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1. Introduction

Already a half century ago, G. H. Meisters [30] formulated the fol-
lowing interesting theorem.

Theorem 1. Let x(·) be a vector solution of the differential equation

x′ = F (t, x), (1)

where
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(i) F (·, x) : R → Cn is an almost-periodic function, for each x in
some connected open subset D of Cn, where Cn is an n-dimensional
complex vector space, endowed with the standard Euclidean metric,

(ii) F (t, ·) : Cn → Cn satisfies, for all x, y ∈ D, the Lipschitz condi-
tion

|F (t, x)− F (t, y)| ≤ L|x− y|, t ∈ R,

and let D contain the closure of the range of x(·). Then a necessary
and sufficient condition that x(·) be an almost-periodic solution in Cn

is that {x(k)}k∈Z be an almost-periodic sequence in Cn.

The main aim of the present paper is to extend and improve Theo-
rem 1 in several directions.

The Stepanov almost-periodicity [37] is the most natural general-
ization of the notion of a uniform (Bohr) almost-periodicity, mainly
because of two reasons: (i) uniformly continuous Stepanov almost-
periodic functions are exactly uniformly almost-periodic ones (cf. [2,
5, 10, 12, 29]), (ii) the Bochner transform of Stepanov almost-periodic
functions becomes also uniformly almost-periodic (cf. [1, 3, 32]).

On the other hand, unlike for functions, the notions of Stepanov and
uniformly almost-periodic sequences rather surprisingly coincide (see
Section 3). Moreover, discretizations of even smooth Stepanov almost-
periodic functions need not be almost-periodic (see Example 4 below)
and, reversely, not necessarily Stepanov almost-periodic functions can
obviously admit almost-periodic discretizations.

Although differential equations involving Stepanov almost-periodic
forcing terms are usually examined in order to possess uniformly almost-
periodic Carathéodory (i.e. locally absolutely continuous) solutions (see
e.g. [1, 3, 11, 32, 35]), it is a question whether or not it has a meaning
to consider purely (i.e. not uniformly continuous) Stepanov almost-
periodic solutions (see examples in Section 4). The problem of purely
Stepanov almost-periodic solutions of difference equations has however,
in view of the above arguments, no meaning.

Hence, the first candidate for a generalization of Theorem 1 might
seem to be, in equation (1), an essentially bounded Stepanov almost-
periodic mapping F (·, x) : R → Cn, for each x in a suitable connected
open subset D of Cn. The related result is formulated in Theorem 3.

If equation (1) takes the particular additive form (4), then Theo-
rem 3 can be significantly improved into Theorem 2, where Cn can be
even replaced by a suitable (e.g. reflexive) possibly infinite-dimensional
Banach space and p need not be essentially bounded. For finite-di-
mensional Banach spaces, Theorem 2 can be still formally extended to
inclusions (9) in Corollary 1.

The delicate problem of purely Stepanov almost-periodic solutions
was already addressed in the series of papers [17, 18, 19, 20, 21] of
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Z. Hu and A. B. Mingarelli. However, under their conditions, Ste-
panov almost-periodic solutions become uniformly almost-periodic (cf.
also the arguments in [38] concerning the Favard type results in [18, 19,
20]). Here, purely Stepanov almost-periodic solutions with Stepanov
derivatives will be, rather curiously, shown to exist only provided none
of their discretizations is (Stepanov) almost-periodic. In other words,
if at least one discretized solution is (Stepanov) almost-periodic, then
there is no chance to obtain purely Stepanov almost-periodic solutions.
In [4], we proved accordingly that, under natural assumptions, purely
Stepanov almost-periodic solutions do not occur.

2. Some facts about Stepanov almost-periodic (shortly, Sap-)
functions

For locally integrable functions f, g ∈ Lploc(R,R), let us recall the
Stepanov norms and distances :

‖f‖SpL := sup
x∈R

[
1

L

∫ x+L

x

|f(t)|p dt
] 1

p

,

DSpL
[f, g] := ‖f − g‖SpL = sup

x∈R

[
1

L

∫ x+L

x

|f(t)− g(t)|p dt
] 1

p

.

Without any loss of generality, one can take L = 1, i.e. we can work with
the Stepanov norms ‖ · ‖Sp = ‖ · ‖Sp1 and distances DS

p [·, ·] = DS
p
1
[·, ·].

For p = 1, we shall simply write ‖·‖S (= ‖·‖S1) and DS[·, ·] (= DS1 [·, ·]).
Definition 1. A function f ∈ Lploc(R,R) is said to be almost-periodic
in the sense of Stepanov (Spap) if, for every ε > 0, there corresponds a
relatively dense set {τ}ε of ε-Stepanov almost-periods such that

Dp
S[f(t+ τ), f(t)] < ε, for all τ ∈ {τ}ε.

In Banach spaces, the definition of Spap-functions is formally the same
as in Definition 1.

The Banach space of Sap-functions can be equivalently defined as
the one of Sp-normal functions or as the closure of all trigonometric
polynomials w.r.t to the norm ‖ · ‖Sp (for more details, see e.g. [2, 3]).

According to the Bochner theorem (see e.g. [5]), uniformly (Bohr)
almost-periodic (shortly, a.p.) functions can be characterized as en-
tirely uniformly continuous Spap-functions, where p ≥ 1.

It is well-known (see e.g. [7, 16, 27, 28]) that the following Bohl–Bohr
theorem holds for the indefinite integral F (x) =

∫ x
0
f(t) dt of an Sap-

function f . F is namely a.p., provided it is Sp-bounded (i.e. bounded
w.r.t. the norm ‖ · ‖Sp). Thus, in particular, such an F is a.p. iff it is
bounded. In a Banach space, according to the Kadets theorem [26], it
should not contain an isomorphic copy of c0, the scalar null sequences,
for the same goal. For further generalizations, see e.g. [6, 16].
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On the other hand, unlike for periodic functions, the indefinite inte-
grals of a.p. functions with a zero mean value can be unbounded (see
e.g. [23, 24]).

Furthemore, the sum of two Spap-functions is an Spap-function and the

product of an Spap-function and an Sqap-function, where 1
p

+ 1
q

= 1, is an

Sap-function. For p = 1, in particular, the product of an Sap-function
and an a.p. function is an Sap-function. If an a.p. function g satisfies
infx∈R |g(x)| > 0, then 1

g
is a.p., and subsequently the quotient f/g of

two a.p. functions f and g, where g has the same property, is a.p. For
more details, see e.g. [5, 10, 12, 29].

The composition F (f(·)) of a continuous and linearly bounded func-
tion F and an Sap-function f is again Sap. More generally, if f : R→ X
is an Sap-function, where X is a complete metric space, and F : X → Y
is a continuous linearly bounded mapping, where Y is a metric space,
then F (f(·)) : R → Y is an Sap-function (see e.g. [13]). On the other
hand, in order F (f(·)) to be an a.p. function, where f is a.p., F should
be uniformly continuous (see e.g. [10]).

It immediately follows from the Bohl–Bohr theorem mentioned above
that there is no bounded Sap-function, which is at the same time not
a.p., such that its derivative is an (unbounded) Sap-function. This im-
plication has two important consequences.

Consequence 1. Derivative of any bounded Sap (but not a.p.)-function
cannot be Sap.

Consequence 2. In order to have an Sap-derivative of an Sap-function,
such function must be either unbounded or a.p.

Example 1 (of a smooth unbounded Sap-function f with an unbounded
derivative f ′; cf. [21]). Modifying an example in [39], the authors of [21]
constructed a C1-Stepanov a.p. function f which is obviously not a.p.,
as a series of 2n-periodic functions fn, as follows2:

f(x) =
∞∑
n=1

fn(x),

where

fn(x) =



2(x−yn,k+εn)
2

ε2n
, for x ∈ (yn,k − εn, yn,k − εn

2
],

1− 2(x−yn,k)
2

ε2n
, for x ∈ (yn,k − εn

2
, yn,k + εn

2
],

2(x−yn,k−εn)2
ε2n

, for x ∈ (yn,k + εn
2
, yn,k + εn],

0, otherwise,

yn,k = (2k + 1)n, k = 0,±1,±2, . . . ,

2In [21], it was assumed the less restrictive condition: 0 < εn < 1, n =
1, 2, . . . ,

∑∞
n=1 εn <∞.
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0 < εn <
1

2
, n = 1, 2, . . . ,

∞∑
n=1

εn <∞.

One can readily check that

f ′(x) =
∞∑
n=1

f ′n(x),

where

f ′n(x) =



4(x−yn,k+εn)

ε2n
, for x ∈ (yn,k − εn, yn,k − εn

2
],

−4(x−yn,k)

ε2n
, for x ∈ (yn,k − εn

2
, yn,k + εn

2
],

4(x−yn,k−εn)
ε2n

, for x ∈ (yn,k + εn
2
, yn,k + εn],

0, otherwise.

Example 2 (of a smooth bounded non-uniformly continuous Sap-function
whose derivative f ′ is not Sap; cf. [29, pp. 212–213]). Taking

f(x) = sin

(
1

g(x)

)
,

where

g(x) = 2 + cosx+ cos
√

2x,

Levitan [29] had shown that f is Sap, but not a.p.
Since the derivative f ′ of f takes the form

f ′(x) = cos

(
1

g(x)

)(
sinx+

√
2 sin

√
2x

g2(x)

)
,

it follows from the Bohl–Bohr theorem that f ′ cannot be Sap, because
f as its primitive is bounded, and so contradictionally a.p. (cf. Conse-
quence 1).

Function cos
(

1
g(x)

)
can be proved quite analogously as sin

(
1

g(x)

)
to

be an Sap-function (cf. [29]).

Example 3 (of a smooth a.p. function h whose non-uniformly contin-
uous derivative h′ is Sap). Let g be the same function as in Example 2.
The product

h(x) = g2(x) sin

(
1

g(x)

)
of g2 and f is obviously a continuous bounded Sap-function and, unlike
f ′ in Example 2, so is its derivative

h′(x) = g′(x)

[
2g(x) sin

(
1

g(x)

)
− cos

(
1

g(x)

)]
,

as a product of

g′(x) = − sinx−
√

2 sin
√

2x
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and a continuous bounded Sap-function

2g(x) sin

(
1

g(x)

)
− cos

(
1

g(x)

)
.

This, however, means that h itself is in fact a.p.

3. Some facts about (Stepanov) almost-periodic sequences

In this section, we will firstly show that the notions of uniformly
almost-periodic (a.p.) and Stepanov almost-periodic (Sap) sequences
rather surprisingly coincide. We also collect some properties of (Ste-
panov) a.p. sequences.

Let Z denote, as usual, the set of integers and let E be a Banach
space endowed with the norm | · |E. Taking x := {xk}k∈Z ∈ EZ, we
start with the definition of an a.p. sequence (cf. [8, 10, 12, 33]).

Definition 2. A sequence x is called almost-periodic (a.p.) if, for
any ε > 0, there exists a positive integer N = N(ε) ∈ N such that,
in any set of N consecutive integers {m, . . . ,m + N}, there exists p ∈
{m, . . . ,m+N} such that |xk+p−xk|E < ε, for all k ∈ Z. The number
p is called an ε-almost-period of x.

Defining the continuous piece-wise linear function fx : R → E by
fx(k + θ) := xk + θ(xk+1 − xk), for all k ∈ Z, θ ∈ [0, 1], we know that
the following properties are equivalent:

• x is an a.p. sequence;

• the canonical extension fx of x is an a.p. function (cf. [8, 33]);

• there exists an a.p. function f : R → E such that f(k) = xk, for
all k ∈ Z (cf. [8, 12, 33]);

• for E = R, any sequence of translates {xk +m`}`∈N contains a
subsequence {xk +m`l} which is uniformly (w.r.t. k ∈ Z) conver-
gent (cf. [10, 12]).

By a discretization of a function f , we mean in the entire text a
sequence {f(ak + b)}k∈Z, a > 0. By standard discretizations, we mean
those with a = 1, b = 0. One can always find a set of integer ε-
translation numbers for an a.p. function (see [5]). Every set of integer
ε-translation numbers of a fucntion is a set of integer ε-translation
numbers of its standard discretization. Moreover, every set of (integer)
ε-translation numbers for x is a set of ε-translation numbers for fx. So,
the set of (integer) ε-translation numbers for x and fx are the same.

Setting

‖x‖S1T := sup
n∈Z

(
1

T + 1

n+T∑
k=n

|xk|E

)
∈ [0,∞], for T ∈ N,

one can readily check that ‖x‖S10 = ‖x‖∞.
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We also set

S1
T := {x

∣∣ ‖x‖S1T <∞}.
For functions f ∈ L1

loc(R, E), we still define:

‖f‖S11 := sup
a∈R

(∫ a+1

a

|f(t)|E dt
)
∈ [0,∞],

‖f‖S11,Z := sup
n∈Z

(∫ n+1

n

|f(t)|E dt
)
∈ [0,∞].

The function spaces S1
1 and S1

1,Z can be defined respectively as

S1
1 := {f

∣∣ ‖f‖S11 <∞} and S1
1,Z := {f

∣∣ ‖f‖S11,Z <∞}.
If S1

1 (resp. S1
1,Z) is endowed with ‖.‖S11 (resp. ‖.‖S11,Z), then S1

1 (resp.

S1
1,Z) becomes a vector space.

The following lemma is obvious.

Lemma 1. The following relations hold, for all x ∈ EZ, T ∈ N and
f ∈ L1

loc(R, E):

(i) ‖x‖S10 = ‖x‖∞;

(ii) 1
T+1
‖x‖∞ ≤ ‖x‖S1T ≤ ‖x‖∞;

(iii) ‖f‖S11,Z ≤ ‖f‖S11 ≤ 2‖f‖S11,Z;

(iv) ‖f‖S11 ≤ ‖f‖∞;

(v) ‖fx‖∞ = ‖x‖∞.

As a consequence of the properties (i), (ii), we have S1
T = `∞, for any

T ∈ N, and all the above considered norms on this space S1
T = `∞ are

equivalent. Furthermore, the property (iv) implies that S1
1 = S1

1,Z.
We can state the following proposition.

Proposition 1. The following properties are equivalent:

• x ∈ `∞;

• x ∈ S1
T, for any T ∈ N;

• x ∈ S1
T, for some T ∈ N;

• fx ∈ S1
1;

• fx ∈ S1
1,Z;

• fx ∈ L∞.

Moreover, all the norms ‖ · ‖∞, ‖ · ‖S1T, x→ ‖fx‖∞, x→ ‖fx‖S11 are
equivalent.

Proof. Because of the basic properties (i)–(v) in Lemma 1, we should
only show the existence of a constant C > 0 such that, for any x ∈ EZ,
there is

‖fx‖S11,Z ≥ C‖fx‖∞.
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If this is true, we are able to write:

C‖fx‖∞ ≤ ‖fx‖S11,Z ≤ ‖fx‖S11 ≤ 2‖fx‖S11,Z ≤ 2‖fx‖∞ = 2‖x‖∞,

which gives the claim.

Fixing n ∈ Z, we have∫ n+1

n

|fx(t)|E dt =

∫ 1

0

|(1− θ)xn + θxn+1|E dθ

≥
∫ 1

0

∣∣(1− θ) |xn|E − θ |xn+1|E
∣∣dθ. (2)

Setting u := |xn|E, v := |xn+1|E, we have (u, v) ∈ (R+)2, and since∫ 1

0

|(1− θ)u− θv| dθ =

∫ 1

0

|u− θ(u+ v)| dθ,

the last integral can be easily computed to be equal to u2+v2

2(u+v)
.

Assuming, for instance, that u ≥ v, we have u2 + v2 ≥ u2 and
2(u+ v) ≤ 4u, and we can deduce that∫ 1

0

|(1− θ)u− θv| dθ ≥ u

4
.

This yields ∫ n+1

n

|fx(t)|E dt ≥ max{|xn|E, |xn+1|E}
4

,

and so, when taking the sup-norm,

‖fx‖S11,Z ≥
1

4
‖x‖∞ =

1

4
‖fx‖∞.

Thus, for C = 1
4
, the claim is true. �

Remark 1. For E = R, the proof of Proposition 1 is more straight-
forward, because the integral in (2) can be computed.

Proposition 1 has the following important consequence.

Consequence 3. Sequence x is Stepanov a.p. iff it is a.p. iff fx is
a.p. iff fx is Sap.

In fact, we can say that x is S1
T almost-periodic (shortly, S1

T-a.p.)
if it has the following property: for any ε > 0, there exists a positive
integer N = N(ε) such that, in any set of N consecutive integers
{m, . . . ,m+N}, there exists p ∈ {m, . . . ,m+N} such that

‖x.+p − x.‖S1T < ε.

On the other hand, in view of conditions (i) and (ii) in Lemma 1, the
norms ‖.‖∞, ‖.‖S11 , ‖.‖S1T are equivalent. Thus, the definition does not
change provided we employ one of these norms. Moreover, since

∀(k, p) ∈ Z2 : fx(.+p)−x(k) = fx(k + p)− fx(k) = xk+p − xk,
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we obtain the same definition with the norms x → ‖fx‖∞ or x →
‖fx‖S11 .
Remark 2. In view of the Hölder inequality∫ a+1

a

|f(t)| dt ≤
(∫ a+1

a

|f(t)|p dt
)1/p

, (3)

Proposition 1 and Consequence 3 can be extended to Spap-sequences.

In view of Proposition 1 resp. Consequence 3, examples from the
foregoing section can be now continued in the following way.

Example 4 (of an Sap-function whose one discretization is Sap and
another one is not Sap). Consider firstly the sequence {f(k)}k∈Z, where
f is the Sap-function defined in Example 1. We will show that {f(k)}k∈Z
is not Sap.

Since

fm(m(2k + 1)) = 1, for m = 1, 2, . . . and k = 0,±1,±2, . . . ,

we obtain

fm(1) = 1, fm(6) + f2m(6) = 2,

fm(20) + f2m(20) + f22m(20) = 3, . . . ,

i.e. in general:

k∑
j=0

f2jm
(
2k(2k + 1)

)
= k + 1, for all k,m ∈ N.

Thus, in view of nonnegativity of f , we have (for any m ∈ N)

lim sup
k→∞

f(k) = lim sup
k→∞

∞∑
n=1

fn(k) ≥ lim sup
k→∞

k∑
j=0

f2jm(k)

≥ lim
k→∞

k∑
j=0

f2jm
(
2k(2k + 1)

)
= lim

k→∞
(k + 1) =∞,

by which the discretization {f(k)}k∈Z, of the Sap-function f is not Sap,
as claimed.

Now, consider the sequence {f(k+ 1
2
)}k∈Z, where f is the same func-

tion as above. We will show that {f(k + 1
2
)}k∈Z is this time constant,

and so Sap. We can see that:

f(x) =
∑
n≥1

∑
k∈Z

ϕn(x− yn,k),
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where ϕn is defined as follows:

ϕn(x) =


2(x+εn)2

ε2n
, for x ∈ (−εn,− εn

2
],

1− 2x2

ε2n
, for x ∈ (− εn

2
,+ εn

2
],

2(x−εn)2
ε2n

, for x ∈ ( εn
2
, εn],

0, otherwise.

Take x̄ = 1
2

+p, p ∈ Z. If ϕn(x̄−yn,k) 6= 0, it means that |x̄−yn,k| < εn,

by which d(x̄,Z) < εn. But d(x̄,Z) = 1
2
> εn, and we have that

ϕn(x̄ − yn,k) = 0, for every k ∈ Z and every positive integer n. Thus,
f(x̄) = 0. This is true, for any p ∈ Z, and we obtain that f(1

2
+ p) = 0,

for each p ∈ Z, as claimed.

Example 5 (of an Sap-function whose discretization is a.p.). Consider
the sequence {f

(
π
(
k + 1

2

))
}k∈Z, where f is the Sap-function defined in

Example 2. We will show that

f
(
π
(
k + 1

2

))
= sin

(
1

2 + cos
(√

2π
(
k + 1

2

)))
is a.p.

Since g0(x) = 2 + cos
√

2x ≥ 1 is a
√

2π-periodic function, so is
sin
(

1
g0(x)

)
; in particular, it is a.p. Its discretization is, by the definition,

a.p., too.
Since the values of f(x) = sin

(
1

g(x)

)
and sin

(
1

g0(x)

)
coincide, for

x = π
(
k + 1

2

)
, k = 0,±1,±2, . . . , {f

(
π
(
k + 1

2

))
}k∈Z must be a.p., as

claimed.

Remark 3. It is not immediately visible whether or not there exists
another discretization of f in Example 2 which is not a.p. More gen-
erally, it is a question what are the sufficient conditions in order every
discretization of a non-uniformly continuous Sap-function to be or not
to be a.p.

Remark 4. Although the discretizations {f(k)}k∈Z of Sap-functions
f can be not necessarily a.p. (see Example 4), those {f b(k)}k∈Z =
{f(k + η)}k∈Z, η ∈ [0, 1], of their (a.p.) Bochner transforms (for more
details, see [1, 3, 31, 32]) f b(t) = f(t + η), η ∈ [0, 1], are a.p. in the
Banach space L∞(R, L([0, 1], E)), by the definition.

4. Some remarks on Sap-solutions of differential equations

A natural question arises for Sap-solutions of differential equations,
namely under which assumptions they reduce to uniformly a.p. solu-
tions or reversely when they become purely Sap-solutions (?).

In order to answer these two questions, let us consider (for the sake
of transparency) the particular form of equation (1)

x′ = ϕ(x) + p(t), (4)
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where ϕ ∈ C(Rn,Rn) and p ∈ L1
loc(R,Rn). By a solution of (4), we

mean a Carathéodory one, i.e. x(·) ∈ ACloc(R,Rn) which satisfies (4)
almost everywhere. If p ∈ C(R,Rn), then x(·) ∈ C1(R,Rn) becomes
obviously a classical solution.

Proposition 2. If x(·) is an Sap-solution of (4), where ϕ is bounded
and p is essentially bounded, then x(·) is uniformly a.p. If an Sap-
solution x(·) of (4) is additionally bounded and p is either essentially
bounded or Sap, then x(·) is also uniformly a.p.

Proof. The boundedness of functions ϕ, p implies a.e. the same for
x′(·) which means that x(·) is uniformly continuous, and so a.p. The
boundedness of x(·) implies the same for the composition ϕ (x(·)).
Thus, if p is not essentially bounded (otherwise, the same conclusion
holds as above), but Sap, then so is x′(·). According to Consequence 2,
a bounded Sap-solution x(·) must be a.p. �

Remark 5. Equation (4) with ϕ(x) ≡ 0 and p(t) = h′(t), where h
was defined in Example 3, has the a.p. solution x(t) = h(t). This case
concerns all conditions in Proposition 2. Equation (4) with ϕ(x) = −x
and p(t) = h(t) + h′(t), having the same a.p. solution x(t) = h(t),
will be still treated below. It is related to the last two possibilities in
Proposition 2. More sophisticated examples of this type can be deduced
from the results in [1] (cf. [3, Theorem III.10.12]). The last possibility
in Proposition 2 can be also nontrivially guaranteed by [11, Theorem
2].

Necessary conditions for purely Sap-solutions of (4) can be formulated
as follows.

Proposition 3. The necessary condition in order an Sap-solution x(·)
of (4) not to be uniformly a.p. consists in satisfying one of the follow-
ing three possibilities: (i) x(·) and ϕ are unbounded or (ii) x(·) is un-
bounded and p is not essentially bounded or (iii) p is neither essentially
bounded nor Sap.

Proof. It follows immediately from Proposition 2 that the following
possibilities may occur in order an Sap-solution x(·) not to be uniformly
a.p.: (i) or (ii) above or, for a bounded x(·), p to be either not essen-
tially bounded or not Sap. However, if p is not essentially bounded
but Sap, then a (not essentially bounded) Sap-derivative x′(·) implies
that, according to Consequence 2, a bounded x(·) must be a.p. Thus,
condition (iii) represents the only remaining necessity. �

Remark 6. Equation (4) with ϕ(x) ≡ 0 and p(t) =
∑∞

n=1 f
′
n(t), where

fn were defined in Example 1, has the purely Sap-solution x(t) =∑∞
n=1 fn(t). This case is related to condition (ii) in Proposition 3.

Equation (4) with ϕ(x) = −x and p(t) =
∑∞

n=1 fn(t)+f ′n(t), having the
same Sap-solution x(t) =

∑∞
n=1 fn(t), will be still treated below. It is
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related to condition (i) in Proposition 3. Equation (4) with ϕ(x) = −x
and

p(t) = sin

(
1

g(t)

)
+ cos

(
1

g(t)

)(
sin t+

√
2 sin

√
2t

g2(t)

)
,

where g(t) = 2 + cos t + cos
√

2t, has the purely Sap-solution x(t) =
sin
(

1
g(t)

)
and will be also still treated below. It is related to condition

(iii) in Proposition 3.

Remark 7. It follows from Proposition 3 that the existence of purely
Sap-solutions of (4) for the Bohr–Neugebauer type theorems (bounded-
ness implies almost-periodicity) can be just related to condition (iii),
i.e. p is not essentially bounded and at the same time not Sap. On the
other hand, in all the Bohr–Neugebauer type results resp. Favard type
results in [9, 10, 11, 12, 19, 20, 21, 17, 18, 34, 35], it is assumed that p
in (4) or, more generally, F (·, x) in (1) is at least an Sap-function. This
indicates that the question posed in [17, 18], namely “whether bounded-
ness of solutions can imply their (pure) Stepanov’s almost-periodicity
(if not a.p.) (?)” has, under the assumptions imposed on p in (4)
or on F in (1), no meaning. In particular, since F (·, x) is assumed
in [21] to be Spap and a.e. bounded, uniformly in x ∈ Rn, and A, p in
x′ = A(t)x+p(t) are assumed in [17, 18, 19, 20] to be uniformly a.p., it
immediately follows that bounded solutions must be uniformly contin-
uous, and subsequently bounded Spap-solutions become, in view of the
Hölder inequality (3), uniformly a.p. Moreover, a Stepanov extension
of Favard type results in [18, 19, 20] was shown in [38] just apparent.

Since ey is, on any compact interval, uniformly continuous, it follows
that ef is Sap or a.p. if so is a bounded f , respectively. In particular,
the discretization fk = f(k) of a bounded f is a.p. iff so is efk .

Therefore, if the bounded function f ∈ ACloc is Sap or a.p., then

x(t) = exp
(∫ t

f ′(s) ds
)

= exp(f(t))

is an Sap-solution or an a.p. solution, respectively, of the equation

x′ = f ′(t)x. (5)

Moreover, the discretization

{x(k)}k∈Z =
{

exp
(∫ k

f ′(s) ds
)}

k∈Z
= {exp(f(k))}k∈Z

is a.p. iff {f(k)}}k∈Z is a.p.
Furthermore, since x(t) = f(t) ∈ ACloc is a solution of the equation

x′ + x = f(t) + f ′(t), (6)

it is trivially Sap or a.p. iff f is so. The same is obviously true for its
discretization {x(k)}k∈Z = {f(k)}k∈Z.
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Thus, the following possibilities can be demonstrated by means of
the above examples:
• Function x(t) = f(t), where f is the Sap-function defined in Exam-
ple 1, is a purely Sap-solution of (6). Its discretization {x(k)}k∈Z =
{f(k)}k∈Z is, according to Example 4, not a.p. (Sap).
• Although the coefficient

f ′(t) = cos

(
1

g(t)

)(
sin t+

√
2 sin

√
2t

g2(t)

)
in (5), where g(t) = 2+cos t+cos

√
2t, is (according to Example 2) not

Sap, equation (5) admits a purely Sap-solution x(t) = exp
(

sin
(

1
g(t)

))
whose discretization{

x
(
π
(
k + 1

2

))}
k∈Z =

{
exp

(
sin

(
1

2 + cos
(√

2π
(
k + 1

2

))))}
k∈Z

is, in view of Example 5, a.p.
Furthermore, equation (6), where the nonhomogenity f(t) + f ′(t) =

sin
(

1
g(t)

)
+f ′(t) is not Sap, admits a purely Sap-solution x(t) = sin

(
1
g(t)

)
whose discretization{

x
(
π
(
k + 1

2

))}
k∈Z =

{
sin

(
1

2 + cos
(√

2π
(
k + 1

2

)))}
k∈Z

is a.p.
• Although the term f ′ at the equation

x′ +
1

g2(t)
x = f ′(t) +

f(t)

g2(t)
, (7)

where

f(t) = sin

(
1

g(t)

)
, f ′(t) = cos

(
1

g(t)

)(
sin t+

√
2 sin

√
2t

g2(t)

)
,

g(t) = 2+cos t+cos
√

2t, is (according to Example 2) not Sap, equation
(7) admits a purely Sap-solution x(t) = sin

(
1
g(t)

)
whose discretization

{
x
(
π
(
k + 1

2

))}
k∈Z =

{
sin

(
1

2 + cos
(√

2π
(
k + 1

2

)))}
k∈Z

was already pointed out to be a.p. On the other hand, at the equivalent
equation g2(t)x′+ x = f ′(t)g2(t) + f(t), the coefficient g2(t) > 0 is a.p.
and the nonhomogenity f ′g2 + f is Sap.
• Equation (5), where the coefficient

f ′(t) = g′(t)

(
cos

(
1

g(t)

)
− 2g(t)

)
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with g(t) = 2 + cos t + cos
√

2t and g′(t) = − sin t −
√

2 sin
√

2t is
(according to Example 3) an Sap-function, admits an a.p. solution

x(t) = exp(f(t)) = exp

(
g2(t) sin

(
1

g(t)

))
.

Its discretization

{x(k)}k∈Z =

{
exp

(
g2(k) sin

(
1

g(k)

))}
k∈Z

is, by the definition, a.p.
Furthermore, equation (6), where the nonhomogenity f(t) + f ′(t) =

g2(t) sin
(

1
g(t)

)
+f ′(t) is Sap, admits an a.p. solution x(t) = g2(t) sin

(
1
g(t)

)
whose discretization

{x
(
π
(
k + 1

2

))
}k∈Z =

{
g2
(
π
(
k + 1

2

))
sin

(
1

g
(
π
(
k + 1

2

)))}
k∈Z

is, by the definition, a.p.

5. Main results

For equation (4), Theorem 1 can be significantly extended as follows.

Theorem 2. Let x(·) be a Carathéory (i.e. x(·) ∈ ACloc(R, E)) solu-
tion of the differential equation (4) in a Banach space E = (E, | · |E)
satisfying the Radon–Nikodym property (e.g. reflexivity), where

(i) ϕ : E → E is a Lipschitz-continuous mapping with a constant L,
i.e.

|ϕ(x)− ϕ(y)|E ≤ L|x− y|E, for all x, y ∈ E, (8)

(ii) p : R→ E is an Sap-mapping.
Then a necessary and sufficient condition that x(·) be an almost-

periodic solution of (4) is that {x(k)}k∈Z is a (Stepanov) a.p. sequence
in the sense of Definition 2.

Proof. It is well-known (cf. e.g. [3, p. 243]) that if E satisfies the
Radon–Nikodym property, then the derivative x′(·) of a Carathéodory
solution x(·) ∈ ACloc(R, E) is locally Lebesgue–Bochner integrable and
the fundamental theorem of calculus (the Newton–Leibniz formula)
holds:

x(t) = x(0) +

∫ t

0

x′(s) ds.

Hence, it is enough to show that x(·) possesses a relatively dense set
of ε almost-periods.
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For t ∈ R, take k := [t] as the integer part [t] of t. We obtain

|x(t+ τ)− x(t)|E =

=

∣∣∣∣∫ t+τ

0

[ϕ(x(s)) + p(s)] ds−
∫ t

0

[ϕ(x(s)) + p(s)] ds

∣∣∣∣
E

=

∣∣∣∣∫ k+τ

0

[ϕ(x(s)) + p(s)] ds−
∫ k

0

[ϕ(x(s)) + p(s)] ds

+

∫ t+τ

k+τ

[ϕ(x(s)) + p(s)] ds−
∫ t

k

[ϕ(x(s)) + p(s)] ds

∣∣∣∣
E

≤ |x(k + τ)− x(k)|E +

∫ t

k

|ϕ(x(s+ τ))− ϕ(x(s))|E ds

+

∫ t

k

|p(s+ τ)− p(s)|E ds

≤ ‖x.+τ − x.‖∞ + L

∫ t

k

|x(s+ τ)− x(s)|E ds

+

∫ k+1

k

|p(t+ τ)− p(t)|E dt.

Now, using the notation in the proof of Proposition 1, we obtain:

‖x.+τ − x.‖∞ = ‖fx(.+ τ)− fx(·)‖∞ ≤

1

C
‖fx(.+ τ)− fx(·)‖S11 = 4‖fx(.+ τ)− fx(·)‖S11 .

Moreover ∫ k+1

k

|p(t+ τ)− p(t)|E dt ≤ ‖p(.+ τ)− p(·)‖S.

Thus, we have:

|x(t+ τ)− x(t)|E ≤ 4‖fx(.+ τ)− fx(·)‖S + L

∫ t

k

|x(s+ τ)− x(s)|E ds

+ ‖p(.+ τ)− p(·)‖S .

Since x := {x(k)}k∈Z is (Stepanov) a.p., its canonical extension fx is
a.p. as well, and so Sap. Thus, there exists a relatively dense set {τ}ε of
integer ε-Stepanov almost-periods which is common for fx and p (see
e.g. [29, pp. 203–204]).

The above inequality implies that

|x(t+ τ)− x(t)|E ≤ 5ε+ L

∫ t

k

|x(s+ τ)− x(s)|E ds

and, by virtue of the well-known Gronwall inequality, we arrive at

|x(t+ τ)− x(t)|E ≤ 5εeL,
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for any t ∈ R. This already means that τ is a desired 5εeL almost-
period of x(·).

The reverse implication is trivial. �

Remark 8. The equation:

x′ + x = h(t) + h′(t),

where h(·) is the function from Example 3, represents an example of
application of Theorem 2. Indeed, the function h + h′ is obviously an
Sap-function and x(·) = h(·) is an a.p. solution whose discretization is
a.p.

Remark 9. The equation:

x′ + x = f̃(t) + f̃ ′(t),

where f̃(·) := f(.+ 1
2
) and f is the function from Example 1, does not

represent an example of application of Theorem 2, because the function
f̃ + f̃ ′ (resp. f̃ ′) is not an Sap-function. Otherwise, since x̃(·) = f̃(·) is
an Sap-solution whose discretization is a.p., because x̃(k) = 0, for every
k ∈ Z, x̃(·) should be (uniformly continuous) a.p.

Remark 9 suggests us to formulate the following interesting proposi-
tion which makes Consequence 2 more precise.

Proposition 4. Let E be a Banach space satisfying the Radon-Nikodym
property. There is no purely (i.e. not uniformly continuous) Sap-function
g ∈ ACloc(R, E) which has at least one a.p. discretization and whose
derivative is Sap.

Proof. Assume that there exists such a function g. Let a > 0, b ∈ R
be the numbers such that {g(ak + b)}k∈Z is Sap. Now, set f : x →
g(ax + b). We can say that f is purely Sap and f ′ is Sap, and the
related standard discretization is a.p. Now, consider the equation:

x′ + x = f(t) + f ′(t).

At this equation, we have p(t) := f(t) + f ′(t) which is Sap and ϕ(x) :=
−x which is Lipschitzean. It admits an Sap-solution x(·) = f(·) and
it is easy to see that this is the only one to be Sap. Since {x(k)}k∈Z
is a.p., by the hypothesis, we would have that x(·) is contradictionally
a.p., when applying Theorem 2. This completes the proof. �

Consequence 4. In order to have purely Sap-solutions x(·) for equa-
tion (4), where ϕ and p satify conditions (i) and (ii) in Theorem 2,
none discretization {x(ak+b)}k∈Z can be Sap (a.p.). For E = Rn, such
solutions must be also unbounded.
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In a finite-dimensional Banach space E = (E, | · |E), consider now
the differential inclusion

x′ ∈ Φ(x) + P (t), (9)

where
(i) Φ: E ( E is a (multivalued) mapping with nonempty, convex,

compact values such that

dH(Φ(x),Φ(y)) ≤ L0|x− y|E, for all x, y ∈ E,
holds with a Lipschitz constant L0, where dH stands for the Hausdorff
distance (cf. e.g. [3, 22]),

(ii) P : R( E is a (multivalued) measurable mapping with nonempty,
compact values which is Sap, i.e. that, for every ε > 0, there corresponds
a relatively dense set {τ}ε of ε-Stepanov almost-periods such that

sup
t∈R

∫ t+1

t

dH(P (s+ τ), P (s)) ds < ε, for all τ ∈ {τ}ε .

Since Φ possesses, under (i), a single-valued Lipschitz-continuous
selection ϕ ⊂ Φ with a constant L = (12

√
3/5+1)L0 dimE (see e.g. [22,

pp. 101–103]) and P possesses, under (ii), a single-valued Sap-selection
p ⊂ P (see [13, 14, 15]), we can immediately give the following corollary
of Theorem 2.

Corollary 1. Let conditions (i) and (ii) be satisfied for multivalued
maps Φ and P in inclusion (9). Let x(·) be a Carathéodory solution of
the differential equation (4), where ϕ ⊂ Φ and p ⊂ P are the single-
valued selections with the properties indicated above. Then x(·) is an
Sap-solution of inclusion (9) if and only if {x(k)}k∈Z is an a.p. sequence
in the sense of Definition 2.

Remark 10. It would be more natural and much better to assume
directly that x(·) is a solution of the differential inclusion (9). Unfor-
tunately, since the examples above suggest that x(·) could then take
the form

x(t) = x(0) +

∫ t

0

[ϕ̃(x(s))− p̃(s)] ds,

where the single-valued selections ϕ̃ ⊂ Φ and p̃ ⊂ P need not share the
indicated properties, it seems to be difficult to avoid this obstruction.

Theorem 1 can be also generalized in the following way.

Theorem 3. Let x(·) be a Carathéodory (i.e. x(·) ∈ ACloc(R, E))
solution of the differential equation (1) in a finite-dimensional Banach
space E, where

(i) F (·, x) : R → E is an essentially bounded Sap-mapping, for each
x in some connected open subset D of E,

(ii) F (t, ·) : E → E satisfies, for all x, y ∈ D, the Lipschitz condition

|F (t, x)− F (t, y)|E ≤ L|x− y|E, t ∈ R, (10)
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and let D contain the closure of the range of x(·). Then a necessary and
sufficient condition that x(·) be an a.p. solution with values in D ⊂ E
is that {x(k)}k∈Z be an a.p. sequence in D ⊂ E.

Sketch of the proof. First of all, under the above assumptions,
the solution x(·) can be shown, quite anagously as in [30], to be bounded.
Let R ⊂ D denote the closure of the range R of x(·) in E. Since E is
finite-dimensional, R is obviously compact.

Using the Bochner transform (for more details, see [1, 3, 31, 32]),

F b(·, x) := F (·+ η, x), η ∈ [0, 1], x ∈ R,

of F (·, x), x ∈ R, and applying Tornehave’s arguments recalled in
[30], one can prove, quite analogously as for Lemma 2 in [30], that
there exists a relatively dense set {τ}ε of integer ε almost-periods
which are common for f bx and F b(·, x), x ∈ R, in the Banach space

L∞(R, L([0, 1], E)). Since, for every f ∈ S1
1, we have that:

‖f b(.+ τ)− f b(·)‖∞ = ‖f(.+ τ)− f(·)‖S11 ,

we can see that the set of ε almost-periods of f b and Stepanov ε almost-
periods of f are the same. In view of the arguments in Section 3, {τ}ε
is so a relatively dense set of ε-Stepanov almost-periods, for {xk}k∈Z
and F (·, x), x ∈ R, in E.

Now, following step by step the proof of Theorem in [30], one can
check, in the same way as in the proof therein and when applying the
above fact about common integer ε-Stepanov almost-periods, that x(·)
is almost-periodic in E, as claimed. �

Remark 11. The equation:

x′ = h′(t)x,

where h(·) is the function from Example 3, represents an example of
application of Theorem 3, because h′ is a bounded Sap-function, h′(t)(·)
is Lipschitzean with the constant L := maxt∈R |h′(t)| ≤ 9(1 +

√
2) and

x(·) = exp(h(·)) is an a.p. solution whose discretization is a.p.

Remark 12. Checking critically the proof of Theorem 1 again, one can
observe that Theorem 3 can be still formally extended into infinite-
dimensional Banach spaces satisfying the Radon–Nikodym property
(cf. Theorem 2), but provided the closure of the range of x(·) to be
contained in a compact subset C of D. However, since such an addi-
tional requirement is very drastic, we decided to present only a finite-
dimensional version for equation (5).

Remark 13. It follows from Proposition 1 that, unlike for differen-
tial equations and inclusions, the problem of Sap-solutions of difference
equations and inclusions, which are at the same time not uniformly
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a.p. solutions, has no meaning. On the other hand, the results con-
cerning a.p. solutions of difference equations and inclusions (see e.g.
[8, 12, 25, 33, 36]) can be expressed in terms of equivalent conditions
in Proposition 1. It is a question whether or not one can expect purely
Weyl or Besicovitch a.p. solutions of difference equations and inclu-
sions.

Remark 14. In [4], where the nonexistence of purely Sap-solutions of
(4) was considered in even more general situations, we have shown that
Consequence 4 can be improved in the sense that, under the assump-
tions (i) and (ii) in Theorem 2, at least in uniformly convex spaces,
there are no purely Sap-solutions of equation (4).
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