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Abstract
The aim of this paper is to extend the classical lin-
ear condition concerning diagonal dominant bloc ma-
trix to fully nonlinear equations. Even if assumptions
are strong, we obtain an explicit condition which exactly
extend the one known in linear case, and the setting al-
lows also to consider bicontinuous operator instead of
the schift and as particular case, we receive periodic or
almost periodic solutions for discrete time equations.

Keywords
Discrete time equation • Diagonal dominant bloc con-
dition • periodic and almost periodic sequences
© 2014 Denis Pennequin., licensee Versita Sp. z o. o.
This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs license (http://creativecommons.org/licenses/by-nc-nd/3.0/), which means
that the text may be used for non-commercial purposes, provided credit is given
to the author.

Denis PENNEQUIN1∗

1 Université Paris 1 Panthéon-Sorbonne,
Laboratoire SAMM, Centre PMF, 90 rue de Tolbiac, 75634

PARIS Cedex 13, FRANCE

The first aim of the paper is to obtain some existence results of solutions x = (xt)t for difference equations:
A(t, xt , xt+1, . . . , xt+n) = 0,

where A is fully nonlinear, which extend the diagonal dominant condition of the linear setting. We look for standartsolutions x = (xt)t defined on Z, but also for periodic and almost periodic solutions. Closed techniques are used in acontinuous setting in [12], and give there different results.
We are interested in giving a slighly more general result. We consider a continuous bijective operator Θ on an abstractspace whose generic element will be denoted x (even if we have mainly in mind spaces of sequences). Θ will be firstassumed to be an isometry. We will prove an existence result for an equation:

A(., x,Θ(x), . . . ,Θn(x)) = 0,
which permits to take into account various situations. Assumptions on A are more or less boundedness of partialdifferentials w.r.t. the last variables and the fact that one variable is growing more than all the other ones together(precise assumptions will be given in the text).
The idea is to adapt basic technics used in linear elliptic partial differential equations. We will write our problem in akind of variational form. Usually, the Hilbert space used (a Sobolev one) is identified to its dual space, and here wewon’t do this. Since we are in a nonlinear setting, we will use Newton’s method to approximate the solution of theequation. In fact we obtain local solvability, but with a "uniformity" on the local aspect, so it is possible to go to global.
We have in mind in this paper:
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• to give an extension of a kind of diagonal dominant condition in a nonlinear setting, even with strong assumptions;
• to give it in a more general setting than the one of difference equations. The proof are completely the same;
• to show a new technic to solve this. In order that this could be improved by some readers, I decided to keepthe proof as closed as basics ideas. For instance, the considered operator is Fréchet-differentiable, but in factwe don’t need this for the proof and from the theorem of composition we just receive Gâteaux-differentiability.Fréchet differentiability comes from assumption (H4), a reader who could relax this could follow our proof, evenwith an operator which could only have a Gâteaux differential.

Now we describe the context. We consider a measured space (G, G, µG) and an Hilbert space (H, 〈., .〉H ) (norm ||.||H )equipped with its Lebesgue measure (the Borel completed one). Since we have mainly the idea to work with sequences,the spaces Lp(G,H) will be denoted by `p(G) (norm .`p . We assume that `2(G,H) ⊂ `∞(G,H) with continuous injection,i.e. there exists c > 0 s.t.:
∀x ∈ `2(G,H), ||x||`∞ ≤ c||x||`2 ,which is equivalent to:

∀G ∈ G, (µG(A) > 0)⇒ (µG(A) ≥ 1/c2).
For sets G, we are interested in particular cases as G = Z (discrete case), G = Z/πZ (discrete π−periodic case, with
π ∈ N) or G = bZ (Here, bZ is the Bohr compactification of Z and this permits us to consider the discrete a.p.(=almostperiodic) case). For such examples, where G is a topological group, we will assume that µG is its Haar measure. In allthese cases, we have the former continuous injection. This is for instance not the case when G = R, but our techniquesare been presented in a continuous setting (but in a very less general context) in [12].
Let us give more details concerning the above exemples, for instance, when H = R:
• if G = Z we obtain standart `2(Z) space, and:

∫
Z
xdµZ =∑

t∈Z

xt ,

• if G = bZ we obtain the discrete case of Besicovitch a.p. sequences (see [5]), and:
∫

Z
xdµbZ =M{x} = lim

T→∞

1
T

T∑
t=−T xt ,

• if G = Z/πZ we simply obtain the π−periodic sequences, and:
∫

Z/πZ
xdµZ/πZ = 1

π

π−1∑
t=0 xt .

Some other kind of oscillating solutions could also be introduced. But some are not necessary to do. For instance, weknow that in the discrete case, Stepanov a.p. is equivalent to Bohr’s one (made in [1] for the sup norm, but follows forBesicovitch’s one), and even in the continuous case in standart situations every Stepanov solution is in fact Bohr a.p.(see [2]).

2



Denis PENNEQUIN

1. Linear autonomous caseLet us recall some basic facts, when H = R for sake of simplicity. Here, we look for solutions x = (xt)t for linearequations:
anxt+n + . . .+ a0xt = yt ,where (yt)t is assumed to be in a suitable space of sequences E and (a0, . . . , an) ∈ Rn+1. Some basic calculations showthat under an Hadamard’s like condition:

∃j0 ∈ {0, . . . , n}, aj0 >
∑
j 6=j0 |aj |,

given y = (yt)t , there exists a unique solution x ∈ E , for instance in the following cases E = `p(Z,R), E = `p(bZ,R)(almost periodic case), E = RZ/(πZ) (π−periodic case). This condition (or matrix equivalent one when H = RN) is usualin discrete systems, and is applied for instance in Economics problems by Blot and Crettez (see [3], [4]).
One way to see that is to introduce the characteristic polynomial, P = ∑n

k=0 akX k and the shift operator S : (xt)t 7→(xt+1)t . Under Hadamard’s condition, the polynomial has not root of modulus one, and so, for each of its root α , S −αIdis invertible, so is P(S).In the periodic case, the problem can also be seen as a linear algebra problem. First of all, we reduce modulo π theproblem, by introducing:
Jk = {j ∈ {0, . . . , n − 1}, j ≡ k [π]} = (k + πZ) ∩ {0, . . . , n− 1},

and: P̂ = ∑π−1
k=0
(∑

j∈Jk aj
)
X k . It is easy to see that if P satisfies an Hadamard condition, this is also the case for P̂ .Moreover, if M is the matrix of the shift operator, we have Mπ = Iπ , from which we deduce the eigenvalues of M andthe fact that P(M) = P̂(M) is invertible.

In what follows, we shall extend this in a fully nonlinear and implicit case, but with strong boundedness assumptions.Moreover, we will consider not only the shift, but also continuous bijective operators. In order to make the proof simplerto read, we will first give a theorem for a bijective isometry, but we will after explain some improvements.
2. A first theorem
2.1. Assumptions

We also consider A : G ×Hn+1 → H , A : (t, s0, . . . , sn) 7→ A(t, s0, . . . , sn) such that the following assumptions hold:
(H1) A(., s) is measurable from (G, G) to H .
(H2) (A(t, 0))t ∈ `2(G);
(H3) all partial Fréchet-differentials ∂A

∂sj
: G ×Hn+1 → L(H) (written ∂j+2A),j = 0, . . . , n, exist everywhere;

(H4) all partial Fréchet-differentials ∂j+2A ,j = 0, . . . , n, are uniformly continuous, i.e.:
lim
δ→0
[ sup
|t−t′|+||s−s′||Hn+1≤δ ||∂j+2A(t, s)− ∂j+2A(t′, s′)||L(H)

] = 0.
(H5) all partial Fréchet-differentials ∂j+2A ,j = 0, . . . , n, are uniformly bounded:

∀j ∈ {0, . . . , n}, Mj := sup(t,s) ||∂j+2A(t, s)||L(H) < ∞.
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(H6) there exists j0 such that:
mj0 := inf(t,s,v )∈R×Hn+1×(H\{0})

〈∂j0+2A(t, s)v, v〉H
||v ||2H >

∑
j 6=j0 Mj .

Remark 1.Assumptions (H1), (H3) and (H4) imply that A is a Caratheodory function.
We will prove the following theorem:
Theorem 1.Under the assumptions (H1)-(H6), given a bijective isometry Θ : `2(G)→ `2(G), there exists x ∈ `2(G) s.t.:

A (., x,Θ(x), . . . ,Θn(x)) = 0. (1)
2.2. Outline of the proof.Using an idea close to the variational technics we see in linear P.D.E., we replace our problem by the equivalent one,to find a zero of the operator:

φb : `2(G)→ (`2(G))′
φb(x) = [v 7→ ∫

G
〈A(., x, . . . ,Θn(x)− b,Θk0v〉HdµG

]
.

Using Newton’s method, we are able to prove that if for some b′, φb′ has a zero, this is the case for all φb′′ with b′′sufficently close to b′. This criterium of sufficently close does not depends on b′, so φb has a zero. One clue to may theNewton’s method possible is the Lax-Milgram theorem, which is of standart application in the case of linear P.D.E.
We have in mind to separate all ideas of the proof, in case a reader would like to improve our theorem. For instance,with the strong assumptions on the partial differentials, our operator admits a Fréchet-derivative. But from the chainrule, we only first obtain Gâteaux derivative, since as it is well known, the Nemytskii operator (with good growthassumptions) is only Gâteaux-differentiable, the Fréchet is obtained only in trivial cases. By the composition, we onlyobtain Gâteaux, which is sufficent to apply Newton’s method. Here in fact since the operator is Fréchet, a proof couldbe more straightforward, but we prefer to give the different tools in order to make it improvable.
2.3. A first result concerning Newton’s methodLet us first give a version concerning Newton’s convergence method we will use after. Even if for our theorem the functionwill be Fréchet differentiable, we will give a Gâteaux version for an improvement of our theorem. The proposition andthe proof are adapted form Ciarlet’s, [6], Theorem 7.5-1.
Proposition 1.Consider a continuous and Gâteaux-differentiable function f : Ω ⊂ X → Y , where X and Y are linear normed spaces,and r > 0 s.t. B(x0, r) ⊂ Ω. If we can find M > 0 and α ∈ (0, 1) s.t.:
• supx∈B(x0 ,r) ||DGf (x)−1||L(Y ,X ) ≤ M;
• sup(x,x ′)∈B(x0,r)2 ||DGf (x)−DGf (x ′)||L(X,Y ) ≤ α/M;
• ||f (x0)||Y ≤ r(1− α)/M

Then f (x) = 0 as a unique solution in B(x0, r).
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Proof. We introduce the sequence defined by Newton’s method:
xk+1 = xk −DGf (xk )−1f (xk )

and prove it has a limit, which is the unique solution in B = B(x0, r) of f (x) = 0.The first step is to prove by induction that for all k :
• ||xk+1 − xk ||X ≤ M||f (xk )||Y ;
• ||xk+1 − xk ||X ≤ αk ||x1 − x0||X ;
• xk+1 ∈ B;
• ||f (xk+1)||Y ≤ α

M ||xk+1 − xk ||X .For k = 0, we write for the first one:
||x1 − x0||X = ||DGf (x0)−1f (x0)||X ≤ M||f (x0)||Y .

From this and the fact that ||f (x0)||Y ≤ r(1− α)/M , we receive x1 ∈ B. The last comes from:
||f (x1)||Y = ||f (x1)− f (x0)−DGf (x0)(x1 − x0)||Y ≤
sup

ζ∈[x0,x1 ] ||DGf (ζ)−DGf (x0)||L(X,Y )||x1 − x0||X ≤ α
M .

Assuming the properties are true for k −1, the first and fourth assumptions are proved by the same way. For the second:
||xk+1 − xk ||X ≤ α||xk − xk−1||X ≤ αk ||x1 − x0||X ,

from which we obtain the third:
||xk+1 − x0||X ≤

k∑
j=0 α

j ||x1 − x0||X ≤ 11− α r(1− α) = r.

From these property, we obtain that:
||xk+` − xk ||X ≤

`−1∑
j=k α

j ||x1 − x0||X ≤ αkr,

which proves that (xk )k is a Cauchy sequence so has a limit x ∈ B. But since:
f (xk ) = Df (xk )(xk+1 − xk )

by continuity of f and boundedness in B of s 7→ DGf (s) (by ||DGf (x0)|| + α/M), we obtain that f (x) = 0. Finally, if
y ∈ B satisfies f (y) = 0, we have:

y − x = −DGf (x)−1(f (y)− f (x)−DGf (x)(y − x)),
so: we obtain:

||y − x||X ≤ ||DGf (x)−1||L(Y ,X ) sup
ζ∈[x,y] ||DGf (ζ)−DGf (x)||L(X,Y )||y − x||X ,

and finaly
||y − x||X ≤ ||DGf (x)−1||L(Y ,X ) αM ||y − x||X ≤ α||y − x||X ,from which we receive y = x .
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2.4. Proof of the theoremIn fact, we will prove that there exists an absolute constant C , depending only on the Mj and mj0 , s.t., if
A(., x,Θ(x), . . . ,Θn(x)) = b

has a solution (given (bt)t ∈ `2(G)), then for any b′ ∈ `2(G) s.t. ||b − b′||`2 ≤ C , then the equation admits a uniquesolution closed to those of the first equation. Starting with b = A(., 0) ∈ `2(G) and take N a positive integer s.t.
||b||`2
N ≤ C , by induction on n we prove that the equation:

A(., x,Θ(x), . . . ,Θn(x)) = N − n
N b

has a solution for each n. Our result is reached by taking N = n.
Step 1: introducing an operator. Given b ∈ `2(G), let us consider the mapping:

φb : `2(G)→ (`2(G))′
φb(x) = [v 7→ ∫

G
〈A(., x, . . . ,Θn(x))− b,Θk0v〉HdµG

]
.

Step 2: existence and Lipschitzianity of our operator. We remark that φb(0) is well defined since A(., 0) is assumedto be in `2(G) and by Lipschitzianity of A(t, .) with a uniform constant L(A), we obtain that φb is well defined andLipschitzian:
||φb(u)− φb(v )||(`2)′ ≤ L(A)||u − v||`2 .So, φb is continuous.

Step 3: Gâteaux differentiability of the operator. Now, let us see that φb is Gâteaux differentiable with as Gâteauxderivative:
DGφb(x).h = v 7→ ∫

G

n∑
j=0 〈∂j+2A(., x, . . . ,Θn(x))Θjh,Θk0v〉HdµG

 .
Set T : `2(G)→ (`2(G))n+1 as:

T (x) = (x,Θ(x), . . . ,Θn(x))
and J : `2(G)→ (`2(G))′ as:

J(u) = [v 7→ ∫
G
〈ut , vt〉HdµG(t)] .

T and J are continuous linear operators, so Lipschitzian and Fréchet differentiable.For φb, we see that: φb = J ◦ NA−b ◦ T . The Nemytskii operator is Gâteaux differentiable, since with boundedness ofthe derivative, there exists an absolute constant C s.t.:
||A(t, s)− bt ||H ≤ C||s||Hn+1 + ||A(t, 0)− bt ||H .

Since (A(t, 0))t ∈ `2(G) we can have a look at [9] Theorem 2.3 and proof of Theorem 2.7 to see that the Nemytskii operatoris well defined and Gâteaux-differentiable. Since T is linear, we receive that NA−b ◦ T is Gâteaux differentiable1 andsince J is Fréchet, we can conclude.
1 in fact with next step we will see that φb is Fréchet-differentiable.
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Step 4: uniform continuity of the Gâteaux derivative. Let us fix a positive ε. By uniform continuity of all ∂j+2A, we canfind a common δ > 0 s.t.:
∀(t, s1, s2, j) ∈ G ×Hn+1 ×Hn+1 × {0, . . . , n+ 1},

(||s1 − s2||Hn+1 ≤ δ)⇒ (
||∂j+2A(t, s1)− ∂j+2A(t, s2)||H ≤ ε

n+ 1) .Now by assumption on norms, we have:
||T (x)− T (x ′)||2(`∞)n+1 ≤ c2||T (x)− T (x ′)||2(`2)n+1 =
c2 n∑

k=0 ||(Θk )(x)− (Θk )(x ′)||2̀2 = (n+ 1)c2||x − x ′||2̀2 .

This means that if we assume ||x − x ′||`2 ≤ δ0 := δ
c
√
n+1 , we receive:

||∂j+2A(t, T (x)t)− ∂j+2A(t, T (x ′)t)||L(H) ≤ ε
n+ 1 .

But:
||DGφb(x)−DGφb(x ′)||L(`2,(`2)′) =

sup
||h||`2 =1,||v ||`2 =1

∣∣∣∣∣∣
∫
G

n∑
j=0 〈((∂j+2A(., T (x))− (∂j+2A(., T (x ′))).(Θjh), (Θk0v )〉HdµG

∣∣∣∣∣∣
≤
∫
G

n∑
j=0 ||(∂j+2A(., T (x))− (∂j+2A(., T (x ′))||L(H)dµG ≤ ε.

Note that since DGφb is uniformly continuous, in fact φb is Fréchet-C 1. We will now write φ′b instead of DGφb.
Step 5: invertibility of the derivative. Let us now remark that (h, v ) 7→ (φ′b(x).(h))(v ) is a continuous bilinear form (letus call it β), with ||β|| ≤∑n

j=1 Mj . Moreover, this form is elliptic:
β(h, h) ≥ mj0 −

∑
j 6=j0 Mj

 ||h||2.
Indeed:

β(h, h) = ∫
G

n∑
j=0 〈∂j+2A(., T (x))(Θjh), (Θj0h)〉HdµG =

∫
G

〈∂j0+2A(., T (x))(Θj0h), (Θj0h)〉H +∑
j 6=j0 〈∂j+2A(., T (x))(Θjh), (Θj0h)〉H

dµG .
But: ∫

G
〈∂j0+2A(., T (x))(Θj0h), (Θj0h)〉HdµG ≥ mj0 ||Θj0h||2̀2 = mj0 ||h||2̀2

and by Cauchy-Schwarz inequality:∫
G
|〈∂j+2A(., T (x))(Θjh), (Θj0h)〉H |dµG ≤ Mj ||Θjh||`2 ||Θj0h||`2 = Mj ||h||2̀2 ,

which proves our assumption.
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Let us now set β1 = mj0 −∑j 6=j0 Mj . It follows from Lax-Milgram’s theorem that the linear form φ′b(x) is invertible, andby writing h′ = (φ′b(x))−1(L), we have:
β1||h′||2̀2 ≤ β(h′, h′) = L(h′) ≤ ||L||(`2)′ ||h′||`2 ,

so:
||(φ′b(x))−1||L((`2)′,`2) ≤ β−11 .

The last constant does not depends on x or b, but only on A.
Step 6: applying Newton’s method. We wish to apply this with f = φb. We have to take M = β−11 for the first condition.To find a β for the second condition, it is necessary that:

sup(x,x ′)∈B(x0,r)2 ||φ
′
b(x)− φ′b(x ′)||L(`2,(`2)′) < β1

and when this is true, by noting σ the sup, we could choose α = σ/β1. But this is possible by using the uniformcontinuity of φ′b: for sufficiently small r > 0 the ball B(x0, r) will satisfy this property.
Last of all, let us note that if we take x0 a solution for φb′ (x0) = 0, then:

||φb(x0)||(`2)′ = ||b − b′||`2 .
Thus, if ||b − b′||`2 ≤ r(1− α)/M , we will receive a x ∈ B(x0, r) s.t. φb(x) = 0. Note that the constant C := r(1− α)/Mdepends only on A.
Remark 2.The uniform continuity and the continuous injection are used only in the step 4. We could remark that instead of uniformcontinuity of the partial differential, we use is fact:

lim
δ→0
[sup

t
sup

||s−s′||Hn+1≤δ ||∂j+2A(t, s)− ∂j+2A(t, s′)||L(H)
] = 0,

which is more general, but we made for assumption (H4) which is simpler to write.
2.5. ExamplesAs a first example, let us come back to the linear case in `2(G). Let us take for instance:

A(t, x) = −yt + n∑
k=0〈ak (t), sk〉H ;

here ∂j+2A(t, x) = aj (t). If we assume that all aj are bounded and uniformly continuous, we obtain the usual condition,given before when H = R and when the system is autonomous (i.e. the aj does not depends on t). Here, assumption
(H2) means that b is assumed to be in `2. So, our result can be seen as an extension of the linear case.
Let us take a quasilinear case. For sake of simplicity, let us assume H = R, although this is not necessary:

A(t, s) = A1(t, s)− yt + n∑
k=0 ak (t)sk .
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Assume that all assumptions (H1)-(H5) are true on A1 and that there exist j0 s.t.:
inf
t
aj0 (t) >∑

j 6=j0 |aj (t)|.
Then if:

− inf ∂j0+2A1(t, s) +∑
j 6=j0 sup |∂jA1(t, s)| < inf

t
aj0 (t)−∑

j 6=j0 sup
t
|aj (t)|,

then:
apxt+p + . . .+ a0xt + A1(t, xt , . . . , xt+p) = yt

has a solution. Indeed, we shall have the condition:
inf(t,s)(aj0 (t) + ∂j0+2A1(t, s)) >∑

j 6=j0 sup(t,s) |aj (t) + ∂j+2A1(t, s)|.
But since inf(t,s)(aj0 (t)+∂j0+2A1(t, s)) ≥ inf(t,s)(aj0 (t))+inf(t,s)(∂j0+2A1(t, s)) and sup(t,s) |aj (t)+∂j+2A1(t, s)| ≤ sup(t,s) |aj (t)|+sup(t,s) |∂j+2A1(t, s)|, we see that the given condition is sufficient.
Remark 3.The nonlinear case can be seen as a quantitative result of perturbation of the linear one.
3. Some extensions
3.1. Non isometric caseInstead assuming that Θ is a bijective isometry, we may assume that Θ is continuous and bijective. In this case, byBanach’s Theorem, Θ−1 is also continuous. Let us introduce (α, β) ∈ (R+

∗ )2 s.t.:
(H7) : for each x ∈ E, αΘ||x|| ≤ ||Θ(x)|| ≤ βΘ||x||.

Here, assumption (H6) should be replaced by (H8):
(H8) : α2j0Θ mj0 >∑j 6=j0 βj+j0Θ Mj .

Theorem 2.Under the assumptions (H1)-(H5), (H7), (H8), there exists x ∈ `2(G) s.t.:
A (., x,Θ(x), . . . ,Θn(x)) = 0. (2)

Proof. The proof is similar. The only change concerns ellipticity of β. We see by induction that:
||Θj0 (x)|| ≥ α j0Θ ||x||and:

∀j, ||Θj (x)|| ≤ βjΘ||x||.So,
mj0 ||Θj0 (h)||2 ≥ mj0α2j0Θ ||h||2,

Mj ||Θjh||.||Θj0h|| ≤ Mjβj+j0Θ ||h||2,
and (H8) gives ellipticity.
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As an example for a nonisometric case, let us know assume that we are with a weighted `2: given p : G → R+
∗ we arein:

`2
p = {x ∈ HG ,

∫
G
|xt |2ptdµG(t) < +∞} .

Note that in a weighted `2, the corresponding measure with density p w.r.t. µG does not necessary satisfy an assertionas:
∃c > 0, ∀A, (ν(A) > 0)⇒ (ν(A) ≥ 1/c2).

Moreover, assume (H9):
∃(c1, c2) ∈ (R+

∗ )2, ∀t ∈ G, c1 ≤
pt−1

pt
≤ c2.

Then, it is easy to see that the shift operator S : `2
p → `2

p , no longer isometric, is still bijective and that:
∀x ∈ `2

p , c1||x|| ≤ ||S(x)|| ≤ c2||x||.
Here αΘ = c1 and βΘ = c2.
A more illustrative example is a case of discrete Sobolev space, where pt = 1 + t2. In this case, simple calculationsshow that we can take:

c−11 = c2 = 52 .
Corollary 1.Under the assumptions (H1)-(H5), and pt = 1 + t2, if:

mj0 >
∑
j 6=j0
(52
)j+3j0

Mj ,

then there exists x ∈ `2
p (G) s.t.:

A (t, xt , xt+1, . . . , xt+n) = 0. (3)
Proof. Here βΘ = α−1Θ = 52 . Assertion (H8) can be written as:

mj0β−2j0Θ >
∑
j 6=j0 β

j+j0Θ Mj ,

i.e.:
mj0 >

∑
j 6=j0
(52
)j+3j0

Mj .
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4. A case of uniquenessWe come back to Theorem 3 (a similar remark could be made for Theorem 2). Assume for instance instead of (H4) theassumption:
n∑
j=0 sup(t,s,s′) ||∂j+2A(t, s)− ∂j+2A(t, s′)||L(H) <

mj0 −
∑
j 6=j0 Mj

−1
.

In this case, the first two properties for Newton’s method are true with any r. So, we can take r as huge as we want.We would start for instance with x0 = 0. Taking b = 0, uniqueness in Newton’s method for any r gives uniqueness ofthe solution of our problem. So we obtain the following:
Theorem 3.Under the assumptions (H1)-(H3), (H5), (H6) and:

n∑
j=0 sup(t,s,s′) ||∂j+2A(t, s)− ∂j+2A(t, s′)||L(H) <

mj0 −
∑
j 6=j0 Mj

−1
.

Given a bijective isometry Θ : `2(G)→ `2(G), there exists a unique x ∈ `2(G) s.t.:
A (., x,Θ(x), . . . ,Θn(x)) = 0. (4)
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