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Abstract.

In this paper we prove the existence and uniqueness of C(n)-almost periodic solutions

to the nonautonomous ordinary differential equation x′(t) = A(t)x(t) + f(t), t ∈ R,
where A(t) generates an exponentially stable family of operators (U(t, s))t≥s and f

is a C(n)-almost periodic function with values in a Banach space X. We also study a
Volterra-like equation with a C(n)-almost periodic solution.

1. Introduction.
Harald Bohr’s interest in which functions could be represented by a Dirichlet

series, i.e. of the form
∑+∞
n=1 ane

−λnz, where an, z ∈ C and (λn)n∈N is a monotone
increasing sequence of real numbers (series which play an important role in complex
analysis and analytic number theory), led him to devise a theory of almost periodic
real (and complex) functions, founding this theory between the years 1923 and 1926.
Several generalizations and classes of almost periodic functions have been introduced
in the literature, including pseudo-almost periodic functions ( [9], [10], [11], [26]),
almost automorphic functions ([19], [20]), p-almost automorphic functions ([8]), etc...
C(n)-almost periodic functions R → R were studied initially in [3] and [4]. Ac-

tually these are functions which are almost periodic up to their n-th derivatives.
In [6], D. Bugajewski and G. M. N’Guérékata have extended the study to func-
tions R → X, where X is a Banach space. They also introduced the concept of
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2 C(n)- Almost Periodic Solutions

C(n)-asymptotically almost periodic functions and discussed some applications to
ordinary and partial differential equations. More results were obtained also in [16].
In particular the equation

x′(t) = A(t)x(t) + f(t), t ∈ R(1)

where A(t) : R → Cn is τ -periodic and f : R → Cn is C(n)-almost periodic was
investigated.
In the present paper we study the same equation in an infinite dimensional space

X and we assume that A(t) is not necessarily periodic (see Theorem 3.6 in Section 3
below) but generates a family of exponentially stable bounded operators (U(t, s))t≥s
with the so-called ”Acquistapace-Terreni” conditions.
The following notations will be used in the whole paper: BC(R, X), BUC(R, X),

ρ(D), R(λ,D), sp(f) will denote respectively the space of all bounded continuous
functions f : R → X, the space of all bounded uniformly continuous functions
f : R→ X, the resolvent operator (λ−D)−1 of the operator D, and the Carleman
spectrum of f ∈ L+∞(R, X) (see for instance [12] for definition).
We begin with some elementary properties of the so-called C(n)-almost periodic

functions with values in a Banach space and present some properties of the uni-
form spectrum of bounded functions (see [12], [17]) in the context of C(n)-almost
periodicity with an application to a Volterra-type equation.

2. C(n)-Almost Periodic Functions. Let X = (X, ‖ • ‖) be a (complex)
Banach space and fτ (x) := f(x+ τ), where f : R→ X, and x, τ ∈ R.
Denote by C(n)(R,X) (briefly C(n)(X)) the space of all functions R → X which

have a continuous nth derivative on R. Let C(n)b (R,X) (briefly C
(n)
b (X)) be the

subspace of C(n)(R,X) consisting of such functions satisfying

sup
t∈R

n∑

i=0

‖f (i)(t)‖ < +∞

where f (i) denote the i-th derivative of f and f (0) := f . Clearly C(n)(X) turns out
to be a Banach space with the norm

‖f‖n = sup
t∈R

n∑

i=0

‖f (i)(t)‖.

Definition 2.1 Let ε > 0. A number τ ∈ R is said to be a (‖•‖n, ε)-almost period
of a function f ∈ C(n)(X), if ‖fτ − f‖n < ε.
The set of all (‖ • ‖n, ε)-almost periods of a function f will be denoted by

E(n)(ε, f).

Definition 2.2 A function f ∈ C(n)(X) is said to be C(n)-almost periodic (briefly
C(n)−a.p.) if for every ε > 0, the set E(n)(ε, f) is relatively dense in R. The set of all
C(n) − a.p functions f : R→ X will be denoted by AP (n)(R,X), (briefly AP (n)(X)).
AP (0)(X) = AP (X), the classical Banach space of all almost periodic functions in
Bohr’s sense.



J.B. Baillon, J. Blot, G.M. N’Guérékata, D. Pennequin 3

Equipped with the ‖ • ‖n norm above, AP (n)(X) turns out to be a Banach space
(cf. [6, Corollary 2.12]).

Example 2.3 Let g(t) = cos(αt) + cos(βt), t ∈ R, where α and β are incommen-
surate real numbers. Then the function f(t) = eg(t) is C(n)-almost periodic for any
n = 1, 2, .... The proof is straightforward from [6, Theorem 4.3].

We recall that AP (n+1)(X) ⊂ AP (n)(X) ⊂ C(n)b (X), for all n = 0, 1, 2, ... All the
inclusions are strict (cf. [6, Example 4.5]).
One can find more examples of C(n)-almost periodic functions in [3] and [6].
The uniform limit of C(n)-almost periodic functions in APn(X) is in APn(X),

too (see [6, Theorem 2.11]).
We also have the following (cf. [6, Theorem 3.4]).

Theorem 2.4 Let F (t) :=
∫ t
0
f(s)ds where f ∈ AP (n)(X), t ∈ R. Then F ∈

AP (n+1)(X) if RF , the range of F , is relatively compact in X .

Let us recall that for f ∈ AP (X) where X is a uniformly convex Banach space,
the primitive F (t) =

∫ t
0
f(s)ds is a.p. iff RF is bounded in X. This is known as the

Bohl-Bohr theorem (see for instance [7, Theorem 6.20]).
This result can be extended to AP (n)(X) as follows.

Theorem 2.5 Let X be a Banach space which does not contain a subspace isomor-
phic to c0 and f ∈ AP (n)(X). Then the function F (t) =

∫ t
0
f(s)ds ∈ AP (n+1)(X) iff

RF is bounded in X.

Proof We have just to prove the only if part. It comes by induction. The case
n = 0 is known as Kadets’ Theorem (see for instance [15]). Assume now that f is in
AP (n)(X), and that the theorem is true for n− 1; then F ∈ AP (n)(X). But we have
F ′ = f and so F ′ ∈ AP (n)(X), from which we conclude that F ∈ AP (n+1)(X). �

We recall that Banach spaces X which do not contain subspaces isomorphic to c0
(also called sometimes perfect Banach spaces, [19]) include uniformly convex Banach
spaces and finite dimensional spaces.
We now recall some properties of uniform spectrum of bounded functions. This

concept was recently introduced in [12]. See also [17].

2.1. Uniform spectrum of a function in BC(R,X). Let us consider the
following simple ordinary differential equation in a complex Banach space X

x′(t)− λx = f(t),(2)

where f ∈ BC(X). If Reλ 6= 0, the homogeneous equation associated with this has
an exponential dichotomy; so, (2) has a unique bounded solution which we denote
by xf,λ(∙). Moreover, from the theory of ordinary differential equations, it follows
that for every fixed ξ ∈ R,

xf,λ(ξ) :=

{ ∫ ξ
−∞ e

λ(ξ−t)f(t)dt (if Reλ < 0)

−
∫ +∞
ξ
eλ(ξ−t)f(t)dt (if Reλ > 0).

(3)

=

{ ∫ 0
−∞ e

−ληf(ξ + η)dη (if Reλ < 0)

−
∫ +∞
0
e−ληf(ξ + η)dη (if Reλ > 0).

(4)
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As is well known, the differentiation operator D is a closed operator on BC(R,X).
The above argument shows that ρ(D) ⊃ C\iR and xf,λ = (D − λ)−1f for every
λ ∈ C\iR and f ∈ BC(R,X).

Hence, for every λ ∈ C with Reλ 6= 0 and f ∈ BC(R,X) the function [(λ −

D)−1f ](t) = Ŝ(t)f(λ) ∈ BC(R,X). Moreover, (λ−D)−1f is analytic on C\iR.

Definition 2.6 Let f be in BC(R,X). Then,

1. α ∈ R is said to be uniformly regular with respect to f if there exists a neigh-
borhood U of iα in C such that the function (λ−D)−1f , as a complex function
of λ with Reλ 6= 0, has an analytic continuation into U .

2. The set of ξ ∈ R such that ξ is not uniformly regular with respect to f ∈
BC(R,X) is called uniform spectrum of f and is denoted by spu(f).

Observe that, if f ∈ BUC(R,X), then α ∈ R is uniformly regular if and only if it is
regular with respect to f (cf. [17]).
We now list some properties of uniform spectra of functions in BC(R,X).

Proposition 2.7 Let g, f, fn ∈ BC(R,X) such that fn → f as n → +∞ and let
Λ ⊂ R be a closed subset satisfying spu(fn) ⊂ Λ for all n ∈ N. Then the following
assertions hold:

1. spu(f) = spu(f(h+ ∙));

2. spu(αf(∙)) ⊂ spu(f), α ∈ C;

3. sp(f) ⊂ spu(f);

4. spu(Bf(∙)) ⊂ spu(f), B ∈ L(X);

5. spu(f + g) ⊂ spu(f) ∪ spu(g);

6. spu(f) ⊂ Λ.

We also recall the following important result (see [17] for the proof).

Proposition 2.8 Let f ∈ BC(R,X). Then

spu(f) = spc(f),

where spc(f) denotes the Carleman spectrum of f .

From the above properties, we obtain:

Proposition 2.9 Let f ∈ C(n)b (X). Then

spu(f
(i)) ⊂ spu(f

(i−1)), for every i = 1, 2, ..., n.

Proof We just check spu(f
′) ⊂ spu(f). First note that for each n = 1, 2, ...,

spu[n(f(t+
1
n
)− f(t))] ⊂ spu(f). This can be proved by using Proposition 2.7 (1, 2

and 5).
Now (n(f(t+ 1

n
)− f(t)))→ f ′(t) as n→ +∞. So by Proposition 2.7 (6) we obtain

spu(f
′) ⊂ spu(f). �
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Lemma 2.10 Let f ∈ AP (n)(X) and φ ∈ L1(R) whose Fourier transform has com-
pact support supp(φ) . Then g := φ ∗ f ∈ AP (n)(X) and spu(g) ⊂ spu(f)∩ supp(φ).

Proof The property is known for n = 0 (see for instance [12]), Also we know that g
is Cn with derivatives: g(k) = φ∗f (k) (if k ≤ n). So, for each k ≤ n, g(k) ∈ AP (R,X),
and the lemma follows. �

Example 2.11 Let φ ∈ L1loc(R). Then the function

f(t) :=

∫

R
φ(t− s)[sin(αs) + sin(βs)]ds,

where α and β are incommensurate numbers, is C(n)-almost periodic for any n =
1, 2, ...

2.2. An Application. A Volterra-like Equation. Consider the equation

x(t) = g(t) +

∫ +∞

−∞
a(t− σ)x(σ)dσ, t ∈ R,(5)

where g : R→ R is a continuous function and a ∈ L1(R) with compact support.

Proposition 2.12 Suppose g ∈ AP (n)(R) and ‖a‖L1 < 1. Then Eq. (4) above has
a unique C(n)-almost periodic solution.

Proof It is clear by Lemma 2.10 above that

x ∈ AP (n)(R) 7→
∫ +∞

−∞
a(t− σ)x(σ)dσ ∈ AP (n)(R)

is well-defined. Now consider the application Γ : AP (n)(R)→ AP (n)(R) defined by

(Γx)(t) := g(t) +

∫ +∞

−∞
a(t− σ)x(σ)dσ, t ∈ R.

We can easily check that

‖(Γx)− (Γy)‖n ≤ ‖a‖L1‖x− y‖n.

The conclusion follows by the principle of contraction. �

3. Main Results.

3.1. Linear Equations. Consider in a (complex) Banach space X the linear
equation

x′(t) = Ax(t) + f(t), t ∈ R,(6)

where A : D(A) ⊂ X→ X is a linear operator, and f ∈ C(R,X).
In what follows, we will use the notation: Π := {z ∈ C : Rez 6= 0}.
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Definition 3.1 A linear operator A : D(A) ⊂ X → X where X is a complex
Banach space is said to be of simplest type if A ∈ L(X) and A =

∑n
k=1 λkPk,

where λk ∈ C, k = 1, ...n, and (Pk)1≤k≤n forms a complex system
∑n
k=1 Pk = I of

mutually disjoint operators on X, that is PjPk = δjkPk.

We shall use the following result which is an extension of Lemma 4.1 [16].

Lemma 3.2 Suppose X is a Banach space which does not contain a subspace iso-
morphic to c0, and consider in X the differential equation

x′(t) = λx(t) + f(t), t ∈ R,(7)

where λ ∈ C and f ∈ AP (n)(X). Then every bounded solution x of Eq.(3) satisfies
x ∈ AP (n+1)(X), if λ 6∈ Π and x ∈ AP (n)(X) if λ ∈ Π.

Proof The proof follows the one of [16], Lemma 4.1 and uses Theorem 2.5 above.�

Theorem 3.3 Assume that f ∈ APn(X), where X does not contain a subspace
isomorphic to c0, and that A is of simplest type.
Then every bounded solution x to Eq. (5) satisfies x ∈ APn+1(X), if λk /∈ Π, k =
i, ..., n, and x ∈ APn(X), if λk ∈ Π for some k ∈ {i, ..., n}.

Proof Let’s apply the projection Pj to Eq. (2). We get

Pjx
′(t) =

d

dt
(Pjx)(t) = Pj(

n∑

k=1

λkPk)x(t) + Pjf(t)

= λj(Pjx)(t) + (Pjf)(t).

It is clear that Pjf ∈ APn(X),since Pj ∈ L(X) (cf. [6]). Thus by Lemma 3.2
above, Pjx ∈ APn(X). We conclude that

x(t) =

n∑

j=1

(Pjx)(t) ∈ AP
(n)(X),

and the theorem is proved.

3.2. Nonlinear Case. Now consider the nonautonomous equation 1, i.e.:

x′(t) = A(t)x(t) + f(t), t ∈ R.(8)

We also assume that A(t), t ∈ R, satisfy the ‘Acquistapace-Terreni’ conditions
introduced in [2]; namely, there exist constants λ0 ≥ 0, θ ∈ (π2 , π), L,K ≥ 0, and
α, β ∈ (0, 1] with α+ β > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t)− λ0), ‖R(λ,A(t)− λ0)‖ ≤
K

1 + |λ|
(9)

and

‖(A(t)− λ0)R(λ,A(t)− λ0)[R(λ0, A(t))−R(λ0, A(s))]‖ ≤ L|t− s|
α|λ|β

for t, s ∈ R, λ ∈ Σθ := {λ ∈ C \ {0} : | arg λ| ≤ θ}. Then there exists a unique
evolution family {U(t, s)}−∞<s≤t<+∞ on X, which governs the linear version of (1).
This follows from [1, Theorem 2.3]; see also [2, 22, 23].
The family (U(t, s))t≥s, will satisfy the following properties:
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• (i) U(t, t) = I for all t ∈ R,

• (ii) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,

• (iii) The map (t, s) 7→ U(t, s)x is continuous for every x ∈ X.

We will assume in this paper that (U(t, s))t≥s is exponentially stable, that is there
exist some positive constants N,ω independent of t ≥ s such that ‖U(t, s)‖ ≤
Ne−ω(t−s).
Now we point out the following result which is immediate consequence of Propo-

sition 4.4 [18]:

Lemma 3.4 Suppose A(t) satisfy the ‘Acquistapace-Terreni’ conditions, U(t, s) is
exponentially stable and R(λ0, A(∙)) ∈ AP (R, L(X)). Let f ∈ AP (X) and h > 0.
Then, for any ε > 0, there exists l(ε) > 0 such that every interval I of length l(ε)
contains a number τ with the property that

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ εe−
ω
2 (t−s)

for all t− s ≥ h and
‖f(t+ τ)− f(t)‖ < η, t ∈ R,

where η = η(ε, h)→ 0 as ε→ 0.

Definition 3.5 Under the above assumptions, a mild solution of Eq. (1) is a
continuous function x : R→ X satisfying the formula

x(t) = U(t, s)x(s) +

∫ t

s

U(t, σ)f(σ)dσ, t ≥ s ∈ R.

Now we state and prove.

Theorem 3.6 Assume that the family (U(t, s))t≥s is exponentially stable and f ∈
APn(X). Then the above equation 1 possesses a unique mild solution in AP (n)(X).

Proof Consider a mild solution of Eq.(1):

x(t) = U(t, s)x(s) +

∫ t

s

U(t, σ)f(σ)dσ, t ≥ s ∈ R.

Now let

y(t) =

∫ t

−∞
U(t, σ)f(σ)dσ, t ∈ R

defined as

lim
r↘−∞

∫ t

r

U(t, σ)f(σ)dσ.

It is clear that for each r < t, the integral
∫ t
r
U(t, σ)f(σ)dσ exists. Moreover

‖
∫ t
r
U(t, σ)f(σ)dσ‖ ≤ N

|ω|‖f‖∞; thus
∫ t
−∞ U(t, σ)f(σ)dσ is absolutely convergent.
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Now we prove that y ∈ AP (n)(X). First, it is easy to show that y(t) ∈ C(n)(X).
Further, in view of Lemma 3.4, given ε > 0, we can find l(ε) > 0 such that every
interval I of length l(ε) contains a number τ with the property that

‖U(t+ τ, s+ τ)− U(t, s)‖ ≤ εe−
ω
2 (t−s)

for all t− s ≥ ε and

‖f i(t+ τ)− f i(t)‖ < η for all t ∈ R, i = 0, 1, ..., n,

where η = η(ε)→ 0 as ε→ 0. Therefore,

‖y(t+ τ)− y(t)‖n =

∥
∥
∥
∥

∫ t+τ

−∞
U(t+ τ, s)f(s)ds−

∫ t

−∞
U(t, s)f(s)ds

∥
∥
∥
∥
n

=

∥
∥
∥
∥

∫ +∞

0

U(t+ τ, t+ τ − s)f(t+ τ − s)ds−
∫ +∞

0

U(t, t− s)f(t− s)ds

∥
∥
∥
∥
n

≤

∥
∥
∥
∥

∫ +∞

0

U(t+ τ, t+ τ − s)[f(t+ τ − s)− f(t− s)]ds

∥
∥
∥
∥
n

+

∥
∥
∥
∥

(∫ +∞

ε

+

∫ ε

0

)

[U(t+ τ, t+ τ − s)− U(t, t− s)]f(t− s)ds

∥
∥
∥
∥
n

≤
∫ +∞

0

N(n+ 1)ηe−ωsds+

∫ +∞

ε

εe−
ω
2 s‖f‖nds+ 2Nε‖f‖n

=
N(n+ 1)

ω
η +
2ε‖f‖n
ω

+ 2Nε‖f‖n,

which gives that y(t) ∈ AP (n)(X).
Now let

y(s) =

∫ s

−∞
U(s, σ)f(σ)dσ.

Then

U(t, s)y(s) =

∫ s

−∞
U(t, σ)f(σ)dσ.

If we let t ≥ s, then

∫ t

s

U(t, σ)f(σ)dσ =

∫ t

−∞
U(t, σ)f(σ)dσ −

∫ s

−∞
U(t, σ)f(σ)dσ

= y(t)− U(t, s)y(s),

therefore

y(t) = U(t, s)y(s) +

∫ t

s

U(t, σ)f(σ)dσ.

If we fix x(s) = y(s), then x(t) = y(t), that is x ∈ AP (n)(X). Uniqueness can be
proved as follows.
Suppose x1, x2 are two solutions be two solutions to Eq. (1) in AP

(n)(X). Let
z = x1 − x2 . Then

z′(t) = A(t)z(t), t ∈ R,
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and
z(t) = U(t, s)z(s), t ≥ s.

We also have
‖z(t)‖ ≤ Ne−ω(t−s).

Take a sequence of real numbers (sn), such that sn → −∞. For any fixed t ∈ R, we
can find a subsequence (snk) ⊂ (sn) such that snk < t for all k = 1, 2, .... Using the
fact that ω > 0, we obtain z = 0. This completes the proof. �
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Université Paris 1 Panthéon-Sorbonne, Laboratoire Marin MERSENNE
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