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Abstract. In this paper we consider an equation of type q′′(t) = ∂2V (t, q(t)), where V is
quasi-periodic (q.p.) in t, uniformly w.r.t. to q, is convex w.r.t. q for each t. We look for
q.p. solutions q : R → H (where H is an Hilbert space) to this equation. By using the
formalism introduced by the Physician Percival, it is possible to transform this problem in a
elliptic degenerate Partial Differential Equation on the torus. By using a singular perturbation
method, we obtain existence results under technical assumptions on V .

1 Introduction

1.1 Some recalls and notations.

We consider a real1 Hilbert space H (inner product < ., . > and norm |.|). AP (R,H) is the
space of Bohr-almost periodic (a.p.) functions from R to H [Ngue, Cord], APn(R,H) is the
space of f ∈ Cn(R,H) functions s.t. each f (k) ∈ AP (R,H), for k ≤ n.

We recall that f ∈ AP (R,H) can be uniformly approximated by trigonometric polynomials,
i.e. linear combinaisons of functions t 7→ eiλt, with λ ∈ R. We also know that for f ∈ AP (R,H),
the mean value:

M{f} =M{f(t)}t := lim
T→+∞

1

T

∫ T

0

f(t)dt,

exists in H. These tools permits us to associate to f a Fourier-Bohr expansion:

f(t) ∼
∑
λ∈R

aλ(f)eiλt,

where in fact we have convergence in the quadratic mean. The Fourier-Bohr coefficients are
given by:

aλ(f) =M{f(t)e−iλt}t.

The set:

Λ(f) = {λ ∈ R, aλ(f) 6= 0}

is countable, and we denote by Mod(f) the Z−module generated by Λ(f). The function f is
called quasi-periodic (q.p.) if there exists a finite basis (ω1, . . . , ωN ) of the module i.e.:

Λ(f) = Zω1 + . . .+ ZωN ,
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and
∑
j kjωj = 0 with kj ∈ Z for all j implies that k1 = . . . = kN = 0. We note by QP 0(R,H)

the set of quasi-periodic functions, and by QP 0
ω(R,H) the set of q.p. functions f s.t. Λ(f) ⊂

Zω1 + . . .+ ZωN , with ω = (ω1, . . . , ωN ). We note QPnω (R,H) = QP 0
ω(R,H) ∩APn(R,H).

Now, for fixed ω, we consider the torus TN = (R/(2πZ))N (it is a compact abelian group).
The mappingQω : C0(TN ,H)→ QP 0

ω(R,H) defined byQω(u) = [t 7→ u(tω)] is a bijection. Now
we define the set C1

ω(TN ,H) of functions u ∈ C0(TN ,H) s.t. at every x ∈ TN , the directional
derivative:

∂ωu(x) = lim
t→0

u(x+ tω)− u(x)

t

exists. Recurcively, we set:

Cnω(TN ,H) = {u ∈ C1
ω(TN ,H); ∂ωu ∈ Cn−1ω (TN ,H)}.

Then Qω is a bijection between Cnω(TN ,H) and QPnω (R,H), and morevover for each k ≤ n, we
have:

Qω(∂kωu) = (Qωu)(k).

If u ∈ C0(TN ,H), it admits a Fourier expansion:

u ∼
∑
ν∈ZN

û(ν)eν ,

where2 eν : x 7→ eiν.x and:

û(ν) =

∫
TN

f(x)e−ν(x)
dx

(2π)N
.

After for commodity, we will introduce the standart normalized Haar measure µ on TN , which
satisfies:

dµ(x) =
dx

(2π)N
.

Now, we introduce the spaces for weak solutions, with which we will be concerned after. We
note L2 = L2(TN ;H), with standart scalar product:

(f, g)L2 =

∫
TN

< f(x), g(x) > dµ(x).

Its norm is written ‖.‖L2 .
We also consider the standart Sobolev space:

H1 = H1(TN ;H) =

{
u ∈ L2, ∀i = 1, . . . , N,

∂u

∂xi
∈ L2

}
,

endowed with the scalar product:

(u, v)H1 = (u, v)L2 +

N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2

.

If we note Du :=
(
∂u
∂x1

, . . . , ∂u
∂xN

)
: TN → HN , we have:

(u, v)H1 = (u, v)L2 + (Du,Dv)L2 .

For such q.p. problems, we also have to introduce (see [10]) H1
ω = H1

ω(TN ,H) defined by:

H1
ω =

{
u ∈ L2, ∂ωu ∈ L2

}
,

2For ν ∈ ZN and x ∈ RN , we note ν.x =
∑N

j=1 νjxj and |ν| =
√∑N

j=1 ν
2
j .
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with the inner product:

(f, g)H1
ω

=

∫
TN

(< u(x), v(x) > + < ∂ωu(x), ∂ωv(x) >) dµ(x).

In fact, the operatorQω is a bijection between L2(TN ,H) (resp. H1
ω(TN ,H)) and the Besicovitch

space B2
ω(R,H) (resp. B1,2(R,H)) (see [10] for details). It has been done with H = Rp but is

can be adpated to an abstract Hilbert space).
The link described before, between q.p. functions and multiperiodic functions was first

introduced by Percival [Per] and more precisely used in [10]. It permits to associate to a q.p.
problem, for instance the search of q.p. solutions of:

q′′(t) = F (q(t)) + e(t)

with e ∈ QP 0(R,H) a Partial Differential Equation, for which we look multiperiodic solutions:

∂2ωu(x) = F (u(x)) + E(x),

where E = Q−1ω (e). The link, established in [10] is that formally u is a solution (strong of
weak) of the second iff. Qω(u) is a solution of the first equation. But one problem with the
second equation is the lack of compacity in unidirectional derivative Sobolev space H1

ω which
corresponds to weak solutions in the space B1,2

ω (R,H) (see for instance lemma 1.2 for more
explanations). To treat this difficulty, we shall introduce a singular pertubation in the problem
to make it strongly elliptic. But also we will deal with a little bit more general problem.

Each u ∈ L2 can be developped in a Fourier expansion:

u ∼
∑
ν∈ZN

û(ν)eν ,

We have (û(ν)) ∈ `2(ZN ;H) and moreover:

• ‖u‖2L2 =
∑
ν∈ZN |û(ν)|2.

• u ∈ H1 iff.
∑
ν∈ZN (1 + |ν|2)|û(ν)|2 < +∞, and we have ‖u‖2H1 =

∑
ν∈ZN (1 + |ν|2)|û(ν)|2.

• u ∈ H1
ω iff.

∑
ν∈ZN (1 + (ν.ω)2)|û(ν)|2 < +∞, and we have ‖u‖2H1

ω
=
∑
ν∈ZN (1 +

(ν.ω)2)|û(ν)|2.

We recall that û(ν) =
∫
TN u(x)e−ν(x)dµ(x). In particular, û(0) =

∫
TN u(x)dµ(x) is the mean

of function u.
Now, for each u ∈ L2 we consider the decomposition u = ū+ ũ where ū =

∫
TN u(x)dµ(x) is

the mean of u. We set:
L̃2 = {u ∈ L2, ū = 0}.

It is easy to verify that L̃2 is a closed subspace of L2, and that the sum H + L̃2 is direct and
orthogonal. So we have:

‖u‖2L2 = |ū|2 + ‖ũ‖2L2 .

We also introduce H̃1 = H1 ∩ L̃2 and H̃1
ω = H1

ω ∩ L̃2.

Lemma 1.1 We have the following assertions:

• ∀u ∈ H1, ‖ũ‖L2 ≤ ‖Du‖L2 .

• ∀u ∈ H̃1, ‖Du‖L2 ≤ ‖u‖H1 ≤
√

2‖Du‖L2 .

• There does not exists C > 1 s.t. for all u ∈ H̃1
ω, ‖u‖H1

ω
≤ C‖∂ωu‖L2 .
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Let us prove the first assertion. In fact, we have, for all ν ∈ ZN \ {0}, 1 ≤ |ν|. And so:

‖ũ‖2L2 =
∑

ν∈ZN\{0}

|û(ν)|2 ≤
∑

ν∈ZN\{0}

|ν|2|û(ν)|2 = ‖Du‖2L2 .

For the second inequality of the second assertion, the argument is the same. Now let us see why
the third assertion is right (it says that the second property is not true on H1

ω). It is related
to the small divisors problem. For each ε > 0, we can find νε ∈ ZN \ {0} s.t. |νε.ω| ≤ ε. Let us

choose uε := eνε ∈ H̃1
ω. If C > 1 satisfies:

‖uε‖H1
ω
≤ C‖∂ωuε‖L2 ,

we obtain:

C2 − 1 ≥ 1

(νε.ω)2
≥ 1

ε2
,

and so, when ε→ +∞, we obtain that C = +∞.
We recall some facts about the Rellich property. It is adapted from [Willem].

Lemma 1.2 If (um)m ∈ (H1)N is s.t. um ⇀ 0 weakly in H1, then um → 0 strongly in L2.
This result is false in H1

ω.

Following [32], let us give the proof of the first property. Since um ⇀ 0 weakly in H1, the
sequence (um)m is bounded in H1 and so we can consider C = supm ‖um‖H1 ∈ R+. Moreover,
ûm(ν) = (eν , um)→ 0 when m→ +∞. Given R ∈ N, we have:

‖um‖2L2 =
∑
|ν|≤R

|um(ν)|2 +
∑
|ν|>R

|um(ν)|2 ≤
∑
|ν|≤R

|um(ν)|2 +
1

1 +R2

∑
|ν|>R

(1 + |ν|2)|um(ν)|2

≤
∑
|ν|≤R

|um(ν)|2 +
C

1 +R2
.

Given ε > 0, we first choose R s.t. C
1+R2 ≤ ε. After we take m sufficiently large to have∑

|ν|≤R |um(ν)|2 ≤ ε (we have here a finite sum of terms going to 0). And so for sufficienlty

large m, ‖um‖2L2 ≤ 2ε. The Rellich property is true in H1. Now, we consider a sequence (νj)j
s.t. |νj .ω| ≤ 1 and |νj | > |νj−1|. We introduce the sequence (um)m ∈ H1

ω as follows:

∀m ≥ 1, um =
1√
m

m∑
j=1

eνj .

We note that ‖um‖L2 = 1 for each m, and so (um) is bounded in L2. Moreover ‖um‖H1
ω
≤
√

2
and for each ν, ûm(ν) → 0 when m → +∞. With the same calculations as preeceding, if
v ∈ H1

ω, we arrive at:

|(v, um)H1
ω
| ≤

∑
|ν|≤R

(1 + |ν|2)| < v̂(ν), um(ν) > |+
√

2
∑
|ν|>R

(1 + |ν|2)|v̂(ν)|2,

from which we obtain um ⇀ 0 weakly in H1
ω. But since ‖um‖L2 = 1 for all m, we don’t have

um → 0 strongly in L2.

1.2 The problem

Let us now consider an operator V : R × H → H such that V (t, .) is C1 and convex for all
t and V (., y) is q.p. uniformly w.r.t. the parameter y. Let us consider ω = (ω1, . . . , ωN ) a
common Z−basis of the Z−module. We know that there exists a unique A ∈ C0(TN × H;H)
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s.t. A(tω, y) = V (t, y) for all (t, y) ∈ R × H. The aim is, under conditions, to give existence
theorems of q.p. solutions q of the equation:

q′′(t) =
∂V

∂y
(t, q(t)). (1)

Following what said before, we can formally associate to this equation a P.D.E. on the torus
TN :

∂2ωu(x) =
∂A

∂y
(x, u(x)), (2)

We note that equation (2) can be written:∑
1≤j,k≤N

ωjωk
∂2u

∂xj∂xk
(x) =

∂A

∂y
(x, u(x)). (3)

This equation, with a one-direction derivative, is a degenerate elliptic P.D.E. In order to
solve it, we introduce a perturbative term to make it strongly elliptic. We will solve in fact the
familly of equations depending on m ∈ N∗3:

∑
1≤j,k≤N

ωjωk
∂2u

∂xj∂xk
(x) +

1

m

 N∑
j=1

∂2u(x)

∂x2j
− u(x)

 =
∂A

∂y
(x, u(x)).

So we introduce for all m ∈ N∗:

amjk =

{
ωjωk if j 6= k,
ω2
j + 1

m if j = k.

and we know consider:∑
1≤j,k≤N

amjk
∂2u

∂xj∂xk
(x)− 1

m
u(x) =

∂A

∂y
(x, u(x)). (4)

The assumptions. We know introduce more precisely the assumptions:

(A1) A is measurable, and for all x ∈ TN , the function A(x, .) : TN → R is of class C1 and
convex,

(A2) There exists ϕ0 ∈ L2 s.t. A(., ϕ0(.)) ∈ L1(TN ;H) and ∂A
∂y (., ϕ0(.)) ∈ L2,

(A3) ∃a ∈ L2, ∃b ∈ L1(TN ;R), A(x, y) ≥< a(x), y > +b(x),

(A4) ∃(α1, β1, γ1) ∈ R+
∗ × L2(TN ;R)× L1(TN ;R), ∀(x, y) ∈ TN ×H:〈

∂A(x, y)

∂y
, y

〉
≥ α1|y|2 − β1(x)|y| − γ1(x),

and4 ‖β1‖2L2 + 4 min{1, α1}
(∫

TN γ1dµ
)
≥ 0,

(A5) ∃(c, d) ∈ L2(TN ;R)× L1(TN ,R):∣∣∣∣∂A∂y (x, y)

∣∣∣∣ ≤ c(x)|y|+ d(x) a.e.

3When H = R, the perturbative term is : 1
m

(∆u− u).
4Note that the following inequality is true when

∫
TN γ1dµ ≥ 0.
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We give a particular example of V s.t. the associate A satisfies these assumptions. We
assume that V is of the form:

V (t, y) = ϕ(t)f(y) + ψ(t)y.

Here we are concerned with an equation:

q′′(t) = ϕ(t)f ′(q(t)) + ψ(t).

We assume:

(i) ϕ,ψ ∈ AP 0(R,R) and inf ϕ > 0.

(ii) f ∈ C1(R,H) is convex.

(iii) ∃(α, β) ∈ R+
∗ × R, y 7→< f ′(y), y > −α|y|2 + β|y| is bounded from below.

(iv) ∃(µ, ν) ∈ (R+
∗ )2, ∀y ∈ R, |f ′(y)| ≤ µ|y|+ ν.

Then assumptions (A1)-(A5) hold for the associated A. Let us see it. A is defined by:

A(x, y) = Φ(x)f(y) + Ψ(x)y,

where Φ,Ψ ∈ C0(TN ,H) are uniquely defined by Φ(tω) = ϕ(t) and Ψ(tω) = ψ(t) for all t ∈ R.
These functions are bounded, and inf Φ = inf ϕ > 0 because of the density of {tω, t ∈ R} on
TN . Assumption (A1) is clear. For (A2), we can choose for instance ϕ0 = 0. For (A3), we
see that the convexity of f gives:

∀y, f(y) ≥< f ′(0), y > +f(0),

from what we deduce:

∀y, A(x, y) ≥< Φ(x)f ′(0), y > +Ψ(x)f(0).

For (A4), we know that there exists γ ∈ R+ s.t.:

∀y ∈ H, < f ′(y), y > −α|y|2 + β|y| ≥ −γ.

And so:

∀y ∈ H, < f ′(y), y >≥ α|y|2 − β|y| − γ.

But ∂A(x,y)
∂y = Φ(x)f ′(y) + Ψ(x). So, by setting m1 := inf Φ > 0 and m2 := inf Ψ ∈ R, we

obtain:〈
∂A(x, y)

∂y
, y

〉
= Φ(x) < f ′(y), y > +Ψ(x) ≥ m1 < f ′(y), y > +m2 ≥ m1α|y|2−m1β|y|−(m1γ−m2).

Now by increasing γ if necessary, we can suppose that m1γ −m2 ≥ 0 (see that the more we
increase γ, the more the property defining γ is true). And so, by taking constant functions:

α1(x) := m1α > 0, β1(x) := −m1β, γ1(x) := m1γ −m2,

we see that (A4) is true. And (A5) follows immediatly from (iv), since Φ and Ψ are bounded.
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2 The Perturbative Equation.

Now we define φm : H1 → R as follows:

φm(u) :=

{
1
2

∑
amjk

(
∂u
∂xj

, ∂u∂xk

)
L2

+ 1
2m‖u‖

2
L2 +

∫
TN A(x, u(x))dµ(x) if A(., u(.)) ∈ L1(TN ,R),

+∞ if A(., u(.)) /∈ L1(TN ,R)
,

where
∑

stands for
∑

1≤j,k≤N .

Lemma 2.1 Under (A1), (A2), (A3), φm is a l.s.c. differential, and its subdifferential
∂φm(u) is the set given by:{

v 7→
∑

amjk

(
∂u

∂xj
,
∂v

∂xk

)
L2

+
1

m
(u, v)L2 +

∫
TN

<
∂A

∂y
(x, u(x)), v(x) > dµ(x)

}
,

if ∂A
∂y (., u(.)) ∈ L2(TN ,H) and is ∅ if ∂A

∂y (., u(.)) /∈ L2(TN ,H).

The functional φm can be written as: φm = Qm + I, where:

Qm(u) :=
1

2

∑
1≤j,k≤N

amjk

(
∂u

∂xj
,
∂u

∂xk

)
L2

+
1

2m
‖u‖2L2

and:

I(u) :=

{ ∫
TN A(x, u(x))dµ(x) if A(., u(.)) ∈ L1(TN ;R)

+∞ elsewhere.

Qm is a convex quadratic and continuous functional (and so C1), and we have:

Q′m(u).v =
∑

1≤j,k≤N

amjk

(
∂u

∂xj
,
∂v

∂xk

)
L2

+
1

m
(u, v)L2 .

Moreover, Propositions 2.7 and 2.8 (chapter 2) in [2] , can be quickly adapted to our problem
to say that I is a convex l.s.c. functional with subdifferential:

∂I(u) =

{
∂A

∂y
(., u(.))

}
∩ L2(TN ,H).

So the subdifferential is reduced to the function ∂A
∂y (., u(.)) if this one is L2(TN ;H), and emptyset

if not.
By sum, φm is a l.s.c. convex functional. But since I(ϕ0) is finite and Qm is continuous at

ϕ0, we can say that:
∂(Qm + I)(u) = ∂Qm(u) + ∂I(u).

Remark 2.2 In fact, if we also assume the condition (A5), the Nemytskii operator on ∂A
∂y maps

continuously L2 in L2, and so in this case, φm is finite, continuous and Gâteaux-differentiable
everywhere, with Gâteaux-differential:

DGφm(u).v =
∑

1≤j,k≤N

amjk

(
∂u

∂xj
,
∂v

∂xk

)
L2

+
1

m
(u, v)L2 +

∫
TN

<
∂A

∂y
(x, u(x)), v(x) > dµ(x)

Lemma 2.3 Under (A1), (A2), (A4), φm is coercive on H1(TN ;H).

Since A(x, .) is convex for any x, have the following:

∀(y1, y2) ∈ H2, A(x, y2)−A(x, y1) ≥
〈
∂A

∂y
(x, y1), (y2 − y1)

〉
.
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Let us take y1 = ϕ0(x) and y2 = u(x) in this relation, and after we integrate to obtain:∫
TN

(A(x, u(x))−A(x, ϕ0(x)))dµ(x) ≥
∫
TN

〈
∂A

∂y
(x, ϕ0(x)), u(x)− ϕ0(x)

〉
dµ(x).

Note that K := ‖∂A∂y (., ϕ0(.))‖ ∈ R+ by assumption (A2). The preeceeding inequality gives:∫
TN

(A(x, u(x))−A(x, ϕ0(x)))dµ(x) ≥ −K‖u− ϕ0‖L2 .

But ‖u− ϕ0‖L2 ≤ ‖u‖L2 + ‖ϕ0‖L2 and so:∫
TN

(A(x, u(x))−A(x, ϕ0(x)))dµ(x) ≥ −K(‖u‖L2 + ‖ϕ0‖L2).

Introducing the real K ′ :=
∫
TN A(x, ϕ0(x))dµ(x)−K‖ϕ0‖L2 , we obtain:

I(u) ≥ −K‖u‖L2 +K ′.

But:

Qm(u) =
1

2
‖∂ωu‖2L2 +

1

2m
‖Du‖2L2 +

1

2m
‖u‖2L2 ≥

1

2m
‖u‖2H1 .

We deduce from this that:

φm(u) ≥ 1

2m
‖u‖2H1 −K‖u‖L2 +K ′ ≥ ‖u‖2H1 −K‖u‖H1 +K ′.

It follows from this inequality that lim‖u‖H1→+∞ φm(u) = +∞, the coercivity of φm.

Proposition 2.4 Under (A1), (A2), (A3), the equation (4) admits a solution um ∈ H1(TN ;H).

Since H1(TN ;H) is a Hilbert space, it is reflexive. On this space, φm is convex and coercive
and l.s.c, and so it admits a minimum um ∈ H1:

∃um ∈ H1(TN ;H), ∀u ∈ H1(TN ;H), φm(u) ≥ φm(um).

Since um is a minimum of φm, we have: 0 ∈ ∂φm(um). So, first we obtain that ∂φm(um) is
not empty from which we deduce that ∂A

∂y (., um(.)) ∈ L2, and equation 0 ∈ ∂φm(um) says also
that:

∀v ∈ H1,
∑

1≤j,k≤N

amjk

(
∂um
∂xj

,
∂v

∂xk

)
L2

+
1

m
(um, v)L2 +

∫
TN

∂A

∂y
(x, um(x)).v(x)dµ(x) = 0. (5)

The preeceeding equation implies:

∀v ∈ H1(TN ;H),

∫
TN

 ∑
1≤j,k≤N

amjk

〈
∂um(x)

∂xj
,
∂v(x)

∂xk

〉
+

1

m
< um(x), v(x) > + <

∂A

∂y
(x, um(x)), v(x) >

 dµ(x) = 0.

So,
∑

1≤j,k≤N a
m
jk

∂2um

∂xj∂xk
is L2 and we can write:

∀v ∈ H1(TN ;H),

∫
TN

〈
−

∑
1≤j,k≤N

amjk
∂2um(x)

∂xj∂xk
+

1

m
um(x) +

∂A

∂y
(x, um(x)), v(x)

〉
dµ(x) = 0,

i.e.: ∑
1≤j,k≤N

amjk
∂2um(x)

∂xj∂xk
− 1

m
um(x) =

∂A

∂y
(x, um(x)),

and so um is solution of (4). This ends the proof of the proposition.
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Proposition 2.5 Under (A1), (A2), (A3), (A4), (um)m is bounded on H1
ω(TN ;H).

To prove this, we first take v = um in (5). This shows that:

∑
1≤j,k≤N

amjk

∥∥∥∥∂um∂xj

∥∥∥∥2
L2

+
1

m
‖um‖2L2 +

∫
TN

〈
∂A

∂y
(x, um(x)), um(x)

〉
dµ(x) = 0.

But:

∑
1≤j,k≤N

amjk

∥∥∥∥∂um∂xj

∥∥∥∥2
L2

= ‖∂ωum‖2L2 +
1

m
‖Dum‖2L2 ,

and so we obtain:

‖∂ωum‖2L2 +
1

m
‖Dum‖2L2 +

1

m
‖um‖2L2 = −

∫
TN

〈
∂A

∂y
(x, um(x)), um(x)

〉
dµ(x). (6)

So:

‖∂ωum‖2L2 +
1

m
‖um‖2H1 +

1

m
‖um‖2L2 = −

∫
TN

〈
∂A

∂y
(x, um(x)), um(x)

〉
dµ(x) ≤

∫
TN

(
−α1|um(x)|2 + β1(x)um(x) + γ1(x)

)
dµ(x) ≤ −α1‖um‖2L2 + ‖β1‖L2‖um‖L2 +

∫
TN

γ1dµ.

By setting δ1 = min{1, α1} > 0 and γ2 =
∫
TN γ1dµ, we deduce:

δ1‖um‖2H1
ω
≤ ‖∂ωum‖2L2 + α1‖um‖2L2 ≤ ‖β1‖L2‖um‖L2 + γ2 ≤ ‖β1‖L2‖um‖H1

ω
+ γ2.

We introduce the polynom P (T ) = δ1T
2 − ‖β1‖L2T − γ2. Since by assumption ‖β1‖2L2 +

4γ2δ1 ≥ 0, this polynom has its zeros real. The greatest one is:

R1 =
‖β1‖L2 +

√
‖β1‖2L2 + 4γ2δ1

2δ1
.

But we have P (‖um‖H1
ω

) ≤ 0. From this, we obtain that ‖um‖H1
ω
≤ R1. This proves that

(um)m is bounded on H1
ω.

Remark 2.6 We also obtain that:

sup

[
‖um‖H1√

m

]
≤
√
‖β1‖L2R1 + γ2 < +∞.

But we don’t know if (um)m is bounded on H1.

Theorem 2.7 Under (A1), (A2), (A3), (A4), (A5), the equation (1) admits a weak solu-
tion.

Now we set φ : H1 → R as follows:

φ(u) :=
1

2

∑
1≤j,k≤N

ωjωk

(
∂u

∂xj
,
∂u

∂xk

)
L2

+

∫
TN

A(x, u(x))dµ(x).

We see that for each u ∈ H1, the sequence (φm(u))m is decreasing to φ(u). So we have:
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inf
u∈H1

φ(u) = inf
u∈H1

inf
m∈N∗

φm(u) = inf
m∈N∗

inf
u∈H1

φm(u).

Now, since (um)m is bounded in the Hilbert space H1
ω, it has a weakly convergent subse-

quence. For simplicity, we continue to write it (um)m. Set U the weak limit. Since φ is l.s.c.
and φ ≤ φm, we have:

φ(U) ≤ lim inf
m

φ(um) ≤ lim inf
m

φm(um) = lim inf
m

inf
v∈H1

φm(v) = inf
u∈H1

φ(u).

But now with (A5), we can say that φ is everywhere finite on H1
ω, and so continuous. Since

H1 is dense on H1
ω and φ is continuous, we have infu∈H1 φ(u) = infu∈H1

ω
φ(u). So, U is a

minimum of the convex functional φ on H1
ω.

As for φm, it can be proved that φ is Gâteaux-differentiable, and we can calculate this
differential. Writing that DGφ(U) = 0, we obtain:

∀v ∈ H1
ω,

∫
TN

〈
−

∑
1≤j,k≤N

ωjωk
∂2U(x)

∂xj∂xk
+
∂A

∂y
(x, U(x)), v(x)

〉
dµ(x) = 0.

i.e.:

∂2ωU(x) =
∂A

∂y
(x, U(x)).

Remark 2.8 Since um ⇀ U in H1
ω, we have:

‖U‖H1
ω
≤ lim inf ‖um‖H1

ω
≤ R1.

Now, if we set q(t) = U(tω), we have:

q′′(t) = ∂2ωU(tω) =
∂A

∂y
(tω, U(tω)) =

∂V

∂y
(t, U(tω)) =

∂V

∂y
(t, q(t)).

3 A.p. solutions

We consider now the problem of finding a.p. solutions of the equation:

q′′(t) = F ′(q(t)) + b(t) (7)

where b ∈ AP 0(R,H) is a.p. and F ∈ C1(H,R) is convex and satisfies:

∃(α, β, γ) ∈ R+
∗ × R× R, < F ′(y), y >≥ β2 + 4γmin{1, α} ≥ 0.

Theorem 3.1 Under these assumptions, equation (7) admits an a.p. solution.

To prove this, we know that one can find a sequence of trigonometric polynomials (bn)n s.t.
bn → b uniformly on R. Let us consider for each n, Vn : R×H→ H defined by:

Vn(t, y) = F ′(y) + bn(t).

Each Vn is q.p. uniformly w.r.t. y. So, let us now see if Vn satisfies assumptions (H1)-(H4).
(H1) is clear, and (H2) is true, for instance with ϕ0 = 0. For (H3) we write for instance by
convexity of Vn(t, .):

Vn(t, y) ≥ Vn(t, 0) +

〈
∂Vn
∂y

(t, 0), y

〉
= bn(t)+ < F ′(0), y > .

10



And for (H4) there is no problem since〈
∂Vn(t, y)

∂y
, y

〉
=< F ′(y), y > .

So, by using the preeceeding facts, each problem:

q′′(t) = F (q(t)) + bn(t)

admits a solution qn. But if Un is associated to qn, we can say that:

‖qn‖B1,2 = ‖Un‖B1,2 = ‖Un‖H1
ω
≤ R1,

where R1 =
β+
√
β2+4γδ

2δ does not depends on n.
So, (qn)n is bounded in the Hilbert space B1,2, and so we can find a weakly-convergent

subsequence (also written (qn)n) to q ∈ B1,2.
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[24] Mauclaire J.L., Intégration et Théorie des Nombres, Travaux en Cours, Hermann,
Paris, 1986.

[25] Nistri P., Periodic Control Problems for a class of nonlinear periodic differential systems,
Nonlinear Anal., Theor., Meth. and Appl., vol.7, no1, 1983, pp.79-90.

[26] Pennequin D., Existence Results on Almost Periodic solutions of Discrete Time Equa-
tions, Discrete and Continuous Dynamical Systems, Vol. 7, N. 1, Jan. 2001, pp.51-60.

[27] Percival I.C., Variational Principles for the Invariant Toroids of Classical Dynamics,
J. Phys. A. Math., Nucl. Gen., vol.7, No7, 1974, pp.794-802.

[28] Percival I.C., Variational Principles for Invariant Tori and Cantori, A.I.P. Conference
Proceeding 57. pp.302–310, 1979.

[29] Pontryagin L., Topological Groups, N.Y.,Gordon and Breach, 1966.

[30] Rudin W., Fourier Analysis on Groups, Interscience Publishers, N.Y., 1962.
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