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1. Introduction

In [BW], it is observed that although the set of periodic sequences forms a
linear space, its uniform closure is not the space of almost-periodic sequences
but of semi-periodic sequences. In fact, the space of semi-periodic sequences was
shown there to be Banach.

In this paper, we extend this study to the corresponding notion of semi-periodic
functions at first. Let us note that many different notions with the same name,
like functions satisfying Floquet boundary conditions (see e.g. [An], [AG]) or those
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describing Bloch waves (see e.g. [An], and the references therein), exist in the lit-
erature (cf. also [II], [Lo]). After giving a definition, we prove that the uniform
closure of the set of periodic functions is analogously the one of semi-periodic
functions. Unlike in the discrete case, the space of semi-periodic functions is
however not linear, and so not Banach. In order to clarify transparently the po-
sition of semi-periodic sequences and functions in the hierarchy of closely related
spaces, we decided to illustrate it by means of Venn’s diagrams. Thus, the spaces
of almost-periodic, semi-periodic, quasi-periodic and periodic functions and se-
quences and some of their sums (in the continuous case) are compared in this
way. For this, the semi-periodicity is considered by means of the Fourier–Bohr
coefficients.

There are even more general interesting classes of almost-periodic functions
(for their hierarchy, see e.g. [ABG], [Co2]), but for our needs here only those
which are uniformly (Bohr) a.p. will be taken into account. It is well known
that uniformly continuous Stepanov a.p. functions are Bohr a.p. (see e.g. [ABG],
[Co1]). Another nontraditional characterization of Bohr almost-periodicity was
recently done in [AP2], namely that Stepanov a.p. functions with Stepanov a.p.
derivatives are also Bohr a.p.

In order to make applications to difference and differential equations, we still
need to define the notion of a uniform semi-periodicity, and prove that the as-
sociated Nemystkii operators map the set of semi-periodic sequences into itself.
This is unfortunately not true in the case of functions. On this basis, we finally
give two examples about the existence of semi-periodic solutions in the form of
theorems, both in the discrete as well in the continuous cases. Although many
various sorts of periodic-type solutions were investigated (for their panorama, see
[An]), as far as we know, semi-periodic solutions in the sense of definitions below
of difference or differential equations have not yet been treated.

Before passing to semi-periodic functions in the next section, it will be conve-
nient to mention some facts about semi-periodic sequences.

Hence, denoting as usually by (N)Z the set of (positive) integers and letting E

to be a Banach space endowed with the norm |.|E, let us recall the definition of
semi-periodic sequences (cf. [BW]).

Definition 1. A sequence x ∈ EZ is called semi-periodic (s.p.) if:

∀ε > 0, ∃T ∈ N, ∀n ∈ Z, ∀k ∈ Z, |xk+nT − xk|E ≤ ε.

One can readily check that Definition 1 can be regarded as a discrete version of
Definition 2 below for semi-periodic functions. Similarly, the definition of quasi-
periodic (q.p.) sequences can be regarded as a discretized (i.e. restricted to Z)
version of the one for quasi-periodic functions recalled below. A q.p. extending
function has the Fourier–Bohr expansion with Mod(·) to be finitely generated
which is also true for q.p. sequences. For more properties and details concerning
q.p. functions, see e.g. [BP].
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Fig. 1. Venn’s diagram: discrete case

In this light, since the analogy of Theorem 2 below holds for sequences (see
Remark 2) and since the discrete (i.e. restricted to Z) analogies of Examples 1–3
below can be constructed, one can illustrate the relationship of these classes by
means of Venn’s diagram in Figure 1. For more properties about s.p. sequences,
see e.g. [BW], [Go], [Ji].

On the other hand, the situation in Figure 1 is much simpler than in Figure 2
for continuous functions, because under the restriction to Z, the sum of (semi-)
periodic sequences remains (semi-)periodic and Stepanov almost-periodic (a.p.)
sequences were shown in [AP1] to coincide with Bohr a.p. sequences.

2. Continuous semi-periodic functions

Let C0
T (R,E) be the set of continuous T -periodic functions,

Per(R,E) := ∪T>0C
0
T (R,E)

the set of periodic funcions and BC0(R,E) the set of continuous bounded func-
tions. The last one is a Banach space with the uniform norm (written ‖.‖∞).

Definition 2. A continuous function f ∈ C0(R,E) is said to be semi-periodic
(s.p.) if:

∀ε > 0, ∃T > 0, ∀n ∈ Z, ∀t ∈ R, |f(t+ nT )− f(t)|E ≤ ε.

Such a T will be called an ε-semi-period of f . Let S(R,E) denote the set of
semi-periodic functions.
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It is easy to see from the definition that every continuous periodic function is
semi-periodic. Moreover, if f is semi-periodic, then f is uniformly (Bohr) almost-
periodic (i.e. f ∈ AP0(R,E)), and so bounded. Thus, we can rewrite Definition 2
as follows:

Definition 3. A (bounded) continuous function f ∈ C0(R,E) is said to be
semi-periodic (s.p.) if:

∀ε > 0, ∃T > 0, ∀n ∈ Z, ‖f(.+ nT )− f(.)‖∞ ≤ ε.

We have:

Per(R,E) ⊂ S(R,E) ⊂ AP0(R,E) ⊂ BC0(R,E).

¿From this, we can consider S(R,E) as a metric space, when using:

d(f, g) := sup
t∈R

|f(t)− g(t)|E.

As we will see later, S(R,E) is not a linear space, but S(R,E) is a complete
metric space.

Lemma 1. Let f ∈ S(R,E), ε > 0 and Tε be an ε-semi-period of f . Then there
exists a continuous Tε-periodic function ϕ s.t.

‖f − ϕ‖∞ ≤ ε.

Proof. Consider a Tε-periodic function ψ such that its restriction to [0;Tε) is
the same as the one of f . For each x ∈ R, we can write x = t + nTε with n ∈ Z

and t ∈ [0;Tε). Thus, we get:

|f(x)− ψ(x)|E = |f(t+ nTε)− ψ(t+ nTε)|E
= |f(t+ nTε)− ψ(t)|E = |f(t+ nTε)− f(t)|E ≤ ε.

Since ψ need not be continuous, consider still τ ∈ (0;Tε) such that, for any t ∈
[Tε−τ, Tε], |f(t)−f(Tε)|E ≤ ε. Define a Tε-periodic continuous function ϕ which
equals to ψ on [0, Tε − τ ] and which is linear on [Tε − τ, Tε]. For t ∈ [Tε − τ, Tε],
we obtain:

|f(t)− ϕ(t)|E ≤

≤ Tε − t

τ
|f(Tε − τ)− f(t)|E +

t− (Tε − τ)

τ
|f(Tε)− f(t)|E ≤ ε,

and subsequently

sup
x∈R

|ϕ(x)− f(x)|E ≤ 2ε.

�

We are ready to give the first theorem.

Theorem 1. S(R,E) is the closure of Per(R,E).
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Proof. Assume firstly that f is s.p. Taking in Lemma 1 εn = 1/n, we obtain a
sequence of periodic functions (ϕn)n s.t. ‖f − ϕn‖∞ ≤ εn → 0.

Reversely, assume that f is in the closure of the set of continuous T−periodic
functions. Then, for any ε > 0, we can find a periodic ϕ s.t. |f(t)− ϕ(t)|E ≤ ε.
Let T be its period. Then, for any t ∈ R:

|f(t+ nT )− f(t)|E ≤
≤ |f(t+ nT )− ϕ(t+ nT )|E + |ϕ(t+ nT )− ϕ(t)|E + |ϕ(t)− f(t)|E ≤ ε+ 0 + ε.

�

In the following proposition, we look for the link between s.p. sequences and
functions. Given a sequence x = (xt)t, we set fx : R → E, the function s.t. its
restriction to Z is x and which is linear on each [k, k + 1], k ∈ Z, i.e.:

∀t ∈ Z, fx(u) := {u}xt+1 + (1− {u})xt,
where {u} is the fractional part of u, i.e. {u} ∈ [0, 1) and u− {u} ∈ Z.

Proposition 1. Let x ∈ EZ. All the following statements are equivalent:

(1) fx is s.p. with a semi-period in N,
(2) there exists a s.p. function with a semi-period in N whose restriction to

Z is x,
(3) x is s.p.

Proof. For (1) ⇒ (2), take fx in (2). For (2) ⇒ (3), take T as an ε-semi-period
for the function f in (2). Then we have:

∀t ∈ Z, |xt+T − xt|E = |f(t+ T )− f(t)|E ≤ ‖f(.+ T )− f‖∞ ≤ ε.

For (3) ⇒ (1), given T as an ε−semi-period of x, we have for all t ∈ Z:

|fx(t + T )− fx(t)|E ≤ {t}|xt+T+1 − xt+1|E + (1− {t})|xt+T − xt|E ≤ ε.

�

Let us now consider the Fourier expansion of a semi-periodic function. Recall
that every a.p. function has the Fourier–Bohr expansion:

f(t) ∼
∞
∑

j=1

aλj
(f)eiλjt,

where

aλ(f) := M{f(t)e−iλt},
and

M{g} := lim
l→∞

(2l)−1

∫ l

−l

g(t) dt

is the mean operator (see e.g. [ABG], [Co1]). It follows from the above formula
that f 7→ aλ(f) is 1-Lipschizian (and so continuous) from AP0(R,E) to E.
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Set Λ(f) := {λ, aλ(f) 6= 0} and denote by Mod(f) the Z-modulus generated
by Λ(f). Recall that an a.p. function is quasi-periodic (q.p.) if Mod(f) has a
finite Z-basis, and that T is a period of f if and only if Λ(f) ⊂ 2π

T
Z (see e.g. [BP],

[Co1]).

Lemma 2. If f ∈ S(R,E), then there exists θ > 0 s.t.

Λ(f) ⊂ θQ.

Proof. Let us consider λ and µ s.t. aλ(f) 6= 0 and aµ(f) 6= 0 and a sequence
of periodic functions (fn)n s.t. fn → f , uniformly. It follows from the continuity
that, for sufficently large N , aλ(fN) 6= 0 and aµ(fN) 6= 0, but since fN is periodic,
it follows that λ/µ ∈ Q. �

Remark 1.
1. This proof also demonstrates that, for a sufficently large n, the period Tn of

fn satisfies Tnθ ∈ 2πQ.
2. It indicates that S(R,E) is not a linear space. For instance, a simple q.p.

function t 7→ cos(t)+cos(t
√
2) is not s.p. although it is a sum of two s.p. functions.

On the other hand, the sum of two a.p. functions is trivially a.p.

Proposition 2. Consider

f(t) :=
∑

λ∈θQ
aλe

iλt,

for some fixed θ > 0, where
∑

λ∈θQ
|aλ| < +∞.

Then f is s.p.

Proof. Set Q := {rn, n ∈ N} and consider:

fN (t) =

N
∑

n=1

arnθe
irnθt.

Clearly, if rn = pn
qn
, then 2πqn

pnθ
is a period of the n-th term. The same is obviously

true for 2πqn
θ

. Thus, 2πq1...qN
θ

is a period of fN which is so periodic. Moreover,

‖f − fN‖∞ ≤
∑

n≥N+1

|arnθ|E → 0,

which already proves that f is s.p. �

Example 1. With what we made before, we can give an example of a purely
s.p. (i.e. not a periodic) function:

f(t) =
∑

n≥1

eit/n

n2
.
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Theorem 2. Every s.p. function which is also q.p. is in fact periodic:

S(R,E) ∩QP0(R,E) = Per(R,E).

Proof. Let f ∈ S(R,E) ∩ QP0(R,E). Since f is q.p., we can find ω1, . . . , ωm

such that:

Λ(f) ⊂ Zω1 + · · ·+ Zωm.

Set G1 := Zω1 + · · ·+Zωm. G1 is an additive subgroup of R. Since f ∈ S(R,E),
we can find θ > 0 s.t. Λ(f) ⊂ θQ. Set G2 := θQ. G2 is another additive subgroup
of R, so G = G1 ∩ G2 is a subgroup of G1 which contains Λ(f). Since G is a
subgroup of G1, there exists p ∈ {1, . . . , m} and positive Z-independent real
numbers ζ1, . . . , ζp s.t.:

G = Zζ1 + . . .+ Zζp.

Let us show that p = 1. Once we have it, we can conclude that Λ(f) ⊂ ζ1Z which
proves that 2π

ζ1
is a period of f . Since, for each i, ζi ∈ G ⊂ G2, we know that, for

each i, we can find qi ∈ Q s.t. ζi = qiθ. This proves that ζi/ζj ∈ Q, for i 6= j,
which is impossible. �

Remark 2. In view of Proposition 1 and its analogy for q.p. sequences mentioned
in the foregoing section, a discrete (i.e. restricted to Z) analogy of Theorem 2
holds for sequences.

Example 2. As an example of a function which is almost-periodic (a.p.) but
neither quasi-periodic nor a sum of semi-periodic functions, consider:

f(t) =
∑

n≥1

eiσnt

n2
,

where the σk’s are constructed by induction, say for all k,

σk+1 /∈ σ1Q+ . . .+ σkQ.

We will prove that we cannot find a finite set of numbers θ1, . . . , θq s.t.:

Λ(f) ⊂ θ1Q+ . . .+ θqQ.

Firsty, assume this already proved. Then, if f is a sum of semi-periodic functions
fj , say f =

∑q
j=1 fj , we could find, according to Lemma 2, for each j a θj s.t.

Λ(fj) ⊂ θjQ. This implies that:

Λ(f) ⊂ Λ(f1) ∪ . . . ∪ Λ(fq) ⊂ (θ1Q) + . . .+ (θqQ),

which is not true. If f was quasi-periodic, we could find θ1, . . . , θq s.t.:

Λ(f) ⊂ θ1Z+ . . .+ θqZ ⊂ θ1Q+ . . .+ θqQ,

which is again wrong. Now, we can make the first part of the proof. So, let us
assume:

Λ(f) ⊂ θ1Q+ . . .+ θqQ.



8

We have: Λ(f) = {σi, i ≥ 1}. Thus, for any i ≥ 1, we can find (ai1, . . . , aiq) ∈
Qq \ {0} s.t.:

σi =

q
∑

j=1

aijθj .

Let us now consider the square matrix A = (aij)1≤i,j≤q. If it is invertible, we
can express θ1, . . . , θq linearly (with rational coefficients) depending on σ1, . . . , σq.
This proves that σq+1 should be a (rational) linear combination of σ1, . . . , σq which
is not true.

Assuming that the matrix is singular, its rows are linearly dependent. So we
can find (µ1, . . . , µq) ∈ Qq \ {0} s.t.

∑

i µiaij = 0, for each j. Multiplying it by
θj and then summing over j, we obtain

∑

i µiσi = 0 which is not possible.

Example 3. As an example of a function which is quasi-periodic (q.p.) but not
a sum of periodic functions, consider:

f(t) =
∑

n≥1

eit(1+n
√
2)

n2
.

Here Λ(f) = {1 + n
√
2, n ∈ N}, thus Mod(f) = Z +

√
2Z, i.e. f is q.p. Assume

that f is a sum of a finite number of periodic functions. Let T1, . . . , Tk be the
periods. According to [MP], we have:

∆(T1, . . . , Tk)f = 0,

where

∆(T1)f(x) := f(x+ T1)− f(x),

∆(T1, . . . , Tk)f(x) := ∆(T1, . . . , Tk−1)(∆(Tk)f(x)).

An easy calculation yields that:

aλ(∆(T1, . . . , Tk)f) = aλ(f)

k
∏

j=1

(

eiλTj − 1
)

,

by which:

∀n ∈ N, ∃j ∈ {1, . . . , k}, (1 + n
√
2)Tj ∈ 2πZ.

Since N is infinite, we can find two different integersm,n with the same Tj. Thus,
there exist two integers km, kn s.t.:

1 + n
√
2

kn
=

2π

Tj
=

1 +m
√
2

km
.

This implies that km 6= kn, and we obtain:

(km − kn) = (mkn − nkm)
√
2,

which is not possible.
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Remark 3. We know (see e.g. [ABG], [Co1]) that every almost-periodic (a.p.)
f is a uniform limit of a sequence of a finite sum of periodic functions (fn)n.
Writing:

f = f0 +
∑

n

(fn+1 − fn),

we can see that every a.p. function can be expressed as a series of periodic
functions. Reversely, a uniformly convergent series of periodic functions is a.p.

Summing up the above observations, we can present in Figure 2 Venn’s dia-
gram for continuous functions under our investigation. The classes of almost-
periodic, semi-periodic and quasi-periodic functions are in circles, while sums of
semi-periodic functions are in the ellipse. Sums of periodic functions are in the
intersection of the classes of quasi-periodic functions and sums of semi-periodic
functions. In fact, one can check by similar arguments as in the proof of Theo-
rem 2 that a sum of periodic functions is exactly the sum of semi-periodic func-
tions which is quasi-periodic. Periodic functions are, according to Theorem 2, at
the same time semi-periodic and quasi-periodic. Purely semi-periodic functions
are in the grey strip.

Now, consider the primitives of s.p. functions.

Lemma 3. Assume that f is a.p. and consider F (t) :=
∫ t

0
f(s)ds. Assume that

there exists ϕ ∈ AP0(R,E) and a ∈ E s.t.:

∀t ∈ R, F (t) = ϕ(t) + at.

Then a = M{f}.
Indeed, ϕ is necessarily differentiable, and integrating the equality f = ϕ′ + a,

we obtain:

a =
1

2l

∫ l

−l

f(s) ds+O
(

1

l

)

,

because ϕ is bounded. This already proves Lemma 3. It is well known that
M{f} = 0 is a necessary and sufficient condition for F to be periodic, provided
f is so. It is however not sufficient in the case of a.p. functions. For more details,
see e.g. [ABP]. Despite the approximation by periodic functions, it is also not
sufficient in the case of s.p. functions, as demonstrated by the following example:

Example 4. Let us consider the s.p. function:

f(t) =
∑

n≥1

cos(t/n2)

n2
.

We have a normal convergence, so the series exists and defines a s.p. function for
which M{f} = 0. A formal candidate to be its primitive is:

F (t) =
∑

n≥1

sin(t/n2).
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Fig. 2. Venn’s diagram: continuous case

We have a uniform convergence on each compact set, because | sin(u)| ≤ |u|.
Thus, this series also exists and defines a primitive of f . If F was s.p., it should
be a.p. which is obviously not true, because the Parseval equality does not apply.

3. Uniformly semi-periodic functions with respect to a parameter

Definition 4. Let f : R×M → Rk, where M is a subset of Rn. We say that f
is uniformly semi-periodic (u.s.p.) if for any compact set K ⊂M ⊂ Rn, we have:

∀ε > 0, ∃T > 0, ∀n ∈ Z, ∀t ∈ R, ∀α ∈ K, |f(t+ nT, α)− f(t, α)|Rk ≤ ε.

Since such a function is u.a.p., we know that given a compact subset K of M ,
f is bounded and uniformly continuous on R×K.

Proposition 3. Any u.s.p. function is a uniform limit, on each R × K, of a
sequence of continuous functions which are periodic w.r.t. their first variables.

Proof. Let T be given by the definition and consider a T -periodic function
ϕ(., α) such that its restriction to [0;T ) is the same as the one of f(., α). For
each x ∈ R, we can write x = t+ nT with n ∈ Z and t ∈ [0;T ). Thus, we get:

|f(x, α)− ϕ(x, α)|Rk = |f(t+ nT, α)− ϕ(t + nT, α)|Rk

= |f(t+ nT, α)− ϕ(t, α)|Rk = |f(t+ nT, α)− f(t, α)|Rk ≤ ε,
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uniformly w.r.t. α ∈ K. Since ϕ need not be continuous, consider still τ ∈ (0;T )
such that, for any t ∈ [T − τ, T ] and any α ∈ K, |f(t, α) − f(T, α)|E ≤ ε.
This is possible, because K is compact. Define a T -periodic continuous function
ψ(., α) which equals to ϕ(., α) on [0, T − τ ] and which is linear on [T − τ, T ]. For
t ∈ [T − τ, T ], we obtain:

|f(t, α)− ψ(t, α)|Rk ≤

≤ T − t

τ
|f(T − τ, α)− f(t, α)|Rk +

t− (T − τ)

τ
|f(T, α)− f(t, α)|Rk ≤ ε,

and subsequently sup(x,α)∈R×K |ψ(x, α)− f(x, α)|Rk ≤ 2ε. �

Remark 4. Assume that f is L-Lipschitzian w.r.t. its second variable. It follows
from the proof that so is ϕ, from which we can deduce the same for ψ. So, a u.s.p.
function Lipschitzian w.r.t. its second variable can be approximated uniformly on
each R×K (K compact) by a sequence of functions which are periodic w.r.t. their
first variables and Lipschitzian (with the same constant L) w.r.t. their second
variable.

Remark 5. It is possible to define the same for the discrete case and to obtain
the analogous results. This will be omitted here, because the proofs are quite
similar.

Concerning the Nemytskii operator, in the continuous case, it is not true that
if f is u.s.p. and φ is s.p., then t 7→ f(t, φ(t)) is s.p. As an example, take
f(t, x) = sin(t) + x and φ(t) = sin(πt). On the other hand, it is true in the
discrete case:

Proposition 4. Assume that f : Z ×M → Rp is s.p. and that x = (xt)t is s.p.
with the range in M ⊂ Rn. Then the sequence (f(t, xt))t∈Z is s.p.

Proof. Set K = {xt, t ∈ Z}. Since x is a.p., K is a compact subset of M . So,
given ε > 0, we can find η > 0 s.t.:

sup
t∈Z,|x−y|≤η

|f(t, x)− f(t, y)|Rp ≤ ε.

Set η′ := min{η, ε}. We know that we can find two integers T1, T2 s.t.:

∀n ∈ Z, ∀t ∈ Z, |xt+nT1
− xt|Rn ≤ η′,

∀n ∈ Z, ∀t ∈ Z, ∀x ∈ K, |f(t+ nT2, x)− f(t, x)|Rp ≤ η′.

Taking for T as a common multiplier of T1 and T2 (for instance, T = T1T2).
The last inequalities remain true, when replacing every Ti by T . Thus, for any
(t, n) ∈ Z2:

|f(t+ nT, xt+nT )− f(t, xt)|Rp ≤
|f(t+ nT, xt+nT )− f(t+ nT, xt)|Rp + |f(t+ nT, xt)− f(t, xt)|Rp ≤ ε+ η′ ≤ 2ε.

�
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For an alternative proof, one can employ the approximation by periodic se-
quences.

4. Semi-periodic solutions of difference equations

In this section, we are interested in semi-periodic solutions of the difference
equation in Rp:

xt+1 + Axt = f(t, xt), (1)

where A is a real square p× p matrix.

Theorem 3. Assuming that A has no eigenvalues with modulus one and that f
is u.s.p. and Lipschizian with a sufficently small constant, there exists a unique
semi-periodic solution for the difference equation (1).

Proof. We know (see e.g. Proposition 2.2 in [Pe]) that, for each a.p. sequence
(bt)t with values in Rp, there exists a unique a.p. solution to:

xt+1 + Axt = bt. (2)

Denoting by AP(Z,Rp) the Banach space of a.p. sequences (cf. [Pe]), the linear
operator T : AP(Z,Rp) → AP(Z,Rp), determined by the left-hand side of (2), is
obviously invertible. Since T is continuous satisfying ‖T‖ ≤ 1 + ‖A‖, we know
from the well known Banach Theorem that T−1 must be continuous as well.

Now, consider a s.p. sequence (qt)t with values in Rp. We are firstly interested
in the a.p. solution to the equation:

xt+1 + Axt = f(t, qt). (3)

By the hypothesis imposed on f and in view of Proposition 3, (f(t, qt))t is s.p.
Therefore, there exists a unique a.p. solution of (3) (see again Proposition 2.2
in [Pe]). We can now consider T−1((f(t, qt))t). Since T−1 is a continuous linear
operator, the mapping

T : (qt)t → T−1((f(t, qt))t)

maps S(Z,Rp) into itself. Denote by L the Lipschitz constant to all f(t, .). It is
easy to see that ‖T−1‖L is a Lipschitz constant for T .

Assuming that L < 1/‖T−1‖, the mapping T is a contraction in the Banach
space S(Z,Rp). So it has a unique fixed point representing the desired s.p. solu-
tion of (1). �

Remark 6. Using a triangular form of −A (like Jordan’s one) (see e.g. [Co1,
Proposition 6.14 and Remark 6.26]), it is possible to compute explicitly a constant
c s.t. ‖T−1‖ ≤ c. For such a constant, it is sufficient to assume L < 1/c in order
to justify Theorem 3.
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5. Semi-periodic solutions of differential equations

Let us consider the equation:

x′ + Ax = f(t, x). (4)

We assume that a real square k × k matrix A has an exponential dichotomy
property, i.e. that there exists a projection matrix P (P = P 2) and constants
C > 0, λ > 0, such that:

|X(t)PX−1(s)| ≤ C exp(−λ(t− s)), for s ≤ t,

|X(t)(I − P )X−1(s)| ≤ C exp(−λ(s− t)), for t ≤ s,

where X is the fundamental matrix of x′ + Ax = 0 satisfying X(0) = I, i.e. the
unit matrix (see e.g. [AG, Chapter III.5]). Furthermore, let f : R× Rk → Rk be
u.s.p. with respect to the variable x.

Setting

C(A) := sup
t∈R

∣

∣

∣

∣

∫

R

|G(t− s)| ds
∣

∣

∣

∣

≤ sup
t∈R

∫

R

Ce−λ|t−s| ds =
2C
λ
,

where

G(t, s) :=

{

eA(t−s)P−, for t > s
eA(t−s)P+, for t < s

is the Green function associated to A, and P−, P+ stand for the correspond-
ing spectral projections to the invariant subspaces of A, we can formulate the
following theorem.

Theorem 4. Assume still that f is L-Lipschitzian w.r.t. the second variable with
L < (λ/2C ≤) 1/C(A). Then there exists a unique semi-periodic solution of the
equation (4).

Proof. Let (fn)n be a sequence of periodic functions w.r.t. their first variables
s.t. fn → f , uniformly. We can assume without any loss of generality (see Re-
mark 3) that each fn is L-Lipschitzian w.r.t. its second variable. Let xn be the
unique bounded (in fact, periodic) solution of the equation:

x′ + Ax = fn(t, x)

and x̄ be the unique bounded solution of (4). Such solutions exist; for more
details, see e.g. [AG, Chapter III.5].

It will be sufficient to show that xn → x̄, uniformly.
We have the integral representations (see again e.g. [AG, Chapter III.5])

xn(t) =

∫

R

G(t− s)fn(s, xn(s)) ds,

x̄(t) =

∫

R

G(t− s)f(s, x̄(s)) ds.
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It can be easily checked that, in view of uniqueness of bounded solutions, the
periods Tn of fn are also periods of xn. It holds:

|xn(t)− x̄(t)|Rk ≤
∫

R

|G(t− s)| |fn(s, xn(s))− f(s, x̄(s))|Rk ds.

Now, let us prove that there exists a uniform estimate to all xn. We have:

|xn(t)|Rk ≤
∫

R

|G(t− s)| |fn(s, xn(s))|Rk ds,

and

|fn(s, xn(s))|Rk ≤ |fn(s, 0)|Rk + L|xn(s)|Rk

≤ ‖f(., 0)‖∞ + ‖fn(., 0)− f(., 0)‖∞ + L‖xn‖∞.
Thus,

‖xn‖∞ ≤ C(A) (‖f(., 0)‖∞ + ‖fn(., 0)− f(., 0)‖∞ + L‖xn‖∞)

and, according to C(A)L < 1, still

‖xn‖∞ ≤ C(A)

1− C(A)L
(‖f(., 0)‖∞ + ‖fn(., 0)− f(., 0)‖∞) := R,

where R is the desired bound. Putting K = B(0, R), we arrive at:

|fn(s, xn(s))− f(s, x̄(s))|Rk ≤ |fn(s, xn(s))− fn(s, x̄(s))|Rk

+ |fn(s, x̄(s))− f(s, x̄(s))||Rk ≤ L‖xn − x̄‖∞ + εn,

where εn = supR×K ‖fn − f‖ → 0. Thus, we finally get:

‖xn − x‖∞ ≤ C(A)

1− C(A)L
εn → 0.

Since xn are Tn-periodic, we conclude that x̄ is semi-periodic. �
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