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Abstract. We are concerned in this paper with the pseudo almost
automorphy of mild solutions for the semilinear evolution equation
x′(t) = Ax(t) + f(t, x) where A is a sectorial operator not nec-
essarily densely defined in X generating an hyperbolic semigroup
(T (t))t≥0 in a Banach space X and f : R × Xα → X, where Xα
is an intermediate space. We prove the existence and uniqueness
of a pseudo almost automorphic solution in Xα, when the function
f : R×Xα −→ X is pseudo almost automorphic.
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1 Introduction

The concept of almost automorphic function was introduced in
the literature in the mid sixties as a generalization of almost pe-
riodicity in the sense of Bohr. Since then, several extensions of
the concept were introduced including asymptotic almost automor-
phy by N’Guérékata ([14]), p-almost automorphy by Diagana ([3]),
and Stepanov-like almost automorphy by N’Guérékata and Pankov
([15]). Recently, J. Liang et al. have suggested the notion of pseudo
almost automorphic functions, i.e. functions that can be written
uniquely as a sum of an almost automorphic function and an er-
godic term, i.e. a function with vanishing mean (cf [7]). This latter
turns out to be more general than asymptotic almost automorphy.
However it seems to be more complicated. There has been a con-
siderable interest in the existence of (these various types of) almost
automorphic solutions of evolution equations. Semigroups theory
and fixed point techniques have been frequently used for semilinear
evolution equations. In the present work, which is inspired by the
recent papers of N’Guérékata [13], and others [7],[8], [9], we consider
semilinear evolution equations of the form

x′(t) = Ax(t) + f(t, x(t)), t ∈ R, (1.1)

where A is an unbounded sectorial operator with not necessarily
dense domain in a Banach space X and f : R ×Xα −→ X, where
Xα, α ∈ (0, 1), is any intermediate Banach space between D(A)
and X. Concrete examples of Xα are the fractional power spaces
D((−A)α), 0 < α < 1, the reel interpolation spaces DA(α,∞), in-
troduced by J. L. Lions and J. Peetre, and the Hölder spaces DA(α)
which coincide with the continuous interpolation spaces due to G.
Da Prato and P. Grisvard, see Section 2. We also give the defini-
tion and some properties of pseudo almost automorphic functions
in Section 2. Then we present our main result (Theorem 3.2) in
Section 3.

2 preliminaries

In this section we recall some definitions and fix notations which will
be used in the sequel. Throughout this paper, X is a Banach space
and A is a sectorial operator with not necessarily dense domain,
i.e., there are constants ω ∈ R, θ ∈]π

2
, π[, M > 0 such that

(i) ρ(A) ⊃ Sθ,ω := {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ} (2.1)

(ii) ‖R(λ,A)‖ ≤
M

|λ− ω|
, λ ∈ Sθ,ω . (2.2)

Hence A generates an analytic semigroup T := (T (t))t≥0 on (0,∞)
to L(X) satisfying

‖T (t)‖ ≤M0e
ωt, t > 0, (2.3)

‖t(A− ω)T (t)‖ ≤M1e
ωt, t > 0. (2.4)

The semigroup T is assumed to be hyperbolic, i.e., there exist a
projection P and constants M, δ > 0 such that each T (t) commutes
with P , kerP is invariant with respect to T (t), T (t) : ImQ −→ ImQ
is invertible and

‖T (t)Px‖ ≤Me−δt‖x‖ for t ≥ 0, (2.5)

‖T (t)Qx‖ ≤Meδt‖x‖ for t ≤ 0, (2.6)

where Q := I − P and, for t ≤ 0, T (t) := (T (−t))−1.
We recall that if T is analytic, then T is hyperbolic if and only if

σ(A) ∩ iR = ∅,

see for instance [5, Prop 1.15, p.305].
For α ∈ (0, 1), a Banach space Xα with norm ‖ · ‖α, is said to

be an intermediate space between D(A) and X, or a space of class
Jα, if D(A) ⊂ Xα ⊂ X and there is a constant c > 0 such that

‖x‖α ≤ c‖x‖1−α‖x‖αA, x ∈ D(A), (2.7)

where ‖ · ‖A is the graph norm associated to A. Concrete examples
of Xα are D((−A)α), α ∈ (0, 1), the domains of the the fractional
powers of −A, the real interpolation spaces DA(α,∞), α ∈ (0, 1),
defined as follows{

DA(α,∞) := {x ∈ X : sup0<t≤1 ‖t1−α(A− ω)e−ωtT (t)x‖ < +∞}
‖x‖α = ‖x‖+ [x]α, [x]α = sup0<t≤1 ‖t1−α(A− ω)e−ωtT (t)x‖,

and the abstract Hölder spaces DA(α) := D(A)
‖.‖α

. A very im-
portant property of these last two spaces is given by the fact that
they depend only on D(A) and X (in contrast with the fractional
power spaces of −A). That is for another sectorial operator B with
D(B) = D(A), their interpolation and Hölder spaces coincide. For
more details about intermediate spaces, see for instance [5, Chap.II,
Sec. 5.b] and [10].

For the hyperbolic analytic semigroup T , we can easily check
that estimations similar to (2.5) and (2.6) hold also with norms
‖ · ‖α. In fact, as the part of A in ImQ is bounded, it follows from
the inequality (2.6) that

‖AT (t)Qx‖ ≤ c′eδt‖x‖ for t ≤ 0.

Hence, from (2.7) there exists a constant c(α) > 0 such that

‖T (t)Qx‖α ≤ c(α)eδt‖x‖ for t ≤ 0. (2.8)

We have also

‖T (t)Px‖α ≤ ‖T (1)‖L(X,Xα)‖T (t− 1)Px‖ for t ≥ 1,

and then from (2.5), we obtain

‖T (t)Px‖α ≤M ′e−δt‖x‖, t ≥ 1,

where M ′ depends on α. For t ∈ (0, 1], by (2.4) and (2.7)

‖T (t)Px‖α ≤M ′′t−α‖x‖.

Hence, there exist constants M(α) > 0 and γ > 0 such that

‖T (t)Px‖α ≤M(α)t−αe−γt‖x‖ for t > 0. (2.9)
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Definition 2.1 (S. Bochner) A continuous function f : R → X
is called almost automorphic if for every sequence (σn)n∈N there
exists a subsequence (sn)n∈N ⊂ (σn)n∈N such that

lim
n,m→+∞

f(t+ sn − sm) = f(t) for each t ∈ R.

This is equivalent to

g(t) := lim
n→+∞

f(t+ sn)

is well defined for each t ∈ R, and

f(t) = lim
n→+∞

g(t− sn)

for each t ∈ R.

The space AA(R, X) of all almost automorphic functions f : R→
X is a Banach space under the supremum norm (see [1], [11], or
[13], for more information on such functions and their applications
in abstract differential equations).

Definition 2.2 Let X,Y be Banach sapces.

1. A bounded continuous function with vanishing mean value can
be defined as

AA0(R, X) =

{
φ ∈ BC(R, X) : lim

T→∞

1

2T

∫ T

−T
‖φ(σ)‖dσ = 0

}
.

2. Similarly we define AA0(R × Y,X) to be the collection of all
functions f : t 7→ f(t, x) ∈ BC(R× Y,X) satisfying

lim
T→∞

1

2T

∫ T

−T
‖f(σ, x)‖dσ = 0

uniformly for x in any bounded subset of X.

We are now ready to introduce the sets PAA(R, X) and PAA(R×
Y,X) of pseudo almost automorphic functions:

PAA(R, X) =

{
f = g + φ ∈ BC(R, X),

g ∈ AA(R, X) and φ ∈ AA0(R, X)

}
;

PAA(R×Y,X) =

{
f = g + φ ∈ BC(R× Y,X),

g ∈ AA(R× Y,X) and φ ∈ AA0(R× Y,X)

}
.

In both cases above, g and φ are called respectively the principal
and the ergodic terms of f . Note that in [7], Y = X. Thus our
definition here is more general.

Proposition 2.3 Let f, f1, f2 ∈ PAA(R, X). Then we have

• (i) λf ∈ PAA(R, X), for any scalar λ.

• (ii) f1 + f2 ∈ PAA(R, X)

• (iii) g(t) := f(−t) ∈ PAA(R, X)

• (iv) fa(t) := f(t+ a) ∈ PAA(R, X), for any a ∈ R.

• (v) PAA(R, X) is a Banach space under the supremum norm.

Proof. (i)-(iv) are easy to check. For (v) see [9] Theorem 2.2.

3 Main results
In this Section, we assume f ∈ PAA(R×Xα, X) (0 < α < 1), with
principal term g and ergodic term ψ.

Consider the semilinear evolution equation

x′(t) = Ax(t) + f(t, x(t)), t ∈ R, (3.1)

We also assume the following assumptions.

• H1. A is the generator of an hyperbolic analytic semigroup
(T (t))t≥0

• H2. f(t, x) is uniformly continuous on every bounded subset
K ⊂ Xα uniformly in t ∈ R

• H3. g(t, x) is is uniformly continuous on every bounded subset
K ⊂ Xα uniformly in t ∈ R

• H4. f satisfies the condition

‖f(t, x)− f(t, y)‖ ≤ k(t)‖x− y‖α

for every t ∈ R and x, y ∈ Xα and some function k ∈
Lp(R,R+) with p ∈ ( 1

1−α ;∞], such that[
M(α)(γq)α(Γ(1− αq))1/q +

c(α)

(γq)1/q

]
‖k‖p < 1 (3.2)

where q is the conjugate of p (note that 1 − qα > 0 since
p > 1

1−α ).

A mild solution of (3.1) is a continuous function x : R → Xα
satisfying

x(t) = T (t− s)x(s) +

∫ t

s
T (t− σ)f(σ, x(σ)) dσ (3.3)

for all t ≥ s and all s ∈ R.
Let’s first consider the following inhomogeneous problem

d

dt
x(t) = Ax(t) + h(t), t ∈ R. (3.4)

Proposition 3.1 If h ∈ PAA(R, X), then there is a unique mild
solution x(·) of (3.4) in PAA(R, Xα) given by

x(t) =

∫ t

−∞
T (t− s)Ph(s)ds−

∫ +∞

t
T (t− s)Qh(s)ds, t ∈ R.

(3.5)

Proof. First note that the function given by (3.5) is a mild solution
of Equation (3.4) (cf [2]). By assumption, there exists β ∈ AA(R, X)
and φ ∈ AA0(R, X) such that h = β+φ. In view of [2] Proposition
3.1., the function

ξ(t) :=

∫ t

−∞
T (t− s)Pβ(s)ds−

∫ +∞

t
T (t− s)Qβ(s)ds, t ∈ R

is in AA(R, Xα)
It remains to prove that

θ(t) :=

∫ t

−∞
T (t− s)Pφ(s)ds−

∫ +∞

t
T (t− s)Qφ(s)ds, t ∈ R

is in AA0(R, Xα).
Clearly θ(t) ∈ BC(R, Xα). Now let’s prove that

limT→∞
1
2T

∫ T
T ‖θ(s)‖αds = 0. Note that

1

2T

∫ T

T
‖θ(s)‖αds ≤

1

2T

∫ T

−T

∫ t

−∞
‖T (t− s)Pφ(s)‖αdsdt+

1

2T

∫ T

−T

∫ ∞
t
‖T (t− s)Qφ(s)‖αdsdt = I1 + J1 + I2 + J2

where Ii, Ji, i = 1.2 are as follows.

I1 :=
1

2T

∫ T

−T

∫ t

−T
‖T (t− s)Pφ(s)‖αdsdt

≤
1

2T

∫ T

−T

∫ t

−T
M(α)(t− s)−αe−γ(t−s)‖φ(s)‖dsdt

=
M(α)

2T

∫ T

−T
‖φ(s)‖ds

∫ T

s
(t− s)−αe−γ(t−s)dt

=
M(α)

2T

∫ T

−T
‖φ(s)‖ds

∫ T−s

0
r−αe−γrdr

≤
M(α)

2T

∫ T

−T
‖φ(s)‖ds

∫ ∞
0

r−αe−γrdr

=
M(α)Γ(1− α)

γα−1

1

2T

∫ T

−T
‖φ(s)‖ds,

which shows that limT→∞ I1 = 0.
Now let’s show that limT→∞ J1 = 0.
Set K = supt∈R ‖φ(t)‖. Let us introduce X > 0. We have:

J1 :=
1

2T

∫ T

−T

∫ −T
−∞
‖T (t− s)Pφ(s)‖αdsdt



≤
1

2T

∫ T

−T

∫ −T
−∞

M(α)(t− s)−αe−γ(t−s)‖φ(s)‖dsdt

≤
M(α)K

2T

∫ T

−T

∫ −T
−∞

(t− s)−αe−γ(t−s)dsdt.

Let X > 0. Let us introduce:

D = {(s, t) ∈ R2, s ≤ −T, and |t| ≤ T},

D1 = {(s, t) ∈ D, t− s ≥ X}, D2 = D \D1.

So we have:

J1 =
M(α)K

2T

∫ ∫
D

(t− s)−αe−γ(t−s)dsdt

=
M(α)K

2T

∫ ∫
D1

(t− s)−αe−γ(t−s)dsdt+

M(α)K

2T

∫ ∫
D2

(t− s)−αe−γ(t−s)dsdt.

The first integral yields:

M(α)K

2T

∫ ∫
D1

(t−s)−αe−γ(t−s)dsdt ≤
M(α)K

2TXα

∫ ∫
D1

e−γ(t−s)dsdt

≤
M(α)K

2TXα

∫ ∫
D
e−γ(t−s)dsdt =

M(α)K

2Tγ2Xα

(
1− e−2γT

)
.

And the second:

M(α)K

2T

∫ ∫
D2

(t− s)−αe−γ(t−s)dsdt =

M(α)K

2T

∫ −T
−T−X

∫ s+X

−T
(t− s)−αe−γ(t−s)dtds

=
M(α)K

2T

∫ −T
−T−X

∫ X

−T−s
u−αe−γududs

≤
M(α)K

2T

∫ −T
−T−X

∫ X

0
u−αe−γududs

=
M(α)K

2T
X

∫ X

0
u−αe−γudu.

Now, since
∫∞
0 u−αe−γudu is convergent, given ε > 0, it is possible

to choose X > 0 s.t.:

M(α)K

2
X

∫ X

0
u−αe−γudu ≤

ε

2
.

Let us take such an X. For all T ≥ 1, we obtain:

J1 ≤
M(α)K

2Tγ2Xα

(
1− e−2γT

)
+

ε

2T
≤

M(α)K

2Tγ2Xα
+
ε

2
.

Now, for sufficiently large T , we have:

M(α)K

2Tγ2Xα
≤
ε

2
,

and so:
J1 ≤ ε.

The proof for J1 is complete.
Now, let us consider I2.

I2 :=
1

2T

∫ T

−T

∫ T

t
‖T (t− s)Qφ(s)‖αdsdt

≤
1

2T

∫ T

−T

∫ T

t
c(α)eδ(t−s)‖φ(s)‖dsdt

≤
c(α)

2T

∫ T

−T
‖φ(s)‖ds

∫ 0

s−T
eδrdr

≤
c(α)

2T

∫ T

−T
‖φ(s)‖ds

∫ 0

−∞
eδrdr

=
c(α)

2T

∫ T

−T
‖φ(s)‖ds.δ−1.

Thus limT→∞ I2 = 0.
Finally we have,

J2 :=
1

2T

∫ T

−T

∫ ∞
T
‖T (t− s)Qφ(s)‖αdsdt

≤
c(α)

2T

∫ T

−T

∫ ∞
T

eδ(t−s)‖φ(s)‖dsdt

≤
c(α)K

2T

∫ T

−T

∫ ∞
T

eδ(t−s)dsdt

=
c(α)K

2Tδ2

(
1− e−2δT

)
,

where K = supt∈R ‖φ(t)‖. This shows that limT→∞ J2 = 0.
The proof is now complete.

Theorem 3.2 Under the assumptions H1-H4, the evolution equa-
tion (3.1) has a unique pseudo almost automorphic solution x(·) in
Xα ( x(·) ∈ PAA(R, Xα)) satisfying

x(t) =

∫ t

−∞
T (t−s)Pf(s, x(s))ds−

∫ +∞

t
T (t−s)Qf(s, x(s))ds, t ∈ R.

(3.6)

Proof.
Consider the mapping G : PAA(R, Xα) → PAA(R, Xα) defined

for all t ∈ R by

(Gx)(t) :=

∫ t

−∞
T (t−s)Pf(s, x(s))ds−

∫ +∞

t
T (t−s)Qf(s, x(s))ds.

Using H1 and H2, we deduce that f(·, x(·)) ∈ PAA(R ×Xα, X) if
x ∈ PAA(R, Xα) (cf Theorem 4.2 [7]). Thus G is well-defined. Now
let u, v ∈ PAA(R, Xα). Then we have

‖(Gu)(t)− (Gv)(t)‖α ≤
∫ t

−∞
‖T (t− s)P [f(s, u(s))− f(s, v(s))]‖αds

+

∫ +∞

t
‖T (t− s)Q[f(s, u(s))− f(s, v(s))]‖αds

≤M(α)

∫ t

−∞
(t− s)−αe−γ(t−s)‖[f(s, u(s))− f(s, v(s))]‖αds

+c(α)

∫ +∞

t
eδ(t−s)‖[f(s, u(s))− f(s, v(s))]‖αds

≤M(α)

∫ t

−∞
(t− s)−αe−γ(t−s)k(s) ‖u(s)− v(s)]‖αds

+c(α)

∫ +∞

t
eδ(t−s)k(s)‖u(s)− v(s)]‖αds

≤
[
M(α)

∫ t

−∞
(t− s)−αe−γ(t−s)k(s)ds+

c(α)

∫ +∞

t
eδ(t−s)k(s)ds

]
sup
t
‖u(t)− v(t)]‖α.

Now we use Hölder’s inequality. Assume first that p is finite. We
can write:

‖(Gu)(t)− (Gv)(t)‖α ≤[
M(α)

(∫ t

−∞
(t− s)−qαe−qγ(t−s)ds

) 1
q
(∫ t

−∞
(k(s))pds

) 1
p

+

c(α)

(∫ +∞

t
eqδ(t−s)ds

) 1
q
(∫ ∞

t
(k(s))pds

) 1
p

ds

 sup
t
‖u(t)−v(t)]‖α

≤
[
M(α)(γq)α(Γ(1− αq))1/q +

c(α)

(γq)1/q

]
‖k‖p sup

t
‖u(t)− v(t)]‖α.

When p = ∞, we obtain directly the same result (with q = 1).
So, it is true for any p. And so:

sup
t
‖(Gu)(t)− (Gv)(t)‖α ≤

[
M(α)(γq)α(Γ(1− αq))1/q +

c(α)

(γq)1/q

]
‖k‖p sup

t
‖u(t)− v(t)]‖α.

The proof is completed, by using Banach’s fixed point theorem.
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