe the contents of the present paper.

In Section 1, we recall some notations and some notions about the Bohr a.p.
(almost periodic), the Besicovitch a.p. functions, the generalized derivatives
of the Besicovitch a.p. functions, and about various spaces of periodic func-
tions defined on IR™.

In Section 2, we define a notion of generalized Gateaux variation, denoted
by V., or d,, that we introduce as the infinitesimal generator of a group
of transformations. We prove that this notion of derivative coincides with
a distributional notion and with a notion of generalized derivative like a
Sobolev derivative. And so we can define a space of periodic functions on
IR™ which is like a Sobolev space that we denote by H!(T™, IRY). This
space coincides with a space introduced by Berger and Zhang.

In Section 3, we study the relations between various classes of q.p. functions
defined on IR and various classes of periodic functions defined on IR™.

In Section 4, we extend the relation shown in Section 3 to the case of quasi-
periodic functions depending uniformly on parameters.

In Section 5, given v € HL(T™, RY), we study the absolute continuity of
the associated functions ¢ — u(tw + &).

In Section 6, we study the relations between the q.p. solutions of (2) and (3)
and the periodic solutions of (4) and (5).

1 Notations and usual functions spaces

We denote by BCY(IR, IRY) the space of the bounded continuous functions
from IR in IRY, and by .||« the norm of the supremum on this space.
When r € INU {0}, BCT(IR, IR") denotes the space of the functions f €
C"(IR,IRYN) such that f and all its derivatives, until order r, belong to
BC°(IR,IRN). H], (R, RN) = W;>*(IR, IRN) denotes the usual Sobolev space.

loc
Let f € L} (IR, IRY). The mean value of f (when it exists) is the following
vector of IRM:

m (1) [ s,

= 1i
T—o00

M{f} = M{F)}



and, when N = 1, the upper mean value of f is the following scalar quantity:

() = M@ = mswp@D) " [ (o)

When f : IR™ — RN and when p € IR™, the translation of f by p is the
following function:

f: R" — RY. ,f(z) == f(z +p).

We denote by TP(C") the space of the trigonometric polynomials with coef-

ficients in 0, i.e. f € TP(@") means that f: R — OV, f(t) = 3 ¢,
=0

with ¢, € €V, and A\, € IR.

The space of the Bohr a.p. functions [8, Chapter I] and [18, Chapter VI]
from IR in IRY is denoted by AP°(IRY). When r € INU {400}, AP"(IRY) is
the space of the functions f € C"(IR, IRY) such that f and all its derivatives,
until order 7, belong to AP°(IRY).

When «a € [1,00), BY(IRY) denotes the space of the Besicovitch a.p. func-
tions from IR in RN [8, Chapter II]. We recall that B*(IRY) is a quotient
space, and when f and g are representants of the same element of B*(IRY),
we set f ~, g, that means: M{||f(¢t) — g(t)||*}+ = 0.

Following [10, 13], when f € B%(IRY), we denote by V f (when it exists) the
following limit in B?(IRN):

Vf - ?_I}%S_I(TSJC - f)7

and BY2(IRYN) := {f € B*(IRY) : Vf exists in B?*(IR")}. We can iterate
this process to define

B2(RY) = {f € B'(IRY) : V(V'f) exists in B*(IRV)},

and V'L f .= V(V"f).

When f belongs to AP"(IR") or to B%(IRY), we associate to f its Fourier-
Bohr series [8]:

F(t) ~2 Y alfih)e™,

AR
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where a(f;\) := M{f(t)e=™}, € €V, and we define A(f) := {\ € R :
a(f;A) # 0}, and Mod(f) := Z(A(f)) the Z-module generated by A(f) in
R.

When M is a Z-module in IR, we define the following spaces:
APT(RYN, M) := {f € AP"(IR") : Mod(f) C M}

B*(IRN, M) := {f € B*(IR") : Mod(f) c M}
B™2(IRYN, M) := {f € B"*(IR") : Mod(f) C M},
and, denoting by Z(w) the Z-module generated by {w; : j =1,...,m},

AP (RY) := AP"(IRY, Z (w))

B2(RY) := BA(R", Z(w))
B7?(IRYN) := B™*(IRY, Z(w)).

Now, we consider some spaces of functions defined on R™.

When r € INU {oo}, CI(IR™, IR) denotes the space of the functions of
C"(IR™, R) whose support is compact. D(R™) := C*(IR™,IR), and the
topological space D(IR™)* is the space of the distributions of L. Schwartz on
R™ [36].

P(T™,¢") denotes the space of the functions u : IR™ — ¢ in the following
form:

ni Tvm

U(ZL’l,...,xm) = Z Z Ckl...kmeiklmlu-eikmzm,
ki=1  km=1

and P(T™, RY) := {u € P(T™,C") : u(IR™) C RN},

A vector p € IR™ is called a period of a function u : IR™ — IRY when we
have 7,u = u. A function u : IR™ — IR" is called a periodic function when
it possesses a non zero period. We denote by per(u) the set of the periods of
w. It is well-known that per(u) is a Z-module in IR™ [14, TG VII 10].
When r € INU {o0}, we set

Cr (™, RY) = {u € C"(IR™, R") : per(u) D 2rZ™}.



Let a € [1,00). When u € L{ (IR™, IRY), we say that p € IR™ is a period of
w when Tu = u in L§ (IR™, IR"Y), and per(u) denotes the set of the periods
of u. We set

LYT™, RY) .= {u € L} (R™, R") : per(u) D 2rZ™}.

loc

When u € L?(T™, IRY), we associate to u its Fourier series [37, Chapter

VIIJ:
u(z) ~ Y alk)e™,
kezm™

where k -z = g kjz; and (k) = (2m)7™ [om u(x)e®*dx, with Q™ :=
=1

J
[—m, ™ C IR™.
We recall that, when v € LY(T™, IRY), we have

/mu(:c)dx = (27r)’m/mu(:c)d:z:.

We use the abbreviation "L.a.e.” to say: ”Lebesgue almost everywhere” or ”
Lebesgue almost every”.

About the periodic distributions we refer to [16, Chapter I]. And so, by
taking D(T™) = C*(T™, IR), its topological dual space D(T™)* is the
space of the periodic distributions. It is also possible to define the periodic
distributions as special distributions on IR™ like it is made in [38, pp.64-65].
These two constructions are equivalent [38, Chapter CC, Section III |. The
distributional derivative with respect the j-th variable is denoted by 0, in
D(T'™)* and by D; in D(IR™)*.

Since the notation 7™ in the above-mentioned sense, we denote the m-
dimensional geometric torus as follows:

U™ = {(21,.0,2m) €CY :Vj =1,....,m, |z] =1},

And we can assimilate the periodic functions (respectively distributions) de-
fined on IR™ and the functions (respectively distributions) defined on U™
[37, p.245] (respectively [36, pp.229-231]).

2 Other functions spaces

We consider the group (7(t))ier defined as follows:
T(t): LA™, RY) — L*(T™, R"Y), T(t)u := 1.
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For each t € IR, T(t) is linear and is an isometry. (7T'(t))cr is a strongly
continuous group in L(L?(T™, RN), L*(T™, IRY)) in the sense of the theory
of the semi-groups. The infinitesimal generator of (7'(¢));cr, denoted by V.,
is defined as follows:

Vou:=limt Y T(t)u—u) in L*(T™, RY). (6)

t—0

Definition. The domain of definition of V,, in L*(T™, IRY) is denoted by
HY(T™, RY).

By using the general theory of semi-groups [21, Chapter VIII, Section 1], the
following result holds.

Proposition 1. HL(T™, RYN) is a vector subspace of L*(T™, RYN), V,, :
HL(T™, RN) — L*(TT™, R") is a linear operator, H.(T™, RN) is dense
into L2(T™, RN), and the graph of V,, is closed in L*(TT™, RN ) x L*(TT™, IR").

When u,v € HL(T™, IRY), we set:
(| v}y = / u(@) - v(e)da+ [ Viu(e) - Vo(a)de, (7)
and ||ul|, denotes its associated norm.

Proposition 2. (HL(T™ RY),{.|.).) is a Hilbert space.

Proof. The linearity of V,, (Proposition 1) permits us to verify that (. | .),
is an inner product, and the completedness is a consequence of the closedness
of the graph of V,, (Proposition 1).g

When u € CO(T™, RY), the Gateaux variation of u at z for the increment
w (when it exists) is:

Du(z;w) := %i_r)rét_l(u(x + tw) — u(x)). (8)

When Du(x;w) exists for each x € IR™, we easily verify that per(Du(-;w)) D
2rZ™. When it exists, we set D*u(x;w) := D(Du(-;w))(z;w).

And so we can define the following functions spaces.

CHm™, RY) :={u e C°(I™, RY) : Du(-;w) € C°(T™, RM)} (9)

9



C2(I™, RY) := {u c C°(T™, RY) : D*u(-;w) € CO(T™, R™)}.  (10)

It is clear that C™(T™, RY) c CI(T™,IRN), for r = 1,2. When u €
CHIR™, IRN), we define:

Opu(z) :==u'(x).w = ]iwjgz(x) = Du(z;w). (11)
When T € D(T")*, we define:
0,1 := iwjajT (12)
j=1
and when T" € D(IR™)*, we define:
DT = w,D,T. (13)
=1

Proposition 3. When v € CL(T™, RY), then we have u € HL(T™, R"),
and Vu = Du(-;w).

Proof. Since Du(-;w) is continuous and periodic on R™, it is uniformly
continuous on /R"™. By using the mean value inequality, we obtain:

xsélg)m [t (u(z + tw) — u(z)) — Du(z,w)| <

sup sup [|Du(z + sw;w) — Du(z;w)||.|w|
|s|<t z€R™

The last term converges to zero when t — 0 because of the uniform continuity,
and since the uniform norm is greatest than the L?-norm on Q™, we can
conclude.g

Now, we study the regularization by convolution in Hl (7™, IRY).
Lemma 1. Let u € HL(T™, RY). Then the following assertions hold.
(i) Let 0o € CI(IR™, R), with r € INU {oo}. Then we have o0 x u €
CT(T™, RN), and 9,,(0 *x u) = (0,0) * u, when r > 1.

10



(ii) Let (on)n be a sequence of mollifiers (with values in D(IR™)) such that
supp(on) C Q™ for each h € IN. Then we have

lim ||Qh * U — u||L2(’1Tm,BN) = 0.
h—00

Proof.

(i) Since w € LY(T™,RY) and ¢ € L},.(IR™, IR), the convolution product
of u and g is well defined on IR™ [24, p.17]. Since g € C!(IR™, IR), we have
oxu € C"(IR™, IR) [24, p.17]. If p € 2 Z™, then, for every z € IR™, we have

oxu(z+p) = /IRm o(x)u(z +p—x)dr = / N o(x)u(z — z)dr = o * u(z).

And so, per(g*u) D 2rZ™, and consequently, we have p*xu € C™(T™, IRY).
By using a general property of the convolution products [38, p.122], we have

4 (oxu) = O¢ * U
895]- € n (9xj ’
and consequently, we have
* ) W, kU) =Y w xu = (0,0) *u
Q Z jal’] Q ]z:; i ; ( Q)

(ii) The proof is similar to this one of the usual case [24, pp.17-18| .u

Proposition 4. C1(T™, RY) is dense in HL(T™, RYN). Precisely, if (on)n
is a sequence of mollifiers such that supp(on) C Q™ for each h € IN, then we
have g, * u € C"(T™, IRN) for each h, and hlim llon * v — ul|, = 0.

— 00

Proof. First, for every h € IN,, for every t € IR\ {0}, and for every z € IR™,
we have:

on * [t (Tou — u)](2) = [t (Twon — on)] * u(2).
Secondly, for every h € IN,, t € IR\ {0}, z € IR™, we have:

‘Qh * (Ttwu - u)(z) — On * Vw“(’Z)’ <
llonll2(@m)- It (Twts — 1) = Vul| p2(gm).
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Therefore, we have:

lim op, * [t~ (Tou — u)](2) = on * Vou(z).

=0
Thirdly, by using the same reasoning as above, we have:
limft " (rn — o)) * u(z) = (Dun) * u().
By using the three previous relations, we obtain:
(Owon) * u = op * Vyu.
By using Lemma 1, we have g, * V,u = 0, (gn * u), and

lim ||op * u — w2 =0,
h—o0

lim ||0,(on * u) — Vyu|lzz = im ||op * Vou — Vyul|2 = 0.m
h—o00 h—o00

Proposition 5. The three following assertions hold.
(i) vf e Cham mY), [ o.f(a)de =
Tm

(ii) Yu € H (T, RY) | Vu(x)dz = 0.
mm

(i) Vi € CH(I™, RN),Vu € HL(T™, RY),

Volp-u)=(0,p) u+p-Vyu.

Proof.
(i) We set dx; := dwy...dzxj 1dzji1...d7,. By using the Fubini theorem, we

have:
/ﬂnm aai( x)dr = (2 )—m/m_l{/o%gmfj( )dx]}d%_()

and consequently, we obtain

/ﬂn dx—Zw] ﬁ (x)dz = 0.

wm 0
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(ii) By using Proposition 4, there exists a sequence (u,), with values in
CY(T™, RY) such that lim [lu —u,|l. = 0. By using (i), we have:

‘/ Vou(@)de| = |[Vou = Butn|| 11 < || Vott — Otin]|2
Tm

which converges to zero when n — oc.

(iii) Since ¢’ € CO(T™, L(IR™, IRY)), ¢’ is uniformly continuous on IR™, and
so, for every € > 0, there exists n(e) > 0 such that, for every &, € IR™, we
have

€=l <nle) = l¢'(§) = (Ol < e
When [t| < |w|7'n(e), we have

[t (Tp(z) — (@) - u(z + tw) — Oup(x) - ulr +tw)| <

( sup  [|¢'(§) — 90'(117)\|-IW|> Ju(z + tw)| < efu(z + tw)],
fe(z,z+tw)
that implies
[t (Tt = ©) = Qo] - Ttz < el mul| 2 = ellullz2,

and so, we have proven

. -1 . . ) _

ln [[f7 (T = ) = Ougp] - Trwtt]| 2 = 0. (14)
Since lim || 7y,u — u||zz = 0, and since

t—0
|0up(2) - [u(z + tw) — u(@)]] < |Oup(@)].[u(z + tw) — u(z)],

we have
10w - [Tt — ull[ 2 < [|Oupll Lo || Tt — ul| L2,

and consequently, we have
g 0, - [ro — ullz2 = 0. (15)
From (14) and (15), and from the following inequalities:
1t (Frwp = @)+ Tt — Qup -l 12 <

13



[t (e = ¢) * Tt = Dt~ Tt 22 + [[0up - Tiwtt — Dup - e 12,

we obtain:
1 -1 J— . J— . —
%1_138 ||t (TthO 90) TiwU 80.1(10 u||L2 0. (16)
Since
[t (row — u) — Vu] - @l 2 < ([t (Trou — u) — Voull 2 - l@]|ze,

we have

lim ||[t ! (7pu — u) — Vou] - ¢||z2 = 0. (17)

t—0

We note that
167 (Thlsp - u] — 0 - u) = (Op) - — - Vul| 2 <

1t (Tp = ) - Tett = (Bup) - ullzz + 1t (Tt — u) 0 = V- |12,
and then, by using (16) and (17), we obtain the announced result.g

Theorem 1. Let u € L*(T™, IRN). Then the four following assertions are
equivalent.

(i) u e HL.(T™, RY).
(i) > (k-w)?la(k)]? < oo.

kezm™

(iii) There exists v € L*(T™, IRN) such that, for every ¢ € C*(TT™, R"),
we have
/ v(x) - p(z)dr = —/ u(z) - Oyp(z)de.
(iv) The distribution d,u belongs to L*(T™, RY).

Moreover, when these assertions hold, we have:

Vou(z) = v(z) = 0u(z) = > i(k-w)a(k)e™™.

kezm™
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Proof.
(i = iii) By using Proposition 5, ii, iii, for every ¢ € CYT™, RY), we
have

/ un-90+/ u-Oyp = Vo(u-¢)=0.
™ ™

TTVL
And so we can take v = V u.

(iii = ii) For each k € Z™, we set yx(r) := e¢*%  And so, we have
Xk € C°(TT™, ('), and we verify that 0, xx(z) = i(k-w)xk(z). From (iii), for
every k € Z™, we have:

(k) =

- ﬂ"TYL

XkU = — /ﬂﬂm DXkt =i(k - w) Xe-u = i(k - w)u(k).

mm™m

Since v € L2(T™, IRY), we have [37, p.248]:
(0(k)kezm = (i(k - w)a(k)rezm € C(Z™,C"),

and so > (k-w)?|a(k)]* < cc.

kezm™

(ii = i) For each v € IN, we set P,(z) := Z e*a(k). And so, P, €
k|l<v
C(T™,0"), and we verify that

VP, (2) = 0,P,(x) = Y i(k - w)e™ a(k).

|k|<v

From (ii), we have (i(k - w)i(k))gezm € (2(Z™,0"), and by using the har-
monic synthesis [37, p.248], there exists v € L*(T™,C) such that o(k) =
i(k-w)u(k), for every k € Z™.

Since u(R™) C IRY, we have 9(—k) = o(k), and consequently, we have
ve LX(T™, RY).

By using [37, p.248], we have

lim [|[u — P,||z2 =0, lim. lv — V,P,|2 =0,

V—00

and since the graph of V, is closed (Proposition 1), we necessarily have
v=V,u, and so u € H:(T™, IRY).

(iii = iv) We fix j € {1,2,...,m}. For each 0 € C*(T™, R), we take
p € C(T™, R") defined by ¢; = o and ¢, = 0 when j # ¢. Then, from
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(iii), we obtain [zm vj.0 = — [zm ©;.0,0.

Since the distributional derivative d,u; € D(T™)* satisfies [pm Oyuj.0 =
— Jgm u;.0,0 [16, Chapter I, Section 6], we have v; = J,u;, and consequently
Ou € LAH(T™, IRY).

(iv = ii) For each k € Z™, by using the characterization of the distribu-
tional derivatives and the Fourier transform, we have

(D) (k) = / e~ med, u(z)dr = — / Bule T u(x)da

= i(k - w) / e ru(n)de = ik - w)alk).

Since d,u € L*(T™, RY), we have ((0,u)"(k))rezm € C(Z™,C"), therefore
(i(k - w)a(k))gezm € C(Z™,CY), and consequently, we have (ii).g

Comments. In the previous result, we have proven the equivalence between
the definition of V,, = 0, as the infinitesimal generator of a semi-group of
transformations, the distributional derivative and the generalized Sobolev
derivative. In [7], the space HL(T"™, IRN) is denoted by P2

We can iterate the previous construction and define, for » € IN, r > 2, the
following Hilbert spaces:

H(T™, RY) :={u e H YT R") : 0,07 'u) € HL(T™, R™)},

and 0,(0" 1) =: 9.
The inner product of H! (1™, IRY) is defined as follows:

(u,v) — (u | v)r2 + i(@iu | 0 u) .

i=1

3 Relations between q.p. functions and peri-
odic functions.

In this section, we study the relations between the q.p. functions defined on
IR and the periodic functions defined on IR™.
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Lemma 2. For x € IR™, we denote by cl(x) the class of equivalence of x in
the quotient space IR™ /2w Z"™. Then the following assertions hold.

(i) {cl(x):x € R™} is dense in R™ /2w Z™.

(ii) For every x € IR™, there exists a sequence (t,,), with values in IR, such
that, for every z € C°(T™, IRY), we have z(z) = Jim 2(thw).

(iii) For every z € C°(T™, R"), we have

sup |2(2)] = sup|z(tw)].
zelR™ telR

Proof.

(1) We can assimilate IR™/2rZ™ and U™ [5, pp.60, 82]. U™ is endowed
with the induced topology of €. And so, the topology of the quotient space
IR™[2nZ™ coincides with the topology defined by the following metric:

. 1/2
ﬂd%mmﬂﬂ%w%M?(ZW”%%@ .
j=1

We fix © = (21, ...,2,,) € IR™. Since wy,...,wy, are Z-linearly independent,
by using a classical theorem of Kronecker [18, p.163], for every 6 > 0, there
exists t € IR such that, for each j = 1, ..., m, we have |tw; — z;| < ¢ ( modulo
27). Since s — € is uniformly continuous from IR in €', for every ¢ > 0,
there exists t € IR such that |e™® — e™i| < em™!, for each j = 1,...,m, and
therefore we have d(cl(z), cl(tw)) < e.

(ii) Since we have [cl(z) = cl(y) = z(z) = z(y)], the function fact(z) :
R™)2rZ™ — IRYN defined by fact(z)(cl(z)) := z(z), is continuous [34,
pp.37-38]. We fix x € IR™, and by using (i), there exists a real sequence
(tn)n such that cl(t,w) — cl(x) when n — oo. Therefore we have

2(tpw) = fact(2)(cl(t,w)) — fact(z)(cl(x)) = z(z) (n — o0).
(iii) By using (ii), z([R™) is included into the closure of z(/Rw), and since

we have z([Rw) C z(IR™), we obtain the announced equality.m
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We consider the linear operator

Q. : (RMT" — (RM)®, Q,(u)(t) := u(tw). (18)

Theorem 2. The following assertions hold.

(i) Q.(CoT™, RN)) = QPY(IRYN), and for every u € CO(T™,RN), we
have || Qu(u)]|oo = [|u]loo-

(ii) Letr € IN,U{oo}. Then we have Q,(C"(T™, RY)) = QP"(IRN), and
for every u € CL(T™, RY), we have Q.,(Du(+w)) = 49, (u).

(iii) Q. (L*(T™,RN)) = B2(IRN), and for everyu € L*(T™, RY), we have
1Qu ()l 5> = [lullL2-

(iv) Qu(HX(T™, RN)) = BLX2(IRYN), and for every u € HL(T™, RY), we
have || Qu(u)]| g2 = |ull and Qu(duu) = V(Qu(w)).

(v) Q,(H2(T™, RYN)) = B%2*(IRYN), and for every u € H2(T™, IRY), we
have Q,(9%u) = V*(Q,(u)).

Proof.

(i) By using the formula (18) we can define Q,, : €T — €'™. The inclu-
sion Q,,(P(T™, RY)) C TP(IRY,w) is evident, and by using the density of
P(I™, RY) in C°(T™, IRY) [35, p.2], we obtain the inclusion

Q. (C*(m™, RN)) c QP°(IRM).

Moreover by using Lemma 2, iii, we have, for every u € C°(T™, IRY), the

equality [|Q.(u)lle = ||U||zo‘

If g € TP(C,w), g(t) = 3 cpet*evt where ¢, € €', and k, € Z™, and if we
=1

L )
set h(z) := X ¢ then we have h € P(T™,C) and Q,(h) = g.
=1

Now we fix ]? € QP°(C). By using the Bohr-Weierstrass theorem [8, p.50],
there exists a sequence (f,), with values in TP(C',w) such that lim If —

fnlloo = 0. Because of the previous remark, for each n € IN, there exists
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up, € P(I',C) such that Q,(u,) = fn.
We note that, for every p,q € IN, we have

||fp - fq”oo = ||Qw(“p) - Qw(uq)Hoo = ||Qw(up - Uq)Hoo = ||up - uq”cxw

Since (f,), is convergent, it is a Cauchy sequence, and consequently, (),
is also a Cauchy sequence with values in the complete space C°(T™,C').
Therefore there exists u € C°(T™,€) such that lim lltn — ul|oo = 0.

Furthermore, we have

[Qu(u) = flloo £ 1Qu(w) = falloo + If = falles
= [|Qu(u) — Qu(un)|loo + | f = fulloo = [Jn — vlloc + | f = fallso

that converges to zero when n — oo, and therefore we have Q,(u) = f.
That proves the inclusion QP%(C') C Q,,(C°(T™,C')). We have proven that
Q,, is a linear isomorphism and an isometry between C°(T™, ') and QP°(C).
From this result, we deduce that Q, is a linear isomorphism and an isom-
etry between C°(T™, IR) and QPY(IR). After that, by taking the cartesian
products, we obtain the announced result.

(i) Let u € CL(T™,RY). Then for every t € IR, we have d,u(tw) =
L(Qu(w)(t), ie. Qu(Osu) = 2LQ,(u). And so, we have Q. (u) € QPL(RN).
Now we reasone with N = 1. The general case is a simple consequence of
the case N = 1.

Conversely, if p € QP1(IR), then we have p, p € QP°(IR), and by using (i),
there exists u,v € C°(T™, IR) such that Q,(u) = p and Q,(v) = p, and for
every t € IR, we have Lu(tw) = v(tw).

We fix x € IR™. By using Lemma 2, ii, there exists a real sequence (t,), such
that, for every t € IR, u(t,w + tw) — u(x + tw) and u(t,w) — u(zr) when
n — 0o.

For each n € IN, we have

tntt tntt
u(tpw + tw) — u(t,w) = / Opu(sw)ds = / v(sw)ds,
tn tn
therefore, for each t € IR, there exists y(t,n) € [0, 1] such that

u(tpw + tw) — u(t,w) = v([(1 = y(t,n))t, + y(t,n)(t, + t)|w).t
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= v(t,w + y(t, n)tw).t.

We fix t € IR. Since (y(t,n)), takes its values in the compact set [0, 1], there
exists n — j,, a monotonically increasing function from IN in IV, and there
exists I'(t) € [0, 1] such that (¢, j,) — I'(f) when n — oo. Consequently, we
obtain

u(t,w+ tw) — u(t;,w) = v(tj,w + Y(t, jn)tw).t,

that implies, when n — oc:
w(x + tw) — u(x) = v(z + T(t)tw).t.
Consequently, we obtain

. -1 . o
g%t (u(z + tw) — u(x)) = v(x).

And so, for every x € IR™, Du(z;w) exists and Du(z;w) = v(x), that implies:

uwe CHT™, R).

(iii) Since wy, ..., w,, are Z-linearly independent, the function k — k-w is an
isomorphism of Z-moduli between Z™ and Z (w). Consequently ¢*(Z™,C)
and (*(Z(w),C) are isomorphic and isometric.

By using the harmonic synthesis [37, p.248|, the Fourier transform

F LA (T™,0) — 2(Z2™,0N), F(u) = (a(k))rezm

is a linear isomorphism and an isometry.
By using the Riesz-Fisher-Besicovitch theorem [8, p.110], the Fourier-Bohr
transform

A:BCY) — C(Z(w),C), A(f) = (alf; N)rezw)

is a linear isomorphism and an isometry.

And so At o F i LX(T™,¢Y) — B2(C") is a linear isomorphism and an
isometry. To conclude it is sufficient to remark that we have A=' o F = Q,,,
since

A Vo Flu) = AN (a(k)kezm) = [t — > a(k)e™™] = Q,(u).

kez™
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(iv) Let uw € HY(T™, RY). Then we have u,0,u € L*(T™, IRY), and by
using (iii), we know that Q,(u), Q,(d,u) € B3(IRY).
We note that, for every ¢t € IR, we have

Qw(Ttwu) = Tth(U). (19)
By using (ii), for every t € IR \ {0}, we have
It (Tt — u) — Otz = || Qu(t ™ (Tewt — u) — D) || 52

= [[t7 (1 Qu(w) — Qu(u)) — Qu(Ouu)| 2.
And since u € HL(T™, IRY), we have

i 17! (72 ) — Q1)) — (052 = 0.
ie. Q,(u) € BY*(IRN) and VO, (u) = Q,,(d,u).
Since BL2(IRN) = BM2(IRN) N B2(IRY), we have Q,(u) € BL*(IRY).

Conversely, let f € BL2(IRY). Then we have f,Vf € B2(IRY), and by using
(ii), we can assert that there exists u,v € L*(T™, IR") such that Q,(u) = f
and Q,(v) = V.

By using a previous calculation, for every t € IR\ {0}, we have
[ (o — ) = v]lz2 = | Qut™ (Tiwu — u) — v)| 5
= t7H(Qu () — Qu(w)) — Qu(v)|p
= [[t7 (1 Qu(u) — Qu(u)) — Qu(v)| p2
=t (st — f) = Vfllg2 — 0 (t —0),

therefore, we have v = 9,u, and so u € HL(T™, RY).
For each uw € HL(T™, IRY), we have

lull = llullZe + [ Qwulliz = 1| Qu(w)liE: + IV Qu(w)F = [1Qu(w)lj.

(v) Let u € H2(T™, IRY), then we have u, d,u € H(T™, IRY), and by using
(iv), we have Q,(u), Q,(d,u) € BL2(IRY). Since VO, (u) = 9O, (d,u), we
have Q,,(u) € B2*(IR").

Conversely, let f € B2%(IRY). Then we have f,Vf € BL2(IRY), and by
using (iv), we can assert that there exists u,v € H(T™, RY) such that
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Q.(u) = f, Q.(v) = Vf, Q,(0,u) = Vf, and Q,(d,v) = V2f. Therefore,
by using (iii), we have v = d,u and consequently u € H2(T™, IR").g

Comments. The proof of (i) was given to us by [17]. Another way to prove
(i) is provided by adapting the method of [19, Section 7]. Briefly we give
some indications about this way. We consider the spectra of the commuta-
tive algebra QP2(C'), denoted by X (QPS(C')). This spectra X (QPY(()) is
isomorphic to U™, and the Gelfand transformation [20, p.302]:

G:QP,(C) — CUX(QP()).C), G(f)(e) = o(f),

is an isomorphism and an isometry (in this special case). We can assimilate
G and Q_'. This method is closed to this one of [32, Chapter I, Section 3].a

4 Extension to quasi-periodic functions de-
pending uniformly on parameters

In the following, IF is a Banach space, bIR is the Bohr compactification of IR
and P is a compact subset or an open subset of IR*, for k > 1.
If P is open, let us consider the family:

K, ={xeP : |z| <nandd(z;P°) >1/n}.

All K,, are compact in IRF, P = U,K,, and K,, C Int(K, ) for all n. It is
known that in general, if the function f : IR x P — IR’ is such that f(-, )
is almost periodic for all « € P, and ¢ : IR — P is almost periodic, the
function [t — f(¢,¢(t))] may not be almost periodic. For this reason, we
usually set the definition of almost periodic functions depending uniformly
on parameters (see [39, p.5-6]). We denote by APU(IR; P; IE) the subset of
all these functions. If P is compact, APU(IR; P; IF) is a Banach space with
the norm:

[fllap == sup [[f(£,a)]
(t,a)eRxP

and if P is open, APU(IR; IF) is a Fréchet space with the family of semi-
norms (pn)n, where: pn(f) := sup wemxx, I/t @)l
The space C°(bIR x P; IE) is endowed with the norm

| fllcorxp,my == sup  [|f(t, )
(t,@)eRxP
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if P is compact, and with the family (m,),, where
ﬂ-n(f) = Sup(t,a)ERXKn ”f(t? Oé)” if P is open.

Proposition 6 There exists an isometrical isomorphism of Fréchet spaces

beetween APU(IR; P; IE) and C°(bIR; IF).

Proof. It is sufficient to prove it when P is compact. We will set the proof
into three steps.

1. The mapping f — (f(¢,-)): is an isometrical isomorphism of Fréchet
spaces beetween APU(IR; P; IE) and AP(IR; C°(P; E)).

Indeed, it is clearly an homomorphism which is isometric, so one-to-one. It
is also onto: if we consider ¢ € AP(IR; C°(P; E)), and if we set f such that
f(t,a) == ¢(t)(«). Onme has f € APU(IR; P;IF) and z is solution of the
problem.

2. There exists an isometrical isomorphism of Fréchet spaces beetween
AP(IR;C°(P; IE)) and C°(bIR; C°(P; IE)).

3. There exists an isometrical isomorphism of Fréchet spaces beetween
C°(bIR x P; IF)) and C°(bIR; C°(P; IE)). Let us consider f +—— [t — f(¢,-)].
It is clearly well defined and an isometrical homomorphism. We next prove
that this homomorphism is onto. Consider A € C°(bIR;C°(P;IE)) and
(to; ap) € bIR x P. If we put f(t,a) := (A\(t))(c), one has:

1 (£, @) = f(to, o)l < [[f(E, @) = f (o, )| + [|.f (Fo, @) — £ (to, o) <

< [IA(E) = Ato)llcopim) + 1A() (@) = Alto) () |

Consider € > 0. Since \(to) € C°(P; IE), there exists a neighbourhood V5 of
ap in P such that if o € V5, one has: ||A(tg)(a) — A(to) ()| < /2. Since
A € C°(bIR; C°(P; IE)), there exists a neighbourhood V; of #q in P such that
if t € V4, one has | A(t) — A(to)||lcop,my < €/2. If (t,a) € Vi x V3, one has:
1f(t,a) = fto,a0)ll < &, s0 f € CO(R x P} IE).u

Remark. The previous result shows that the condition f € APU(IR; P; IE)
is also necessary to have (p € APY(P)) = ([t — f(t,0(t))] € AP°(IE)).

Now we set:

QPUL(IR,P,IF) :={f € APU(IR,P,IE) : (Na€ P) f(-,a) € QP°(IF)}.
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The fact that Theorem 2, i, remains valid with a Banach space in place of
IRY and the same proof as above show that C°(T™ x P; IF) is canonically
isomorphic to QPU, (IR, P, IE). Moreover, the isomorphism, also denoted by
Q. is defined by: u — [(t, @) — u(tw, a)].

5 About the absolute continuity

IR™ is endowed with its standard inner product. We set b; = |w| 'w, we
consider by, ...,b,, € IR™ such that (by,bs,...,b,) is an orthonormal basis
of IR™. We denote by (b7,b3,...,0%,) the dual basis, and we consider the
automorphism 3 of IR™ defined by f(z) = (bj(z),b5(z), ..., 0}, (x)). B is a
linear isometry since we can consider  as the change of orthonormal bases,
from the canonical basis to the basis (b;);. We note that

WL = {y e R™: Yy -w= O} = Span{b27 7bm}

Let u € CL(T™, RY). We associate to u the new function v := uo 71 €
C°(IR™, IRN). For every (yi,...,Ym) € IR™, we have:

VY1, s Ym) = U (y1|w|_1w + Zyjbj) : (20)

J=2

The function v is periodic and per(v) D 2x5(Z™). The function 88—;1 is

defined and continuous on IR™, and for every (yi, ..., ym) € IR™, we have:

ov _ s
37(3/17 s Ym) = |w| O (Z yjbj) : (21)
n j=1

To generalize the correspendence described by (18), we need some tools. We
recall that, when ¢» € C7(IR™, RY), r € INU {oo}, the periodic transform
(38, pp.61-62] of 1 is:

w() = > Tomtp € CT(T™, RY). (22)
keZm™
We introduce another operator of periodic transformation.
When ¢ € C7(IR™, RY), we set:

w1 (p) = Z TorB(k) P € C’T(Tm,IRN). (23)

kezm™

24



We denote by (.,.)um) the duality bracket between D(IR™)* and D(IR™).
When z € L}, .(IR™, IR), T, € D(IR™)* denotes the regular distribution built
on z.

Lemma 3. The following assertions hold.

(i) Ifu € L*(T™, R) and ¢ € D(IR™), then we have:

(DT ) = = [ ul@)- () (x)d.

ii) Ifve L} (IR™, R) is such that per(v) D 2rB3(Z™) and if ¢ € D(IR™),
loc
then we have:

(DT @) == [ o) (o) )y

(iii) When ¢ € CH(IR™, R), we have:

aw1(90)_ Dy .
M) (52). mes=aloon)

dwi(p)

T 00 = el (=l 0 ).

Proof.
(1) We fix j € {1,...,m}. Since supp(¢) is compact, there exists a finite list
of distinct numbers, namely Ay, ..., A\, € 2nZ™ such that

supp (g;i) Csupp(v) € |J (@™ + o).

1<e<v

When A\ € 27 Z™ \ {\;: £ =1,...,v}, we have 7\¢) = 0 on IntQ™, and so, on

IntQ™, we have

S it = (2) 5 (22).
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And so, we have

9 )
(DT, )y = — <Tu, 6:Z>(m) _— / i u(x)&fj@)dx

Consequently, we obtain:

<DwTu7¢>(m) = —/mU(ZL‘) <§Z> ( )dl‘

(ii) Since supp(y) is compact, there exists a finite list of distinct numbers,
namely aq, ag, ..., a, € 2m3(Z™) such that

0
supp (8’;) csupp(p) € |J (B(Q™) + ap).

1<<v

When o € 2n58(Z™) \ {ae : ¢ = 1,...,v}, we have 7,0 = 0 on IntG(Q™) =
B(Int@Q™) and therefore we have

Oy

v v a
@i(p) = Tap, and @ <> — ZTOM@;.

=1 Iy

And so, we have:

dp dp
D T’U7 m) — T’U7 a - - d
(DT, ) < 8y1>(m) Sy W) )y

=—Z/ z/ oy +00) 92 (y + o)y
5@ ar 0@/1 BQ™) oy
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- _Z/ B(om) <§;> (w)dy = _/ﬂ(Qm)U(y) “ (g;) )ty

(iii) By using arguments described in the proof of (ii), we have, on 5(Int@Q™),
the following equalities:

w1 9 ZV:TW 3901 :ZV:M (91 z_:’” _ Omi(p)
Y Y

8y1 /=1 /=1 a?/l ayl

By using the continuity, the previous equality (between the extreme terms)
holds on 5(Q™), and by using the periodicity, it is true on IR™. And so the
first equality is proven.

For every x € IR™, we have:

wi(p)oBlx)= >, TapofBlz)= > Bz)+a)

ae2nB(Z™) ac2nB(Z™)
= > »(B(x)+BN)
AE2n ™
= D yofla+A)= ) mpopx)=mwm(pop)(z)
AeE2nZ™ AE2n ™

And so the second equality is proven.

By using successively (21) and the second equality, we have:

Ow1(p) .
oy

B = |w| " 0u(w@1(p) 0 B) = lw| ' du(w(p o B))m

Lemma 4. Let w € HYT™, IRN) and v := uo B~'. Then we have 83—;1 €
L} (R™, RN) (2% is taken in the distributional sense), v and & are periodic

with per(v) D QWB(Z’”) per( ~) D 2npB(Z™), and ay”l of3= |w| '0,u.

Proof. We reason in the case N = 1; the general case is a simple consequence
of this special case by working on the components.
By using Lemma 3, ii, when ¢ € D(IR™), we have:

OTcon = - [ o5 gay
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Since [ is orthogonal, by using the formula of the change of variable,
we obtain:

(DT by = = | w0 8(@) 222

dz,
. o (a)da

and by using Lemma 3, i, iii, we obtain:

(T, ) m) = = / u(@)w| " 0u(@(p 0 B))(@)dz = |w| " {DuT, ¢ 0 B)(m)

= | (T 0 0 By = | ™! [ duula). 0 Bla)da

= lw|™ /]Rm Ao B (y)-p(y)dy = || {Tosuop-1,9) (m)-
Consequently, we obtain the following equality in D(R™)* :
DT, = |w| Ty uop-1-

Since d,uo 87! € L} (IR™, IR), we have:

loc

@:DlTv €L

(R™,R), and v = |w| P uo g7t
oy

oy

loc

v

Since per(u) and per(d,u) contain 2rZ™, the moduli per(v) and per(z)

contain 273(Z™).m

Theorem 3. Let u € HP(T™, IRY). We note that, when & € IR™, we have
Qu(eu) = [t — u(tw + §)].
Then the set w*\ {€ € w* : Q,(reu) € HL (IR, RN)} is Lebesque negligible

in wt.
Proof.

Following the notations of Lemma 4, we set v := u o 37!. The Lebesgue
measure on IR’ is denoted by f.

(i) the case p = 1. For each n € IN,, we set [,, := (—n,n) C IR, and for
each p € IN,, we set C), := (—p,p)™* C IR™'. For each (n,p) € IN?, we set
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Qpn =1, x Cp. Q,, is an open bounded subset of JR™. The restrictions of
v and g—;’l belong to L*(Qy.n, RY).

By using [31, pp.61-62] we can assert that there exists A,, C C, such that
pm—1(Apn) = pm—1(Cyp), and such that for every (yo, ..., ym) € A, ., we have

V(- Y2, oy Ym)|,, € H' (L, RY).
We set:
Ap = {(y2, ., ym) € Cp : Y0 € IN,, v(-, Y2, oy Ym)|;, € HY(I,, R™)}

- {(y27 7ym) € Op : U('7y27 7ym> € Hlloc(R7 RN)}
Then we have A, = N Ap,, and:
n>1

fm—1(Cp \ Ap) = pim—1 (U (Cp \ Apm)) < i fm—1(Cp \ Apn) =0

After that, we set:

A={(y2, s ym) € R™ 2 0(-, 42, ooy Ym) € H (IR, ]RN)}.

We verify that A = |J A, and since R™* = |J C,, we have

p>1 p>1

R\ (U 4,) € UG\ Ay)

p=1 g1

and therefore

pm—1 (R™ '\ A) < iy (UC \ 4 ) Siumfl(cq\Aq):O

q>1 q=1

and consequently IR™~1\ A is Lebesgue negligible in IR™1.
We note that

B0 x A) ={€ € wh : Qu(reu) € Hjpo(IR, R™)}.

Since [ is orthogonal 6] preserves the Lebesgue measure, and so, the com-
plement of 3710 x A) in wt = f71(0 x IR™) is Lebesgue negligible in w.
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(ii) The induction argument. We assume the property for 1 and p — 1
(p > 2), and show it for p. We define the following sets:

Nl = {5 S WL : Qw(TEU) € Hllac<R’ RN)}

Ny = {¢ € wh: Qu(me(P ) € HL (IR, RN)}.

Since u € HP(T™,RY), we have u,? ‘u € HL(T™,RY), and by induc-
tion, we can say that w® \ N; and w® \ N, are Lebesgue negligible in w*.

Consequently, w® \ N; N N is Lebesgue negligible in w*. But we have
NN Ny = {€ €wh : Qu(reu) € HY (R, R)}

since, from Theorem 1, ii, we have

thw(Tgu) = Qu(Ou(mew)) = Qu(7e(Dw)).

Theorem 4. If we assume that uw € HP(T™, IRN) N L (1™, IRY), then the
set: wht \ {€ € wh : Qu(reu) € HY (IR, IRY),sup |u(tw + &)| < |lullz=} is
teR

loc

Lebesque negligible in wt.

Proof. We use the notations of the previous proof.
(i) The case p = 1. We set

M = {(y1,y2, - Ym) € R x R™ " < (1,42, -, Ym)| < [Juflz}

We have pi,,,(M¢) = 0. Since fi, = f11 ® ftm—1, by using the Fubini theorem
22, pp.147-148], there exists a subset B; C IR™ ! such that R™ '\ By is
Lebesgue negligible in IR™~!, and such that for every (v, ..., ym) € By, the
complement of {y; € R : (y1,v2, ..., Ym) € M} is Lebesgue negligible in IR.
And so for every (ya,...,Ym) € Bi, we have |v(-, Y2, ..., Ym)| < ||uljz~ L.ae.
on IR. Therefore the complement of AN B; is Lebesgue negligible in IR™ .
Furthermore, when (v, ..., ym) € ANBy, we have v(-, ya, ..., ym) € C°(IR, RY),
and therefore for every y; € IR, we have |v(y1, Yo, ..., Ym)| < |||z Since

BHOX (AN By)) =

{€ € w™: Qulreu) € Hypo(IR, RY), sup [u(tw + £)] < [Jullz=}
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we obtain the announced result.

(ii) By using (i) and Theorem 3, the complement of AN By N (N; N Ny) in
IR™ 1! is Lebesgue negligible in IR™~!. To conclude, it is sufficient to note
that:

B7HO x [AN By N (N N Ny)]) =

{6 e wt: Qure) € HEL (R BY), suplufte + &) < [lul~}.m
€

6 Relations between (2) and (3).

We assume that F' € QPU, (IR, RPN, IRY). Thus ® := Q_1(F) € C(TT™ x
RPTONRNY and that F satisfies (1). ® satisfies the same Lipschitz condi-
tion. From this we build two Nemytskii operators:

Npa1+ (BY(RY))” — (RY)", Nra(q) = [t — F(t,q(t))]-

Noo : (LT, RY))P — (RM)™", Nga(u) =[x — ®(x,u(z))].

Lemma 5. Under (1), the following assertions hold.
(i) Nea((BZ(RM))?) € BE(RY), and Ny € C°((BZ(IRN))?, BL(RRY)).
(li) N¢72((L2(Tma ]RN))p) C L2(Tma ]RN); and
Ng o € CO((LA(T™, RN))P), L2(TT™, RY)).

(iii) We consider Q,, : (L*(T™, IRN)) — B2(IRY) for j = 1,p. Then we
have:

Qw ON<I>,2 :NF,l o Qw-

Proof.
(i) By using [13,Theorem 2], we have Nx;((B*(IRY))?) C B*(IRY), and
Nra € CO(B*(IRY))P, B*(IRY)). Since N ((QP(IRY))P) € QFPI(IRY) [9,

Proposition 3|, we obtain the announced results.

(ii) cf. [27, Chapter I, Section 2].
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(iii) If uw € CO(T™; RN)P, we have:
Q,oNsga(u) = Qulr — P(x,u(x))] = [t = P(tw, u(tw))] = [t — F(t,u(tw))]

and:
Nei0 Q,(u) = Npi[t — u(tw)] = [t — F(t, u(tw))]

and so Q,0Ng o = Np109Q, on CO(T™; RN)P. Since CO(T™; RN )P is dense
on L*(T; IRMN)? and since Q,,, N2 and Nx; are continuous respectively on
LA (T™; RNY (j = 1,p), L2(T™; RY)P and B2(IRY), we can conclude.n

Proposition 7. Let F' € QPU, (IR, RPN, RY) and q € QPP(IRN). If q is a
q.p. solution of (2), then u:= Q_'(q) € CE(T™, RN) is a periodic solution
of (3).

Proof. Since for every t € IR, we have ¢P)(t) = F(t,q(t),...,q" (1)), we
also have

dr dr!
—pu(tw) = P(tw, u(tw), ..., wu(tw))

le.

OPu(tw) = O (tw, u(tw), ..., 0P tu(tw)).
Since u, ..., 0Pu and O(+, oy, ..., o) are continuous and periodic on IR™, by us-
ing Lemma 2, we obtain, for every z € R™, OPu(z) = ®(z,u(x), ..., 0 u(z)),
i.e. u is a periodic solution of (2).m

Proposition 8. Under (1), let ¢ € BP*(IRN). If q is a weak q.p. solution of
(2) (i.e. q is a solution of (4)), then u = Q3*(q) € HP(T™, IRY) is a weak
periodic solution of (3) (i.e. u is a solution of (5)).

Proof. By using Theorem 2, we can assert that VPq ~y F(.,q, ..., VP71q) im-
plies Q;1(VPq) = QY (F(.,q,...,VP71q)) in L*(T™, IRY). Since Q_'(VPq) =
dPu and since QN (F(.,q,...,VP'q)) = Q' (Npa(q,...,VP'q)) = Nz o
Q' (q, ..., VP71q) (Lemma 5, iii), we have 0Pu = ®(.,u,...,07 'u).u

Proposition 9. Let ® € CO(T™ x RPN, IRYN) and let u € CP(T™, RY). If

u is a periodic solution of (3), then ¢ = Q,(u) € QPP(IRN) is a q.p. solution
of (2).
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Proof. Necessarily we have, for every t € IR,
OPu(tw) = F(tw,u(tw),...,00 tu(tw)), and consequently we have ¢ (t) =
F(t,q(t), . q? V(1) m

Theorem 5. Under (1), let u € HE(T™, IRYN). We assume that u is a weak
periodic solution of (3) (i.e. w is a solution of (5)). We set q .= Q,(u) €
BP2(IRY). Then the following assertions hold.

(i) ¢ is a weak q.p. solution of (2), i.e. q is a solution of (4).
1

(ii) There exists a subset Z of wt such that the complement of Z in w™ is
Lebesgue negligible in w™, and such that, for every & € Z, the function

Q. (Teu) = [t = u(tw + &)] € CP(IR, RN) N B2*(IRY)

and satisfies, for every t € IR,

AP p—1

Zoultw +€) = (tw + & utw +€), v St + 5>)

Proof

(i) Since OPu = ®(-, u,...,0P  u) in L2(T™, RY), by using Theorem 2, iii,
we have Q,(0Pu) ~q Qw(<1>( u,...,0P'u)). Since Q,(0Pu) = VP(Q,u)
and since Q,(P(-, u, ..., 02 'u)) = Qw o Ngo(u) = Np1 o Qu(u, ..., 0P tu) =
F(q,...,VP™1q) (Lemma 5, iii), we obtain VPq ~y F(q, ...., VP71q).

(ii) We define ¥ by the formula:
V(y,ay,...,ap) € BIR™) x RPN, U(y,ay,...,qp) == (B (y), a1, .oy )

and we take v := u o 37! like in the proof of Theorem 2. We set:

N :={(y2, -, Ym) € R™ . (s, Y2, ey Ym) € Hp (IR, ZRN)}.

By using Theorem 3, IR™~! \ N is Lebesgue negligible in IR™ !,

We know that & € Lloc(Rm, IRY) and also that Ny 2( S gPE) € L (R™ RN).

P
Since u is a solutlon of (5), we have g—y}l.? =U(-,v,.., a > 1) L.a.e. on R™.
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By using the Fubini theorem [22, pp.147-148] we can assert that IR™ '\ E;
is Lebesgue negligible in JR™~!, where

Ey = (Y20 )EJR’H'%(' Y2, s Ym)) =
: s s Ym L g Y Um
oty
oy
By using the transformation 3, we obtain that w' \ F is Lebesgue negligible
in wt, where

1 <(~,y2,...,ym),v(~,y2,...,ym),.. (-,yg,...,ym)> L.a.e. on ]R}

E:={¢cwh: Pultw+ &) = d(tw + & ultw + £), ..., P u(tw + €))

for L.a.e. t € R},
since B(wt \ E) = R™ 1\ E,.
Consequently, wt \ (E N N) is Lebesgue negligible in w', and we note that
the assertion & € E'N N means that we have simulteanously:

OPu(tw + &) = ®(tw + & ultw +§), ..., 00 tu(tw + €)) for Lae. t € R,

and
[t — u(tw +&)] € HY,

loc(Rv RN)?

therefore since ® is continuous, by applying the usual technic of regularization
of the absolutely continuous solutions of the ordinary differential equations,
we can assert that [t — u(tw +&)] € CP(IR, IRY) and that, for every ¢ € IR,

we have

dP p—1

%u(tw +&) = (tw + & ultw +§), ..., jtp_lu(tw —|—§)> :

And so, it is sufficient to take = := EN N.g

Comments. This Theorem show that there exists a particular perturbated
form of equation whose solutions are regular.

Theorem 6. We assume the hypothesis on Theorem 5 and we also assume
that w € L®(T™, IRN) and that for all compact K C IRV,

My = sup |F(t,0q,...,05)| < 0.
(t,001,...;0p ) ERX K x R(P—1)N
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Then q € BCP(IR, IRY) N BP2(IRY) and satisfies, for every t € IR,
¢"(t) = F(tq(t), ... a"" V(1))

Proof. We set
S ={¢e = ultw+&)| <|ulr~ for Lae. teIR}.

By using Theorem 5 and Theorem 2 , iv, we can assert that w® \ Z; is
Lebesgue negligible in w™, as the union of two Lebesgue negligible subsets
of wt. Consequently Z; is dense in w, and we can choose a sequence (&),
with values in Z; such that &, — 0 (n — 00). We set g, := Q, (¢, u).

For each n € IN, we have ||g,||c < ||u||z>~, and since (cf. Theorem 5, ii):

qu) = (I)(w+£n7Qn7 7q7(Lp 1))7

we have:
qulp)Hoo < Mijujjpoe < 00.

By using [1 p.265, example 2], there exits M > 0 such that for every n € IN
and for every j € {0, ..., p}, we have:

o] < 2.

Consequently, by using the Ascoli-Arzela theorem [14, p.X.18], we can tell

that there exists p € C(IR, RY), and n — j,, a monotonically increasing

function from IN in IN, such that for every j € {0,...,p—1}, (¢%),, converges

to p(j ) in the sense of the compact convergence.

Since the compact convergence implies the pointwise convergence, and since
u(tw +&,) — u(tw) when n —> oo for each t € IR, by using the uniqueness of

the limit, we have pl¥) = ¢U) for every j € {0,...,p — 1}.

Finally, for every s <t in IR, we have:

700~ g () = [ {Blow +&,001,(0), a7 (0) o

and when n — 0o, we obtain:

47D (1) — /{F 0, q(0), ... "V (o)) }do,

that implies: ¢?)(t) = F(t,q(t),...,qP"V(t)).u



Conclusion

In the quasi-periodic setting, by using the BP? spaces, Theorem 6 ensures
that any weak q.p. solution (obtained for instance by using a variational
method) which is also essentially bounded is in fact a solution in the usual
sense and is also Besicovich q.p. And so, Theorem 6 provides an improvement
to the approach via BP? spaces.

Also, Theorem 5 provides an improvement, specific to the quasi-periodic
setting, to the results, called results in density, cited in introduction: if
for instance L is not depending on ¢, the b. can be choosen of the form
b-(-) = b(-w + &(g)), where £(¢) L w and () — 0 when ¢ — 0.
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