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Abstract. We study the superposition operators (also called Nemytskii operators)
between spaces of almost periodic functions with values in a complete metric space or
in a Banach space. We establish new results on their continuity and their differentia-
bility by using several different methods. We give applications to evolution equations
and to differential equations in Banach spaces. We also establish new results on the
superposition operators between spaces of asymptotically almost periodic functions
and spaces of almost automorphic functions.
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1. Introduction

From a mapping f : X × R −→ Y , where X and Y are complete
metric spaces, or Banach spaces when the differentiability is studied,
we consider a superposition operator in the following form

[t 7→ u(t)] 7−→ [t 7→ f(u(t), t)]

where u : R → X is an almost periodic function, or an asymptotically
almost periodic function, or an almost automorphic function.
Such operators are useful for the functional-analytic methods in the
study of oscillations in various kinds of differential equations. First
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studies of this kind of operators are presumably due to Nemytskii (see
the preface of [40]); that is why such operators are sometime called
Nemytskii operators.

Our aim is to obtain the continuity and the differentiability of such
operators under assumptions which are weaker than these ones generally
used.

Out of the Almost Periodicity, superposition operators are currently
used in numerous fields of Mathematical Analysis; for instance the book
[5] is totally devoted to these operators and contains a lot of examples.

Now we describe the contents of the paper.

In Section 2 we fix our notations about the notions used in the sequel.

In Section 3 we study the continuity of the superposition operators
between spaces of almost periodic functions in the sense of Harald
Bohr. We improve results of Yoshizawa [41] by deleting an assumption
of separability. The first main result is Theorem 1 where we do not
consider the usual Lipschitz condition as in [23] for instance. We give
three different proofs of this theorem since each of these proofs contains
arguments which are interesting for themselves. The first proof is the
english translation of the one given by Cieutat in his Thesis Dissertation
[20] (in French) and which is unpublished in a scientific journal. The
second proof is based on a generalization to the almost periodicity of a
method that we have only encountered in the well-known book "Cours
d’Analyse" by Laurent Schwartz. This method essentially uses a varia-
tion of the classical theorem of Heine on uniform continuity. In another
setting (this one of the spaces of bounded sequences), this method has
been used by Blot and Crettez in [12]. The third proof is based on the
Bohr compactification which permits to transform the almost periodic
functions into continuous functions defined on a compact group. Finally
we establish the converse of Theorem 1. This new result shows that,
among the various notions of almost periodic functions with parameters,
the notion used by Yoshizawa [41] is the appropriate notion to have the
continuity of the superposition operators.

In Section 4, by using the new result of section 3, we improve results
on the semilinear evolution equations which are given in the book of
Hino, Naito, Minh and Shin [29].

In Section 5 we establish results on the differentiability of superpo-
sition operators between spaces of almost periodic functions.
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In Section 6, by using results of Section 5, we establish a result on
the perturbation of almost periodic solutions of differential equations
in Banach spaces.

In Section 7 we establish new results on the continuity and the differ-
entiability of the superposition operators in the setting of the n-times
differentiable almost periodic functions. Such functions are specially
studied in works of N’Guérékata and several co-authors [34], [19], [7].
The methods used in this section are adaptations of these ones of Section
3 and of Section 5.

We also adapt the methods of Section 3 and Section 5 to establish
new results on on the continuity and the differentiability of the super-
position operators in the setting of the asymptotically almost periodic
functions in Section 8 (where we also use important results due to
Zaidman) and in the setting of the almost automorphic functions in
Section 9.

Note that we can find some results on the superposition operators
on spaces of Besicovitch-almost periodic functions in [10], [20], [13], and
on spaces of almost periodic sequences in [14]. We do not study these
settings in the present paper.

2. Notation

X and Y are complete metric spaces.

When A is a topological space, C0(A,X) denotes the space of all contin-
uous mappings from A into X. When moreover A is compact, C0(A,X)
is endowed with the supremum distance d∞(ϕ,ψ) := supa∈A d(ϕ(a), ψ(a)).

When X and Y are Banach spaces, L(X,Y ) is the Banach space of all
linear continuous mappings from X into Y . And when n ∈ N∗ := N \
{0}, Ln(Xn, Y ) is the Banach space of all continuous n-linear mappings
from the product Xn in Y .

When X and Y are Banach spaces and when n ∈ N∗, Cn(X,Y ) denotes
the space of all n-times continuously Fréchet-differentiable mappings
from X into Y .

BC0(X,Y ) denotes the space of the bounded continuous mappings from
X in Y . Endowed with the distance of the supremum, defined by
d∞(ϕ,ψ) := supx∈X d(ϕ(x), ψ(x)), BC0(X,Y ) is a complete metric
space, [38] Corollaire 2 p. 196. When Y is a Banach space, endowed
with the sup norm ‖ϕ‖∞ := supx∈X ‖ϕ(x)‖, BC0(X,Y ) is a Banach
space, [38] Corollaire 3 p. 196. When X and Y are Banach spaces and
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when n ∈ N∗, BCn(X,Y ) is the space of the mappings which belong
to Cn(X,Y ) ∩ BC0(X,Y ) such that all their differentials, until order
n, are bounded on X. Endowed with the norm ‖ϕ‖Cn := ‖ϕ‖∞ +∑

1≤k≤n ‖Dkϕ‖∞, it is a Banach space.

When X is a Banach space, C0
0 (R+, X) denotes the space of all func-

tions u ∈ C0(R+, X) such that limt→∞ u(t) = 0. It is a Banach sub-
space of BC0(R+, X).

AP 0(R, X) stands for the space of all almost periodic functions in the
sense of Harald Bohr [31], [4], [17], [33], [21], [41], [24]. Endowed with
the distance d∞, it is a complete metric space. When X is a Banach
space and when n ∈ N∗, APn(R, X) denotes the space of the functions
of BCn(R, X) ∩ AP 0(R, X) such that all their derivatives, until order
n, belong to AP 0(R, X) [34], [19], [7].

We denote by Pc(X) the set of all compact subsets of X. We define
APU(X ×R, Y ) as the set of the mappings f : X ×R → Y which are
continuous on X ×R and which satisfy the following property: for all
K ∈ Pc(X), for all ε > 0, there exists ` = `(K, ε) > 0 such that, for all
r ∈ R, there exists τ ∈ [r, r+ `] satisfying ‖f(x, t+ τ)− f(x, t)‖ ≤ ε for
all (x, t) ∈ K×R; see [41] Definition 2.1 p. 5-6. In the finite-dimensional
setting this notion is used in [11], [13] and [6], and under an equivalent
form it is also used in [30] and in [43] Section 3.4 in Chapter 3 p. 175.
Such mappings are called almost periodic in t uniformly in x.

Remark 1. If φ ∈ C0(X,Y ), and if we set f(x, t) := φ(x) for all
(x, t) ∈ X ×R, then we have f ∈ APU(X ×R, Y ).

When X is a Banach space, AAP (R+, X) denotes the space of all
functions from R+ in X which are asymptotically almost periodic in
the sense of Fréchet [42]. Recall that u ∈ AAP (R+, X) means that
u = u1+u2 with u1 ∈ AP 0(R+, X) and u2 ∈ C0

0 (R+, X). AAP (R+, X)
is a Banach subset of BC0(R+, X). Following Zaidman, see in [28], a
mapping f : X × R+ → Y , (x, t) 7→ f(x, t), is called asymptotically
almost periodic in t uniformly in x when f is continuous and when f
satisfies the following condition: for all K ∈ Pc(X), for all ε > 0, there
exist T = T (K, ε) ≥ 0 and ` = `(K, ε) > 0 such that, for all r ∈ R+,
there exists τ ∈ [r, r + `] satisfying ‖f(x, t + τ) − f(x, t)‖ ≤ ε for all
x ∈ K and for all t ≥ T . We denote by AAPU(X ×R+, Y ) the set of
all such mappings. We can see a recent use of these notions in evolution
equations e.g. in [28].

We denote by AA(R, X) the space of all functions from R in X which
are almost automorphic in the sense of Bochner [15], [16], [34]. Recall
that u ∈ AA(R, X) means that u ∈ C0(R, X) and that u satisfies the
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following property: for all real sequence (s′n)n there exists a subsequence
(sn)n of (s′n)n such that limm→∞ u(t−sm) exists in X for all t ∈ R, and
limn→∞(limm→∞ u(t−sm+sn)) = u(t) for all t ∈ R. Now we introduce
a new notion. We say that a mapping f : X ×R → Y , (x, t) 7→ f(x, t),
is almost automorphic in t uniformly in x when it satisfies the two
following conditions:

(1) For all x ∈ X, f(x, .) ∈ AA(R, Y ).

(2) For all K ∈ Pc(X), for all ε > 0, there exists δ = δ(K, ε) > 0 such
that, for all x, z ∈ K, if d(x, z) ≤ δ then we have d(f(x, t), f(z, t)) ≤
ε for all t ∈ R.

We denote by AAU(X ×R, Y ) the set of such mappings.

Remark 2. The set of the conditions (1) and (2) is equivalent to the
following condition.

(3) Φ ∈ C0(X,AA(R, Y )) where Φ(x) := [t 7→ f(x, t)].

Indeed, let us we assume that (1) and (2) fulfilled. In view of (1), the
mapping Φ : X → AA(R, Y ) is well-defined. Since X and AA(R, Y )
are metric spaces, Φ is continuous on X if and only if the restriction
of Φ to each compact subset of X is continuous. This last condition
is ensured by (2), and consequently (3) is satisfied. Conversely assume
that (3) fulfilled. Then, since Φ(x) ∈ AA(R, Y ) for all x ∈ X, (1) is
satisfied. And since Φ is continuous on X, Φ is uniformly continuous on
each K ∈ Pc(X), that is exactly (2).
Remark 3. In the above definition, note that the conditions (1) and
(2) imply that f ∈ C0(X ×R, Y ).
Remark 4. If φ ∈ C0(X,Y ), and if we set f(x, t) := φ(x) for all (x, t) ∈
X × R, then we have f ∈ AAU(X × R, Y ). If f ∈ APU(X × R, Y )
then f ∈ AAU(X ×R, Y ). This notion is different from the one used
in [34] Theorem 2.18 p. 60, and it is also different from the one used
in [32] where the authors use bounded subsets of X instead of compact
subsets of X.

3. Continuity and Almost Periodicity

In this section we study the continuity of the superposition operators
between spaces of almost periodic functions. X and Y are complete
metric spaces.

Lemma 1. Let f ∈ APU(X × R, Y ) and K ∈ Pc(X). Then the
restriction of f to K ×R is uniformly continuous.
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Lemma 1 is Theorem 2.1, p. 7, in [41]. Note that, in his book,
Yoshizawa gives statements in finite-dimensional normed spaces, but
he gives proofs in complete metric spaces, assuming that X is separa-
ble. The proof of Lemma 1 given by Yoshizawa actually does not use
separability of X.

Lemma 2. Let φ ∈ C0(X,Y ) and v ∈ AP 0(R, X). Then we have
φ ◦ v ∈ AP 0(R, Y ).

Lemma 2 is Property 4, p. 3, in [31]. In the Banach spaces setting,
a proof of this result is also given in [4], p. 6, and in [34], Proof of
Theorem 1.34 p. 14.

Lemma 3. Let f ∈ C0(X × R, Y ) and K ∈ Pc(X). We define the
mapping fK : R → C0(K,Y ) by setting fK(t) := [x 7→ f(x, t)] for all
t ∈ R. Then the two following assertions are equivalent.

(i) f ∈ APU(X ×R, Y )

(ii) For all K ∈ Pc(X), fK ∈ AP 0(R, C0(K,Y )).

Lemma 3 comes from [20] inside the proof of Théorème in Section 2
of Chapter 1, p. 7.

Proof of Lemma 3. (i =⇒ ii). Continuity of fK is a straightforward
consequence of Lemma 1. By using the definition of APU(X ×R, Y ),
we know that, for all ε > 0, there exists ` > 0 such that, for all r ∈ R,
there exists τ ∈ [r, r + `] satisfying d(f(x, t + τ), f(x, t)) ≤ ε for all
x ∈ K and for all t ∈ R. By taking the supremum over the x ∈ K, we
obtain d∞(fK(t+ τ), fK(t)) ≤ ε for all t ∈ R.
(ii =⇒ i). Let (xn, tn)n be a sequence of elements of X × R which
converges toward (x∗, t∗) ∈ X×R. We set K∗ := {xn : n ∈ N}∪{x∗} ∈
Pc(X). Note that we have

‖f(xn, tn)−f(x∗, t∗)‖ ≤ ‖f(xn, tn)−f(xn, t∗)‖+‖f(xn, t∗)−f(x∗, t∗)‖

≤ ‖fK∗(tn)− fK∗(t∗)‖∞ + ‖fK∗(t∗)(xn)− fK∗(t∗)(x∗)‖.

Since limn→∞ tn = t∗, fK∗ is continuous on R, and fK∗(t∗) is continu-
ous on K∗, we deduce from the previous inequalities that
limn→∞ f(xn, tn) = f(x∗, t∗). And so we have proven that f ∈ C0(X ×
R, Y ). Now we arbitrarily fix K ∈ Pc(X) and ε > 0. Since fK ∈
AP 0(R, C0(K,Y )) we know that there exists ` > 0 such that for all
r ∈ R, there exists τ ∈ [r, r + `] satisfying ‖fK(t + τ) − fK(t)‖∞ ≤ ε
for all t ∈ R, that implies: ‖fK(t+ τ)(x)− fK(t)(x)‖ ≤ ε for all x ∈ K
and for all t ∈ R. Noting that fK(t + τ)(x) = f(x, t + τ) and that
fK(t)(x) = f(x, t), we obtain that f ∈ APU(X ×R, Y ).
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Lemma 4. Let f ∈ APU(X × R, Y ) and u ∈ AP 0(R, X). Then we
have [t 7→ f(u(t), t)] ∈ AP 0(R, Y ).

Proof of Lemma 4. We set K := u(R), the closure of u(R), which is
compact [31], Property 1, p. 2. We define the mapping φ : C0(K,Y )×
K → Y by setting φ(g, x) := g(x), and the function v : R → C0(K,Y )×
K by setting v(t) := (fK(t), u(t)), where fK is provided by Lemma 3.
When g, h ∈ C0(K,Y ) and x, z ∈ K, we have d(φ(g, x), φ(h, z)) ≤
d(g(x), h(x)) + d(h(x), h(z)) ≤ d∞(g, h) + d(h(x), h(z)). From these
inequalities we can deduce that φ is continuous. By using Lemma 3 we
know that fK is almost periodic, and by using the Bochner criterion,
[31] p.4, we see that v ∈ AP 0(R, C0(K,Y ) × K). Since f(u(t), t) =
φ ◦ v(t) for all t ∈ R, we conclude using Lemma 2 .

The proof of Lemma 4 above is in [20], Théorème in Section 2 of
Chapter 1, p. 7. It is an improvement of the one given in [41], Proof of
Theorem 2.7 p.16, since Yoshizawa assumes thatX is separable. Lemma
4 yields the definition of the following superposition operator:

(4) N1
f : AP 0(R, X) → AP 0(R, Y ), N1

f (u) := [t 7→ f(u(t), t)]

where f ∈ APU(X ×R, Y ).

Following Remark 1, when φ ∈ C0(X,Y ), we can define the super-
position operator u 7→ φ ◦ u from AP 0(R, X) in AP 0(R, Y ). The first
main result of this section is the following theorem.

Theorem 1. Let f ∈ APU(X × R, Y ). Then the superposition N1
f ,

defined in (4), is continuous from AP 0(R, X) in AP 0(R, Y ).

We will give three proofs of Theorem 1. But before giving the first
one, we need the following lemma.

Lemma 5. If K is a compact subset of AP 0(R, X), then
S := {u(t) : t ∈ R, u ∈ K} is a relatively compact subset of X.

Proof. We fix ε > 0. Since K is compact, it is also precompact, and
so there exists {u1, ..., up} a finite subset of AP 0(R, X) such that K ⊂⋃

1≤j≤p{v ∈ AP 0(R, X) : d∞(v, uj) ≤ ε
2}. Since uj(R) is relatively

compact in X for all j = 1, ..., p, their union
⋃

1≤j≤p uj(R) also is rela-
tively compact, and consequently there exists {t1, ..., tq} a finite subset
of R such that

⋃
1≤j≤p uj(R) ⊂

⋃
1≤j≤p

⋃
1≤k≤q{x ∈ X : d(x, uj(tk)) ≤

ε
2}. If x ∈ S there exist v ∈ K and t ∈ R such that x = v(t), and then
there exists j ∈ {1, ..., p} such that d∞(v, uj) ≤ ε

2 , and consequently we
have d(x, uj(t)) ≤ ε

2 . By using the last previous inclusion, we know that
there exist i ∈ {1, ..., p} and k ∈ {1, ..., q} such that d(uj(t), ui(tk)) ≤ ε

2 .
And so we have d(x, uj(tk)) ≤ d(x, uj(t)) + d(uj(t), ui(tk)) ≤ 2 ε

2 = ε.
This reasoning proves the following inclusion: S ⊂

⋃
1≤j≤p

⋃
1≤k≤q{x ∈
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X : d(x, uj(tk)) ≤ ε} which proves that S is precompact, and since X is
complete, we obtain that S is relatively compact, [22] théorème 3.17.5,
p. 63.

Lemma 5 and its proof are included in [20], Lemme 3 in Section 3 of
Chapter 2, p.15.

First Proof of Theorem 1. Let K be a compact subset of AP 0(R, X),
let u ∈ K and let ε > 0. We set S := {u(t) : t ∈ R, u ∈ K}. By
using Lemma 5 we know that the closure S is compact. Since f ∈
APU(X×R, Y ) there exists ` > 0 such that, for all r ∈ R, there exists
−τ ∈ [r, r + `] satisfying the following condition:

(5) d(f(x, s+ τ), f(x, s)) ≤ ε
3 for all (x, s) ∈ S ×R.

Since S× [0, `] is compact as a product of two compacts, f is uniformly
continuous on it, and consequently there exists δ = δ(S × [0, `], ε) > 0
such that, for all s1, s2 ∈ [0, `] and for all x1, x2 ∈ S we have:
(d(x1, x2) ≤ δ, |s1−s2| ≤ δ) =⇒ d(f(x1, s1), f(x2, s2)) ≤ ε

3 , that implies
the following assertion:

(6) d(x1, x2) ≤ δ =⇒ d(f(x1, s), f(x2, s)) ≤ ε
3 for all s ∈ [0, `].

If v ∈ K satisfies d∞(v, u) ≤ δ, by using (5) and (6), we obtain, for all
t ∈ R,

d(f(u(t), t), f(v(t), t)) ≤ d(f(u(t), t), f(u(t), t− τ))+

d(f(u(t), t− τ), f(v(t), t− τ)) + d(f(v(t), t− τ), f(v(t), t)) ≤ 3
ε

3
ε.

And so, by taking the supremum on the t ∈ R, we obtain d∞(N1
f (u), N1

f (v)) ≤
ε. This proves that the restriction of N1

f to K is continuous for all
compact subset K of AP 0(R, X), and since AP 0(R, X) and AP 0(R, Y )
are metric spaces, this proves the continuity of N1

f on AP 0(R, X).

This first proof of Theorem 1 is due to Cieutat [20], Proposition 1
in Section 3 of Chapter 2, p. 15-17. In order to give a second proof of
Theorem 1 we need the following new result.

Lemma 6. Let f ∈ APU(X × R, Y ). Then the following assertion
holds: for all K ∈ Pc(X) and for all ε > 0 there exists δ = δ(K, ε) >
0 such that, for all x ∈ K and for all z ∈ X, if d(x, z) ≤ δ then
d(f(x, t), f(z, t)) ≤ ε for all t ∈ R.

Remark 5. This statement is not simply the uniform continuity of
f on K × R (Lemma 1). Note that we use z ∈ X and not z ∈ K
in the conclusion. When X is locally compact, for instance when X
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is a finite-dimensional Banach space, we can find a relatively compact
subset Ω of X which contains the compact K, [22] result 3.18.2, p. 65,
and then the uniform continuity of f on Ω×R implies the conclusion
of Lemma 6. But when X is not locally compact, for instance when
X is an infinite-dimensional Banach space, such a reasoning becomes
impossible.

Proof of Lemma 6. We proceed by contradiction, we assume that
there exist K ∈ Pc(X) and ε > 0 such that, for all δ > 0, there
exist xδ ∈ K, zδ ∈ X and tδ ∈ R satisfying d(xδ, zδ) ≤ δ and
d(f(xδ, tδ), f(zδ, tδ) > ε. For all m ∈ N∗, we set xm := x1/m, zm :=
z1/m and tm := t1/m, and so the following assertion holds:

(7) For all m ∈ N∗ there exist xm ∈ K, zm ∈ X and tm ∈ R such that
d(xm, zm) ≤ 1

m and d(f(xm, tm), f(zm, tm)) > ε.

Since K is compact, by using the Weierstrass-Bolzano theorem, there
exists a subsequence (xα(m))m of (xm)m (where α : N∗ → N∗ is strictly
increasing) and there exists x̂ ∈ K such that limm→∞ xα(m) = x̂. Note
that we have d(xα(m), zα(m)) ≤ 1

α(m) ≤
1
m for all m ∈ N∗, that implies

that we also have limm→∞ zα(m) = x̂. We set K1 := {zα(m) : m ∈
N∗}∪{x̂}. By using the Heine-Borel-Lebesgue theorem we can see that
K1 is compact. And so K2 := K ∪ K1 is also compact as a union of
two compact subsets. Then by using Lemma 1, we obtain the following
assertion:

(8) For all σ > 0 there exists βσ > 0 such that, for all x, z ∈ K2,
if d(x, z) ≤ βσ then d(f(x, t), f(z, t)) ≤ σ for all t ∈ R.

By taking σ0 := ε
2 , β := βσ0 and choosing mβ ∈ N∗ such that 1

mβ
≤ β,

we obtain d(f(xα(m), t), f(zα(m), t)) ≤ ε
2 for all t ∈ R and for all m ≥

mβ , that implies d(f(xα(m), tα(m)), f(zα(m), tα(m))) ≤ ε
2 when m ≥ mβ ,

that is a contradiction with (7).

Second Proof of Theorem 1. We fix u ∈ AP 0(R, X) and ε > 0.
Since K := u(R) ∈ Pc(X), we can consider δ = δ(K, ε) > 0 provided
by Lemma 6. Then when v ∈ AP 0(R, X) satisfies d∞(v, u) ≤ δ, we have
d(v(t), u(t)) ≤ δ for all t ∈ R, with u(t) ∈ K. Consequently Lemma
6 implies that we have d(f(v(t), t), f(u(t), t)) ≤ ε for all t ∈ R, that
means that d∞(N1

f (v), N1
f (u)) ≤ ε.

We need some additional lemmas in order to give a third proof of
Theorem 1.

Lemma 7. If φ ∈ C0(X,Y ) then the following assertion holds: for all
K ∈ Pc(X) and for all ε > 0 there exists δ = δ(K, ε) > 0 such that, for
all x ∈ K and for all z ∈ X, if d(x, z) ≤ δ then f(φ(x), φ(z)) ≤ ε.
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Following Remark 1, Lemma 7 is a straightforward consequence of
Lemma 6. Lemma 7 is established in [37] footnote (**) p. 355, in [38]
Théorème (T.2, IX, 5; 1) p.109, and in [39] Théorème 2.7.20 p. 229.
In [12], Lemma A1.3 in Appendix 1 p. 22, the authors call Lemma
7 as the lemma of Heine-Schwartz since its direct proof (given in the
books of Laurent Schwartz) is almost the same one that the one of the
classical theorem of Heine on the uniform continuity (continuity on a
compact space implies the uniform continuity) and since this lemma is
only present in the above-mentioned books of Laurent Schwartz.

Lemma 8. Let A be a compact metric space and F : X × A→ Y be a
mapping. Then the two following assertions are equivalent.

(i) F is continuous on X ×A.

(ii) The superposition operator NF : C0(A,X) → C0(A, Y ) defined by
NF (ϕ) := [a 7→ F (ϕ(a), a)] is well-defined and continuous.

Proof. (i =⇒ ii) We fix ϕ ∈ C0(A,X) and ε > 0. We set K :=
{(ϕ(a), a) : a ∈ A} which is compact as the range of the compact A
by the continuous mapping a 7→ (ϕ(a), a). We consider δ > 0 provided
by Lemma 7 whereX is replaced byX×A and φ is replaced by F . When
ψ ∈ C0(A,X) satisfies d∞(ψ,ϕ) ≤ δ then we have d((ϕ(a), a), (ψ(a), a)) =
d(ϕ(a), ψ(a))+d(a, a) ≤ d∞(ψ,ϕ) ≤ δ with (ϕ(a), a) ∈ K for all a ∈ A.
Then Lemma 7 implies d(F (ϕ(a), a), F (ψ(a), a)) ≤ ε for all a ∈ A, that
means: d∞(NF (ϕ), NF (ψ)) ≤ ε.
(ii =⇒ i) When x ∈ X we consider the constant function ϕx(a) := x,
and so ϕx ∈ C0(A,X) and the mapping x 7→ ϕx is continuous from
X in C0(A,X). We fix (x, a) ∈ X × A, and we consider ((xn, an))n a
sequence of points of X × A which converges towards (x, a). Then, for
all n ∈ N, the following inequalities hold:

d(F (xn, an), F (x, a)) ≤ d(F (xn, an), F (x, an)) + d(F (x, an), F (x, a))

= d(NF (ϕxn)(an), NF (ϕx)(an)) + d(NF (ϕx)(an), NF (ϕx)(a))

≤ d∞(NF (ϕxn), NF (ϕx)) + d(NF (ϕx)(an), NF (ϕx)(a)).

Note that limn→∞ d∞(NF (ϕxn), NF (ϕx)) = 0 since NF and x 7→ ϕx

are continuous, and that limn→∞ d(NF (ϕx)(an), NF (ϕx)(a)) = 0 since
NF (ϕx) ∈ C0(A, Y ). And so the last inequalities permit us to obtain
limn→∞ d(F (xn, an), F (x, a)) = 0. And since we work in metric spaces,
the continuity of F is proven.

In the following lemma we use the Bohr compactification RB of
R, [36] Subsection 1.1 in Section 1 in Chapter 1 p. 5. We denote by
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iB : R → RB the associated injective homomorphism of topological
groups. Recall that RB is a compact group, that iB(R) is dense in RB,
and that u ∈ AP 0(R, X) then there exists uB ∈ C0(RB, X) such that
uB(iB(t)) = u(t) for all t ∈ R.

Lemma 9. Let f ∈ APU(X ×R, Y ). Then there exists fB ∈ C0(X ×
RB, Y ) such that fB(x, iB(t)) = f(x, t) for all (x, t) ∈ X ×R.

Proof. We consider the operator IY : AP 0(R, Y ) → C0(RB, Y ) de-
fined by IY (v) := vB. It is easy to check that IY is a bijective isometry.
We define f ] : X → AP 0(R, Y ) by setting f ](x) := [t 7→ f(x, t)]. By us-
ing Lemma 6 we see that f ] is continuous. Denote by π1 and π2 the two
projections on X×RB. We define the mapping E : C0(RB, Y )×RB →
Y by E(ϕ, ξ) := ϕ(ξ). We can verify that E is continuous. Since
a composition of continuous mappings is continuous, we obtain that
fB := E ◦ (IY ◦ f ] ◦ π1, π2) is continuous from X × RB in Y . And
when (x, t) ∈ X × R, we have fB(x, iB(t)) = E(IY ◦ f ](x), iB(t)) =
IY (f ](x))(iB(t)) = f ](x)(t) = f(x, t).

Third Proof of Theorem 1. We consider fB ∈ C0(X ×RB, Y ) pro-
vided by Lemma 9 in view of Lemma 8 it follows that the superposition
operator NfB

: C0(RB, X) → C0(RB, Y ), defined by NfB
(ϕ) = [ξ 7→

fB(ϕ(ξ), ξ)], is continuous, i.e. the following assertion holds:

(9) For all ϕ ∈ C0(RB, X) and for all ε > 0 there exists η = η(ϕ, ε) > 0
such that, for all ψ ∈ C0(RB, X), if d∞(ψ,ϕ) ≤ η, then we have
d∞(NfB

(ψ), NfB
(ϕ)) ≤ ε.

Fix u ∈ AP 0(R, X) and ε > 0. Let η = η(uB, ε) > 0 be provided
by (9). If v ∈ AP 0(R, X) satisfies d∞(v, u) ≤ η then we also have
d∞(vB, uB) ≤ η and consequently, by using (9), we obtain, for all t ∈ R,
the following inequalities:

d(f(v(t), t), f(u(t), t)) = d(fB(v(t), iB(t)), fB(u(t), iB(t)))

= d(fB(vB(iB(t)), iB(t)), fB(uB(iB(t)), iB(t)))

≤ d∞(NfB
(vB), NfB

(uB)) ≤ ε,

that implies d∞(N1
f (v), N1

f (u)) ≤ ε.

In the finite-dimensional Banach spaces setting, Theorem 1 is stated
in [30], Lemma 1.1 p. 5, with no proof. The authors rather refer to
1955 Amerio’ works (in Italian), 1960 Perov’s results (in Russian), 1962
Zubov’s works (in Russian), and 1961 Corduneanu’s results (in Roma-
nian); see [30] for precise references. When X is finite-dimensional, a
proof of Theorem 1 is also given in [11], Lemma 5 p. 706. In the finite-
dimensional setting, we can also find an approach of this question based
on the use of the Bohr compactification in [35] and [3].
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Now we establish the converse of Theorem 1.

Theorem 2. Let f : X ×R → Y be a mapping such that, for all u ∈
AP 0(R, X), we have [t 7→ f(u(t), t)] ∈ AP 0(R, Y ), and such that the
superposition operator N1

f : AP 0(R, X) → AP 0(R, Y ) is continuous.
Then we have f ∈ APU(X ×R, Y ).

Proof. For all x ∈ X we consider the constant function ux : R → X
defined by ux(t) := x for all t ∈ R. Then we have ux ∈ AP 0(R, X),
and by using the first assumption we obtain the following assertion:

(10) For all x ∈ X, f(x, .) = N1
f (ux) ∈ AP 0(R, Y ) .

It is clear that the mapping U : X → AP 0(R, X), defined by U(x) :=
ux, is continuous and since N1

f : AP 0(R, X) → AP 0(R, Y ) is continu-
ous, the composition N1

f ◦U is continuous on X, and by using the Heine
theorem, we obtain that, for all K ∈ Pc(X), the mapping x 7→ f(x, .)
is uniformly continuous on K, i.e. the following assertion holds:

(11) For all K ∈ Pc(X) and for all ε > 0 there exists δ = δ(K, ε) > 0
such that, for all x, z ∈ K, if d(x, z) ≤ δ then we have
d(f(x, t), f(z, t)) ≤ ε for all t ∈ R.

This assertion means that, for all K ∈ Pc(X), the family (f(., t))t∈R is
uniformly equi-continuous on K.
Now we fix K ∈ Pc(X) and ε > 0. Then there exists a finite subset
{x1, ..., xn} in K such that K ⊂

⋃
1≤i≤n{x ∈ X : d(x, xi) ≤ δ(K, ε

3)}
where δ(K, ε

3) is provided by (11). By using (10) we know that f(xi, .) ∈
AP 0(R, Y ) for all i = 1, ..., n, and by using the Bochner criterion, we
see that the function t 7→ (f(x1, .), ..., f(xn, .)) is almost periodic, from
which we obtain the following assertion:

(12) For all σ > 0 there exists ` = `σ > 0 such that, for all r ∈ R,
there exists τ ∈ [r, r + `] satisfying d(f(xi, t+ τ), f(xi, t)) ≤ σ for
all i = 1, ..., n and for all t ∈ R.

We use (12) with σ = ε
3 . Let r ∈ R and τ ∈ [r, r + `]. Then we have

d(f(xi, t + τ), f(xi, t)) ≤ ε
3 for all i = 1, ..., n and for all t ∈ R. When

x ∈ K there exists i ∈ {1, ..., n} such that d(x, xi) ≤ δ(K, ε
3), and then,

by using (11), the following inequalities hold: d(f(x, t), f(xi, t)) ≤ ε
3

and d(f(x, t+ τ), f(xi, t+ τ)) ≤ ε
3 for all t ∈ R. Therefore we obtain

d(f(x, t+τ), f(x, t)) ≤ d(f(x, t+τ), f(xi, t+τ))+d(f(xi, t+τ), f(xi, t))

+d(f(xi, t), f(x, t)) ≤ 3
ε

3
= ε,
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for all t ∈ R. And so we have proven that for all K ∈ Pc(X) and for all
ε > 0 there exists ` = `(K, ε) > 0 such that, for all r ∈ R there exists
τ ∈ [r, r + `] satisfying d(f(x, t + τ), f(x, t)) ≤ ε for all x ∈ K and for
all t ∈ R. This is the second condition to have f ∈ APU(X ×R, Y ).
After that, it suffices to prove that f is continuous on X ×R.

Let C be a compact subset of X ×R. We set pr1 and pr2 the two
projections on X ×R, and C1 := pr1(C), C2 := pr2(C). Note that C1

and C2 are compact and that we have C ⊂ C1 × C2. We fix ε > 0. By
using (11) with K = C1, we know that the following assertion holds:

(13) There exists δ = δ(C1,
ε
3) > 0 such that, for all x, z ∈ C1, if

d(x, z) ≤ δ then we have d(f(x, t), f(z, t)) ≤ ε
3 for all t ∈ R.

Since C1 ∈ Pc(X), there exists a finite subset {z1, ..., zm} in C1 such
that C1 ⊂

⋃
1≤i≤m{z ∈ X : d(z, zi) ≤ δ}. Since f(zi, .) ∈ AP 0(R, Y ),

f(zi, .) is uniformly continuous on C2, and consequently we have: for
all i = 1, ...,m and for all σ > 0 there exists ηi(σ) > 0 such that, for all
s, t ∈ R, if |s− t| ≤ ηi(σ) then we have d(f(zi, s), f(zi, t)) ≤ σ. We set
η(σ) := min1≤i≤m ηi(σ) > 0, and we obtain the following assertion:

(14) For all σ > 0 there exists η(σ) > 0 such that, for all s, t ∈ R,
if |s − t| ≤ η(σ) then we have d(f(zi, s), f(zi, t)) ≤ σ for all i =
1, ...,m.

Now we fix x ∈ C1 and t ∈ C2. We chose zi such that d(x, zi) ≤ δ where
δ is the one of (13). We consider z ∈ C1 such that d(z, zi) ≤ δ and
s ∈ C2 such that |s − t| ≤ η( ε

3 where η is provided by (14). Then by
using (13) and (14), we obtain the following inequalities:

d(f(x, t), f(z, s)) ≤

d(f(x, t), f(zi, t)) + d(f(zi, t), f(zi, s)) + d(f(zi, s), f(z, s)) ≤ 3
ε

3
= ε.

That proves the continuity of the restriction of f to C1 × C2. Conse-
quently the restriction of f to C is also continuous, for all compact
subset C of X × R. Since X × R is a metric space, this proves the
continuity of f on X ×R.

Corollary 1. Let φ : X → Y be a mapping. Then the two following
assertions are equivalent.

(i) φ is continuous from X in Y .

(ii) The superposition operator u 7→ φ◦u is continuous from AP 0(R, X)
in AP 0(R, Y ).
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Following Remark 1, Corollary 1 is a straightforward consequence of
Theorem 1 and Theorem 2.

Remark 6. All the results of this section remain valid if we replace R
by R+ = [0,∞) or by a locally compact Abelian group.

Remark 7. When Ω is a nonempty open subset of X, we define
AP 0(R,Ω) := {u ∈ AP 0(R, X) : u(R) ⊂ Ω}. Since u(R) is compact
when u ∈ AP 0(R, X) and since X \ Ω is closed, when u ∈ AP 0(R,Ω)
we can find ρ > 0 such that v ∈ AP 0(R,Ω) when v ∈ AP 0(R, X)
and ‖v−u‖∞ < ρ. And so AP 0(R,Ω) is an open subset of AP 0(R, X).
When f ∈ C0(X×R, Y ) satisfies the condition which defines APU(X×
R, Y ) where we replace K ∈ Pc(X) by K ∈ Pc(Ω), we say that f ∈
APU(Ω ×R, Y ). And then all the results of this section remain valid
when we replace AP 0(R, X) by AP 0(R,Ω) and APU(X × R, Y ) by
APU(Ω×R, Y ).

4. An Application to Evolution Equations

We consider a Banach space X, a (possibly) unbounded linear operator
A : D(A) ⊂ X → X, a nonlinear mapping f : X ×R+ → X, and the
following semilinear evolution equation:

(15) u′(t) = Au(t) + f(u(t), t).

We consider the following list of assumptions on the equation (15).

(16) A is the infinitesimal generator of a C0-semigroup of linear op-
erators (S(t))t≥0 on X such that there exists ω > 0 satisfying
‖S(t)x− S(t)y‖ ≤ eωt‖x− y‖ for all t ≥ 0 and for all x, y ∈ X.

(17) f ∈ APU(X ×R+, X).

(18) There exists γ > 0 such that, for all λ > 0, for all x, y ∈ X and for
all t ≥ 0 we have (1− λγ)‖x− y‖ ≤ ‖x− y + λ(f(x, t)− f(y, t))‖.

All the notions used in these three assumptions are defined in [29];
(18) is called a condition of accretivity of −f + γI, where I is the
identity operator on X. Recall that a so-called mild solution of (15) is
a continuous solution u of the following integral equation:

u(t) = S(t− s)x+
∫ t

s
S(t− r)f(u(r), r)dr, t ≥ s.

14



Theorem 3. We assume (16, 17, 18) fulfilled and we assume that ω −
γ < 0. Then there exists a unique almost periodic mild solution of (15).

This result is proven by Corollary 2.27 in [29] p. 146 by using an
(apparently) additional assumption. Now we explain what is new here.
In [29], the authors formulate a so-called condition (H5), Definition 2.18
p. 144, which says (by using our vocabulary and our notations) that
the superposition N1

f : AP 0(R+, X) → AP 0(R+, X) is well-defined
and continuous. By using our results of Section 3, this condition (H5)
is translatable into a condition on f which is exactly (17). Moreover,
inside their so-called condition (H4), Definition 2.17 p.144, they assume
that f is continuous on X×R+ which is redundant since this continuity
is contained in (17) after our Theorem 2. Finally, in their statement of
their Corollary 2.17, the authors of [29] assume (by translating in our
notations) that −N1

f + γN1
I is an accretive operator in the sense given

in their Definition 1.5 p. 17. It is easy to verify that (18) implies their
accretivity condition on the operators.

5. Differentiability and Almost Periodicity

In this section, X and Y are Banach spaces.

Theorem 4. Let f ∈ APU(X × R, Y ) such that the partial Fréchet-
differential with respect to the first vector variable Dxf(x, t) exists for
all (x, t) ∈ X×R. We also assume that Dxf ∈ APU(X×R,L(X,Y )).
Then the superposition operator N1

f , defined in (4), is continuously dif-
ferentiable from AP 0(R, X) into AP 0(R, Y ), and for all u, v ∈ AP 0(R, X)
we have DN1

f (u).v = [t 7→ Dxf(u(t), t).v(t)].

Proof. Since Dxf ∈ APU(X ×R,L(X,Y )), by using Theorem 1, we
have:

(19) N1
Dxf is continuous from AP 0(R, X) in AP 0(R,L(X,Y )).

We fix u ∈ AP 0(R, X) and set

(20) L(t) := Dxf(u(t), t) for all t ∈ R.

L ∈ AP 0(R,L(X,Y )) in view of (19). We define now the mapping
F : X ×R → Y by

(21) F (z, t) := L(t).z for all (z, t) ∈ X ×R.

We consider the bilinear continuous operator B : L(X,Y ) × X → Y
defined by B(T, x) := T.x. Denoting by pr1 and pr2 the two projections
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on X × R, we see that F = B ◦ (L ◦ pr2, pr1) and consequently F is
continuous as a composition of continuous mappings. We fixK ∈ Pc(X)
and ε > 0. Let ρ > 0 such that ‖x‖ ≤ ρ for all x ∈ K. Since L is almost
periodic there exists ` = `( ε

ρ) > 0 such that, for all r ∈ R, there exists
τ ∈ [r, r+`] satisfying ‖L(t+τ)−L(t)‖ ≤ ε

ρ for all t ∈ R. Consequently,
for all (x, t) ∈ K ×R, we have ‖F (x, t + τ) − F (x, t)‖ ≤ ‖L(t + τ) −
L(t)‖.‖x‖ ≤ ε

ρ .ρ = ε. And so we have proven that F ∈ APU(X×R, Y ).
Then, by using Lemma 4, we obtain the following.

(22) For all v ∈ AP 0(R, X), Λ.v := [t 7→ Dxf(u(t), t).v(t)] ∈ AP 0(R, Y ).

By using the mean value theorem, Corollaire 1 in [2], Corollaire 1 p.
144, or result 8.6.2 in [22], p. 164, we have, for all v ∈ AP 0(R, X) and
for all t ∈ R, the following inequality:

(23) ‖f(u(t) + v(t), t)− f(u(t), t)−Dxf(u(t), t).v(t)‖
≤ supζ∈ ]u(t),u(t)+v(t)[ ‖Dxf(ζ, t)−Dxf(u(t), t)‖.‖v(t)‖.

By using Lemma 6, and setting K := u(R) ∈ Pc(X), we obtain:

(24) For all ε > 0 there exists δ = δ(K, ε) > 0 such that, for all x ∈ K
and for all z ∈ X, if ‖x − z‖ ≤ δ then we have ‖Dxf(z, t) −
Dxf(x, t)‖ ≤ ε for all t ∈ R.

Fix now ε > 0 and consider v ∈ AP 0(R, X) such that ‖v‖∞ ≤ δ where δ
is provided by (24). Then, for all t ∈ R and for all ζ ∈ ]u(t), u(t)+v(t)[,
we have ‖ζ−u(t)‖ ≤ ‖(u(t)+v(t))−u(t)‖ = ‖v(t)‖ ≤ ‖v‖∞ ≤ δ, which
implies, (in view of(24)), the following assertion:

(25) For all t ∈ R and for all ζ ∈ ]u(t), u(t) + v(t)[,
‖Dxf(ζ, t)−Dxf(u(t), t)‖ ≤ ε.

From (23) and (25) we deduce that

‖f(u(t) + v(t), t)− f(u(t), t)−Dxf(u(t), t).v(t)‖ ≤ ε‖v(t)‖

for all t ∈ R, and by taking the supremum on the t ∈ R, we obtain
‖N1

f (u+ v)−N1
f (u)−Λ.v‖∞ ≤ ‖v‖∞ when ‖v‖∞ ≤ δ; this proves that

N1
f is Fréchet-differentiable at u and that

(26) DN1
f (u).v = [t 7→ Dxf(u(t), t).v(t)].

Now it suffices to proves the continuity of DN1
f . By using (19) and

Theorem 1, we know that the following assertion holds.

(27) For all u ∈ AP 0(R, X) and for all ε > 0 there exists η = η(u, ε) >
0 such that, for all u1 ∈ AP 0(R, X), if ‖u − u1‖∞ ≤ η then
‖N1

Dxf (u)−N1
Dxf (u1)‖ ≤ ε.
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We fix u ∈ AP 0(R, X) and ε > 0. Let u1 ∈ AP 0(R, X) such that
‖u−u1‖∞ ≤ η, where η is provided by (27). Then, for all v ∈ AP 0(R, X)
such that ‖v‖∞ ≤ 1, by using (27) we have

‖Dxf(u(t), t).v(t)−Dxf(u1(t), t).v(t)‖ ≤ ‖Dxf(u(t), t)−Dxf(u1(t), t)‖.‖v(t)‖

≤ ‖NDxf (u)−NDxf (u1)‖.‖v‖∞ ≤ ε.1 = ε,

that implies, by taking the supremum on all t ∈ R, that
‖DN1

f (u).v − DN1
f (u1).v‖∞ ≤ ε, and by taking the supremum on the

v ∈ AP 0(R, X) such that ‖v‖∞ ≤ 1, we obtain ‖DN1
f (u)−DN1

f (u1)‖∞ ≤
ε in norm of linear operators. And so the continuity of DN1

f follows.

Theorem 4 was established in [20], Proposition 3 in Section 3 of
Chapter 2, p. 17, by using a different proof. WhenX is finite-dimensional,
a proof of Theorem 4 is given in [11], Lemma 7 p. 710. By induction
from Theorem 4 we obtain the following result.

Theorem 5. Let f ∈ APU(X ×R, Y ) and n ∈ N∗.
We assume that the partial Fréchet-differential with respect the first
vector variable of order n, Dn

xf(x, t), exists for all (x, t) ∈ X × R,
and that Dk

xf ∈ APU(X ×R,Lk(Xk, Y )) for all k = 1, ..., n.
Then the superposition operator N1

f , defined in (4), is n-times continu-
ously differentiable from AP 0(R, X) in AP 0(R, Y ), and moreover,
for all u, v1, ..., vn ∈ AP 0(R, X) we have
DnN1

f (u).(v1, ..., vn) = [t 7→ Dn
xf(u(t), t).(v1(t), ..., vn(t)].

By using Remark 1, a straightforward of this result is the following
one.

Corollary 2. Let n ∈ N∗ and φ ∈ Cn(X,Y ). Then the superposition
operator N1

φ : u 7→ φ ◦ u, from AP 0(R, X) in AP 0(R, Y ), is n-times
continuously differentiable on AP 0(R, X), and, for all u, v1, ..., vn ∈
AP 0(R, X), we have
DnN1

φ(u).(v1, ..., vn) = [t 7→ Dnφ(u(t)).(v1(t), ..., vn(t))].

When n = 1, in the finite-dimensional setting, Corollary 2 is proven
in [9], Proposition 1, p. 19.

6. An Application to Differential Equations

In this section, X is a Banach space. Let f0, f1 : X ×R → X be two
mappings and ε ∈ R. We consider the following ordinary differential
equation:

(28) u′(t) = f0(u(t), t) + ε.f1(u(t), t).
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When ε = 0 this equation becomes:

(29) u′(t) = f0(u(t), t).

We will assume that there exists a solution u∗ ∈ AP 1(R, X) of (29),
that the partial Fréchet-differential of f0 with respect to x exists and
we consider the following condition on the linearization of (29) around
u∗.

(30) For all b ∈ AP 0(R, X) there exists a unique v ∈ AP 1(R, X) such
that v′(t) = Dxf0(u∗(t), t).v(t) + b(t) for all t ∈ R.

We can find conditions on Dxf0(u∗(t), t) which ensure the validity of
(30). For instance in [20], Théorème 3, Section 3, Chapter III, p. 43,
the following assertion is proven: if X is a Hilbert space and if [t 7→
Dxf0(u∗(t), t)] ∈ AP 0(R,L(X,X)) and if there exists α > 0 satisfying
〈Dxf0(u∗(t), t).x | x〉 ≥ α.‖x‖2 for all (x, t) ∈ X × R, then (30) is
fulfilled. In the finite-dimensional setting, such a question is considered
in [27], Lemma 13-1 p. 122.

Theorem 6. We assume that f0, f1 ∈ APU(X×R, X), that the partial
Fréchet-differentials Dxf0(x, t) and Dxf1(x, t) exist for all (x, t) ∈ X ×
R, and that Dxf0, Dxf1 ∈ APU(X ×R,L(X,X)).
We assume that there exists u∗ ∈ AP 1(R, X) which is a solution of (29)
for which the condition (30) is fulfilled.
Then there exist ε0 > 0 and a continuously differentiable function ε 7→
uε, from (−ε0, ε0) in AP 1(R, X), such that, for all ε ∈ (−ε0, ε0), uε is
an almost periodic solution of the differential equation (28) and such
that u0 = u∗.

Proof. We introduce the operator T : AP 1(R, X) ×R → AP 0(R, X)
defined by T (u, ε) := [t 7→ u′(t)−f0(u(t), t)− ε.f1(u(t), t)]. We consider
the operator d

dt : AP 1(R, X) → AP 0(R, X) which is linear continuous.
We also consider the canonical injection in : AP 1(R, X) → AP 0(R, X),
in(u) := u, which is linear continuous. Then we see that T (u, ε) =
d
dtu−N

1
f0
◦in(u)−ε.N1

f1
◦in(u) for all (u, ε) ∈ AP 1(R, X)×R. By using

Theorem 5, we know that N1
f0

and N1
f1

are of class C1 on AP 0(R, X).
Then we obtain that T is of class C1 on AP 1(R, X)×R. We also verify
that the following equation holds:

(31) T (u∗, 0) = 0.

We calculate the partial Fréchet-differential of T with respect to its first
(functional) variable DuT (u∗, 0).v = d

dtv−DN
1
f0

(u∗).v− 0.DN1
f (u∗).v.

And we see that DuT (u∗, 0).v = b is equivalent to the differential equa-
tion v′(t) = Dxf0(u∗(t), t).v(t) + b(t) for all t ∈ R. And consequently,
(30) ensures that the following assertion holds:
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(32) DuT (u∗, 0) ∈ Isom(AP 1(R, X)×R, AP 0(R, X)).

After (31) and (32) we can use the implicit function theorem, [1] The-
orem 2.5.7. p. 107 , and conclude that there exist ε0 > 0 and a con-
tinuously differentiable function ε 7→ uε, from (−ε0, ε0) in AP 1(R, X),
such that T (uε, ε) = 0 for all ε ∈ (−ε0, ε0), that means that u′ε(t) =
f0(uε(t), t) + ε.f1(uε(t), t) for all t ∈ R, and moreover u0 = u∗.

Remark 8. Such a method based on the implicit function theorem
is used for instance in [11] for the bounded solutions of second-order
ordinary differential equations and in [8] for the periodic solutions of
Hamiltonian systems.

7. Differentiable Almost Periodic Functions

In this section, X and Y are Banach spaces.

Lemma 10. Let f ∈ APU(X × R, Y ) ∩ C1(X × R, Y ) such that its
Fréchet-differential Df ∈ APU(X × R,L(X × R, Y )). We consider
the new mapping g : X × X × R → Y defined by g(x1, x2, t) :=
Df(x1, t).(x2, 1). Then the following assertions hold.

(i) g ∈ APU((X ×X)×R, Y ).

(ii) Let n ∈ N∗, n ≥ 2. If we assume moreover that f ∈ Cn(X ×
R, Y ) and that Dif ∈ APU(X ×R,Li((X ×R)i, Y )) for all i =
1, ..., n, then g ∈ Cn−1(X×X×R, Y ) and Djg ∈ APU((X×X)×
R,Lj((X ×X ×R)j , Y )) for all j = 1, ..., n− 1.

Proof. (i) We consider the three projection mappings pr1, pr2 and pr3
on the product space X ×X ×R, and the bilinear continuous mapping
B : L(X ×R, Y )× (X ×R) → Y defined by B(ϕ, (x, t)) := ϕ(x, t). We
see that the following equality holds.

(33) g = B ◦ (Df ◦ (pr1, pr3), (pr2, c))

where c : X×X×R → R is the constant mapping c(x1, x2, t) := 1. Since
all the mappings present in the right member of (32) are continuous, g
is continuous on X ×X ×R as a composition of continuous mappings.

Now we fix C ∈ Pc(X × X) and ε > 0. We set C1 := pr1(C) and
C2 := pr2(C) which are compact subsets ofX. We chose ρ > 0 such that
‖x2‖+ 1 ≤ ρ for all x2 ∈ C2. Since we have Df ∈ APU(X ×R,L(X ×
R, Y )), we know that there exists ` = `(C2,

ε
ρ) > 0 such that, for all
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r ∈ R, there exists τ ∈ [r, r+`] satisfying ‖Df(x1, t+τ)−Df(x1, t)‖ ≤ ε
ρ

for all (x1, t) ∈ C2 ×R. Therefore we have

‖Df(x1, t+ τ).(x2, 1)−Df(x1, t).(x2, 1)‖

≤ ‖Df(x1, t+ τ)−Df(x1, t)‖.(‖x2‖+ 1) ≤ ε

ρ
.ρ = ε

for all (x1, x2, t) ∈ C1 × C2 ×R. Since we have C ⊂ C1 × C2, we have
proven that g ∈ APU((X ×X)×R, Y ).

(ii) We define the mappings Φ : X × X × R → L(X × R, Y ) and
Ψ : X×X×R → X×R by setting Φ := Df◦(pr1, pr3) and Ψ := (pr2, c),
and so by using (32), we obtain the following equality.

(34) g = B ◦ (Φ, ψ).

Then by using the chain rule for the high-order differentials, for instance
this one given in Box 2.4A in [1], p. 91, for all p = 2, ..., n, for all
(x1, x2, t) ∈ X ×X ×R, and for all zi = (xi

1, x
i
2, t

i) ∈ X ×X ×R when
i = 1, ..., n, we have the following formula:

Dpg(x1, x2, t).(z1, ...zp) =
p∑

i=0

∑
σ∈Si

p

p!
i!(p− i)!

B(DiΦ(x1, x2, t).(zσ(1), ...zσ(p)), Dp−iΨ(x1, x2, t).(zσ(i+1), ...zσ(p)))

where Si
p denotes the set of the bijections σ from {1, ..., p} in itself such

that σ(1) < ... < σ(i) and σ(i+ 1) < ... < σ(p). We note that

DiΦ((x1, x2, t).(zσ(1), ...zσ(p))Di+1f(x1, t).((x
σ(1)
1 , tσ(1)), ..., (xσ(i)

1 , tσ(i))),

and since Ψ is affine, we have Dp−iΨ(x1, x2, t) = 0 when i ≤ p− 2 and
we have D1Ψ(x1, x2, t).(δx1, δx2, δt) = (δx2, 0). And so the previous
formula for Dpg becomes the following one.

(35) Dpg(x1, x2, t).(z1, ...zp) = Dp+1f(x1, t).((x1
1, t

1), ..., (xp
1, t

p), (x2, 1))

+
p∑

i=1
Dpf(x1, t).((x1

1, t
1), ..., (xi−1

1 , ti−1), (x2, 0), (xi+1
1 , ti+1), ..., (xp

1, t
p)).

Now we fix C ∈ Pc(X × X) and ε > 0, and we consider C1 and C2

defined like in the proof of (i). We chose ρ > 0 such that ‖x2‖ ≤ ρ for all
x2 ∈ C2. Since Dp+1f ∈ APU(X×R,Lp+1((X×R)p+1, Y )) and Dpf ∈
APU(X × R,Lp((X × R)p, Y )), we have (Dp+1f,Dpf) ∈ APU(X ×
R,Lp+1((X × R)p+1, Y ) × Lp((X × R)p, Y )), and consequently there
exists ` = `(C1,

ε
(p+1)(ρ+1)) > 0 such that, for all r ∈ R, there exists τ ∈
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[r, r + `] satisfying ‖Dp+1f(x1, t+ τ)−Dp+1f(x1, t)‖Lp+1 ≤ ε
(p+1)(ρ+1)

and ‖Dpf(x1, t + τ) − Dpf(x1, t)‖Lp ≤ ε
(p+1)(ρ+1) for all x1 ∈ C1 and

for all t ∈ R. Consequently, by using (35), for all z1, ..., zp ∈ X×X×R
such that ‖zi‖ ≤ 1 when i = 1, ..., p, for all (x1, x2, t) ∈ C1 × C2 ×R,
the following inequalities hold:

‖Dpg(x1, x2, t+ τ).(z1, ...zp)−Dpg(x1, x2, t).(z1, ...zp)‖

≤ ‖(Dp+1f(x1, t+ τ)−Dp+1f(x1, t)).((x1
1, t

1), ..., (xp
1, t

p), (x2, 1)‖

+
p∑

i=1

‖(Dpf(x1, t+ τ)−Dpf(x1, t)).

((x1
1, t

1), ..., (xi−1
1 , ti−1), (x2, 0), (xi+1

1 , ti+1), ..., (xp
1, t

p))‖

≤ ‖(Dp+1f(x1, t+ τ)−Dp+1f(x1, t))‖.
p∏

i=1

(‖xi
1‖+ |ti|).(‖x2‖+ 1)

+
p∑

i=1

‖Dpf(x1, t+ τ)−Dpf(x1, t)‖.
∏

1≤j≤p,j 6=i

(‖xj
1‖+ |tj |).‖x2‖

≤ ε

(p+ 1)(ρ+ 1)
.(ρ+ 1) +

p∑
i=1

ε

(p+ 1)(ρ+ 1)
.(ρ+ 1) = ε.

And so we have proven that Dpg ∈ APU((X ×X)×R,Lp((X ×X ×
R)p, Y ))).

Theorem 7. Let n ∈ N∗ and let f ∈ APU(X ×R, Y )∩Cn(X ×R, Y )
such that Dkf ∈ APU(X × R,Lk((X × R)k, Y )) for all k = 1, ..., n.
Then the superposition operator N2

f : APn(R, X) → APn(R, Y ), de-
fined by N2

f (u) := [t 7→ f(u(t), t)], is well-defined and continuous on
APn(R, X).

Proof. We proceed by induction on n.
First Step: n = 1. We denote by in1 : AP 1(R, X) → AP 0(R, X) the
canonical injection. By using Theorem 1 we know that N1

f (in1(u)) ∈
AP 0(R, Y ) when u ∈ AP 0(R, X). The function t 7→ f(u(t), t) is differ-
entiable as a composition of differentiable functions, and we have

d

dt
f(u(t), t) = Df(u(t), t).(u′(t), 1) = g(u(t), u′(t), t)

where g is defined in Lemma 10. Since (in1(u), u′) ∈ AP 0(R, X ×X),
by using Lemma 4, we know that [t 7→ f(u(t), t)] = N1

g (in1(u), u′) ∈
AP 0(R, Y ), and so N2

f is well-defined on AP 1(R, X).

We note that, for all u, u1 ∈ AP 1(R, X), the following equality holds:
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(36) ‖N2
f (u)−N2

f (u1)‖C1 = ‖N1
f ◦ in1(u)−N1

f ◦ in1(u1)‖∞
+‖N1

g ◦ (in1,
d
dt)(u)−N1

g ◦ (in1,
d
dt)(u1)‖∞.

It is easy to see that in1 : AP 1(R, X) → AP 0(R, X) and d
dt : AP 1(R, X) →

AP 0(R, X) are linear continuous. By using Theorem 1,N1
f : AP 0(R, X) →

AP 0(R, Y ) is continuous. By using Lemma 10, we know that N1
g :

AP 0(R, X ×X) → AP 0(R, Y ) is continuous. Consequently N1
f ◦ in1 :

AP 1(R, X) → AP 0(R, Y ) andN1
g ◦(in1,

d
dt) : AP 1(R, X) → AP 0(R, Y )

are continuous as compositions of continuous operators. And so, by us-
ing (36), we deduce thatN2

f is continuous fromAP 1(R, X) inAP 1(R, Y ).

Second Step: the induction assumption. We assume that the result
is valid for an integer n ∈ N∗.

Third Step: we prove the result for n+ 1. We consider the canonical
injection inn+1 : APn+1(R, X) → APn(R, X). After Second Step we
know that the operator N2,n

f : APn(R, X) → APn(R, Y ), defined by
N2,n

f (w) := [t 7→ f(w(t), t)] is well-defined and continuous. For all
u ∈ APn+1(R, X), we have inn+1(u) ∈ APn(R, X) and consequently
we obtain N2,n

f (inn+1(u)) ∈ APn(R, Y ). By using Lemma 10, ii, we
know that g ∈ APU((X × X) × R, Y ) ∩ Cn(X × X × R, Y ), and
Djg ∈ APU(((X×X)×R,Lj((X×X×R)j , Y )) for all j = 1, ..., n. Con-
sequently by using Second Step, we know that N2

g : APn(R, X×X) →
APn(R, Y ), defined by N2

g (u1, u2) := [t 7→ g(u1(t), u2(t), t)], is well-
defined and continuous. And so, for all u ∈ APn+1(R, X) we deduce
that [t 7→ dn

dtn g(u(t), u
′(t), t)] ∈ AP 0(R, Y ), and we note that

dn

dtn
g(u(t), u′(t), t) =

dn

dtn
(
d

dt
f(u(t), t)) =

d

dt
(
dn

dtn
f(u(t), t)),

that implies the following equality:

(37) dn

dtn g(u(t), u
′(t), t) = dn+1

dtn+1 f(u(t), t).

>From this equality we obtain that [t 7→ f(u(t), t)] ∈ APn+1(R, Y )
when u ∈ APn+1(R, X), that permits to say that the operator N2,n+1

f :
APn+1(R, X) → APn+1(R, Y ), defined byN2,n+1

f (u) := [t 7→ f(u(t), t)],
is well-defined.

Now we treat the continuity of N2,n+1
f . For all u, u1 ∈ APn+1(R, X)

we note that the following majorizations hold:

‖N2,n+1
f (u)−N2,n+1

f (u1)‖Cn+1

= ‖N2,n
f (inn+1(u))−N2,n

f (inn+1(u1))‖Cn
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+sup
t∈R

‖ d
n+1

dtn+1
f(u(t), t)− dn+1

dtn+1
f(u1(t), t)‖

= ‖N2,n
f ◦ inn+1(u)−N2,n

f ◦ inn+1(u1)‖Cn

+sup
t∈R

‖ d
n

dtn
g(u(t), u′(t), t)− dn

dtn
g(u1(t), u′1(t), t)‖

≤ ‖N2,n
f ◦ inn+1(u)−N2,n

f ◦ inn+1(u1)‖Cn

+‖N2,n
g (inn+1(u),

d

dt
u))−N2,n

g (inn+1(u1),
d

dt
u1))‖Cn .

And since N2,n
f , N2,n

g , inn+1 and d
dt are continuous operators, the com-

positionsN2,n
f ◦inn+1 andN2,n

g ◦(inn+1,
d
dt) are also continuous. Then by

using the last previous inequalities, we deduce thatN2,n+1
f : APn+1(R, X) →

APn+1(R, Y ) is continuous.

Before to treat the differentiability of the nonlinear operator N2
f we

need an additional lemma of differential calculus.

Lemma 11. Let Ψ ∈ Cn+1(X × R, Y ), with n ∈ N∗, and let p, q ∈
Cn(R, X).
Then, for all (ε, t) ∈ R×R, the following equality holds:

d

dε

dn

dtn
Ψ(p(t) + ε.q(t), t) =

dn

dtn
d

dε
Ψ(p(t) + ε.q(t), t).

Proof. We proceed by induction on n ∈ N∗.
First Step: n = 1. By doing a straightforward calculation, we verify that
d
dε

d
dtΨ(p(t) + ε.q(t), t) and d

dt
d
dεΨ(p(t) + ε.q(t), t) are both equal to

D2Ψ(p(t)+ε.q(t), t).((q(t), 0), (p′(t)+ε.q′(t), 1))+DΨ(p(t)+ε.q(t), t).((q′(t), 0)).

Second Step: induction assumption on n− 1.
Third Step: the case n. We use the induction assumption on the map-
ping Ψ1 ∈ Cn((X×X)×R, Y ) defined by Ψ1((p1, p2), t) := DΨ(p1, t).(p2, 1).
And so we have the equality:

d

dε

dn−1

dtn−1
Ψ1((p(t), p′(t)) + ε.(q(t), q′(t)), t)

=
dn−1

dtn−1

d

dε
Ψ1((p(t), p′(t)) + ε.(q(t), q′(t)), t).

Note that

Ψ1((p(t), p′(t))+ε.(q(t), q′(t)), t) = DΨ(p(t)+ε.q(t), t).((p′(t)+ε.q′(t), 1)
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=
d

dt
Ψ(p(t) + ε.q(t), t),

and so we obtain the following equality:

d

dε

dn−1

dtn−1

d

dt
Ψ(p(t) + ε.q(t), t) =

dn−1

dtn−1

d

dε

d

dt
Ψ(p(t) + ε.q(t), t).

Then by using the symmetry of the second differential of (t, ε) 7→
Ψ(p(t) + ε.q(t), t), we deduce from the previous equality the following
ones:

d

dε

dn

dtn
Ψ(p(t) + ε.q(t), t) =

dn−1

dtn−1

d

dt

d

dε
Ψ(p(t) + ε.q(t), t)

=
dn

dtn
d

dε
Ψ(p(t) + ε.q(t), t).

Remark 9. This last lemma is in the spirit of a classical result on
second-order partial derivatives like it is exposed in [25], Theorem 3.3
p. 92. Note that we cannot simplify the proof of Lemma 11 by saying
that the function (ε, t) 7→ ψ(p(t)+ε.q(t), t) is (n+1)-times differentiable
and by using the symmetry of the total differential of order n+ 1.

Theorem 8. Let f ∈ APU(X × R, Y ) ∩ Cn+1(X × R, Y ) such that
Dkf ∈ APU(X ×R,Lk((X ×R)k, Y )) for all k = 1, ..., n+ 1.
Then the superposition operator N2

f : APn(R, X) → APn(R, Y ), de-
fined by N2

f (u) := [t 7→ f(u(t), t)], is continuously differentiable on
APn(R, X), and for all u, v ∈ APn(R, X) we have: DN2

f (u).v = [t 7→
Dxf(u(t), t).v(t)].

Proof. By using the high-order chain rule, [1] p. 92, we know that,
when u ∈ APn(R, X) and 1 ≤ k ≤ n, by setting U(t) := (u(t), t),
dk

dtk
f(u(t), t) = Dk(f ◦U)(t).(1, ..., 1) is equal to a linear combination of

terms if the following form:

Dif(U(t)).(Dj1U(t).(1, ..., 1), ..., DjiU(t).(1, ..., 1))

= Dif(U(t)).(
dj1

dtj1
U(t), ...,

dji

dtji
U(t))

= Dif(u(t), t).((
dj1

dtj1
u(t), θj1), ..., (

dji

dtji
u(t), θji))

where θjm is equal to zero or to 1.

The operator u 7→ djm

dtjm u is continuously differentiable fromAPn(R, X)
in AP 0(R, X) since it is linear continuous. The operator u 7→ θjm is
continuously differentiable from APn(R, X) in AP 0(R, X) since it is
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constant. When j ≤ k ≤ n, we have Djf continuously differentiable
and by using Theorem 4 we know that N1

Djf is continuously differ-
entiable from AP 0(R, X) in AP 0(R, X). The canonical injection inn

from APn(R, X) in AP 0(R, X) is continuously differentiable since it is
linear continuous. And then the operator u 7→ [t 7→ Djf(u(t), t)] which
is equal to N1

Djf ◦ inn is continuously differentiable as a composition
of continuously differentiable operators. The operator Mi : Li((X ×
R)i, Y )×(X×R)i → Y , defined byMi(T, (z1, ..., zi)) := T.(z1, ..; , zi), is
continuously differentiable since it is n-linear continuous. Consequently
the operator

u 7→ [t 7→ Dif(u(t), t).((
dj1

dtj1
u(t), θj1), ...,

dji

dtji
u(t), θji)]

is continuously differentiable from APn(R, X) in AP 0(R, Y ) as a com-
position of continuously differentiable operators. And since a combi-
nation of continuously differentiable operators is continuously differen-
tiable, we can assert that the following assertion holds.

(38) The operator Sk : APn(R, X) → AP 0(R, Y ), defined by
Sk(u) := [t 7→ dk

dtk
f(u(t), t)], is continuously differentiable.

Now we fix u ∈ APn(R, X). From (38) we know that the following
assertion holds:

(39) For all k = 1, ..., n and for all ε > 0 there exists ηk
ε > 0 such that

, for all v ∈ APn(R, X), if ‖v‖Cn ≤ ηk
ε then we have

supt∈R ‖ dk

dtk
f(u(t)+v(t), t)− dk

dtk
f(u(t), t)−(DSk(u).v)(t)‖ ≤ ε.‖v‖Cn .

By using Theorem 4 and the Fréchet-differentiability of N1
f ◦ inn note

that the assertion (39) remains valid for k = 0. Since Sk is Fréchet-
differentiable at u, we know that DSk(u).v = d

dε |ε=0
Sk(u + ε.v) which

means that

lim
ε→0

sup
t∈R

‖1
ε
(
dk

dtk
f(u(t) + ε.v(t), t)− dk

dtk
f(u(t), t))− (DSk(u).v)(t)‖ = 0

and so we have, for all t ∈ R,

lim
ε→0

(
1
ε
(
dk

dtk
f(u(t) + ε.v(t), t)− dk

dtk
f(u(t), t))−DSk(u).v)(t)) = 0

that gives us the following equality

(40) (DSk(u).v)(t) = d
dε |ε=0

dk

dtk
f(u(t) + ε.v(t), t) for all t ∈ R.
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And then, by using Lemma 11, and by noting that we have d
dε |ε=0

f(u(t)+
ε.v(t), t) = Dxf(u(t), t).v(t), we obtain

(41) (DSk(u).v)(t) = dk

dtk
(Dxf(u(t), t).v(t)) for all t ∈ R.

And so by using (39), (41) and Theorem 4, by setting ηε := min0≤k≤n η
k
ε/n+1 >

0, we obtain that for all ε > 0 there exists ηε > 0 such that for all
v ∈ APn(R, X), if ‖v‖Cn ≤ ηε then we have

‖N2
f (u+ v)−N2

f (u)− Λ(u).v‖Cn =

n∑
k=0

sup
t∈R

‖ d
k

dtk
f(u(t)+v(t), t)− dk

dtk
f(u(t), t))− dk

dtk
(Dxf(u(t), t).v(t))‖ ≤ ε

that proves the Fréchet-differentiability of N2
f at u and that we have

DN2
f (u).v = [t 7→ Dxf(u(t), t).v(t)]. To establish the continuity of N2

f
we begin to note that, when u, u1, v ∈ APn(R, X) with ‖v‖Cn ≤ 1, the
following inequalities hold:

‖DN2
f (u).v −DN2

f (u1).v‖Cn

n∑
k=0

sup
t∈R

‖ d
k

dtk
(Dxj(u(t), t).v(t))−

dk

dtk
(Dxj(u1(t), t).v(t))‖

=
n∑

k=0

sup
t∈R

‖(DSk(u).v)(t)− (DSk(u1).v)(t)‖

=
n∑

k=0

‖DSk(u).v −DSk(u1).v‖∞

≤
n∑

k=0

‖DSk(u)−DSk(u1)‖L(AP n(R,X),AP 0(R,X)).

And by taking the supremum on the v ∈ APn(R, X) such that ‖v‖Cn ≤
1, we obtain the following inequality:

‖DN2
f (u).v −DN2

f (u1).v‖L(AP n(R,X),AP n(R,X))

≤
n∑

k=0

‖DSk(u)−DSk(u1)‖L(AP n(R,X),AP 0(R,X)).

And since the DSk are continuous we deduce from the last inequality
that DN2

f is continuous.
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8. Asymptotically Almost Periodic Functions

In this section, X and Y are Banach spaces.

Lemma 12. Let f ∈ AAPU(X × R+, Y ) and K ∈ Pc(X). Then the
restriction of f to K ×R+ is uniformly continuous.

Proof. We fix ε > 0 and we consider T = T (K, ε
3) ≥ 0 and ` =

`(K, ε
3) > 0 provided by the definition of f ∈ AAPU(X ×R+, Y ); see

Section 2. Since [0, T + `+2] is compact, the product K × [0, T + `+2]
is also compact, and by using the classical Heine theorem, we know
that the restriction of f at this product is uniformly continuous, that
permits to obtain the following assertion.

(42) There exists η ∈ (0, 1) such that, for all x1, x2 ∈ K and for all
t1, t2 ∈ [0, T + `+ 2], if ‖x1 − x2‖ ≤ η and if |t1 − t2| ≤ η then we
have ‖f(x1, t1)− f(x2, t2)‖ ≤ ε

3 .

Now we fix x1, x2 ∈ K such that ‖x1 − x2‖ ≤ η and t1, t2 ∈ R+ such
that |t1 − t2| ≤ η.

First case: t1, t2 ∈ [0, T ]. Then by using (42) we have ‖f(x1, t1)−f(x2, t2)‖ ≤
ε
3 ≤ ε.

Second case: t1 ∈ [0, T ] and t2 > T . Note that we have t2 − t1 = |t1 −
t2| ≤ η < 1, that implies t2 ≤ t1 + 1 ≤ T + 1 ≤ T + `+ 2, and then by
using (42) we obtain ‖f(x1, t1)− f(x2, t2)‖ ≤ ε

3 ≤ ε.

Third case: t1 > T and t2 > T . We set r := −t1 +T +1, and then there
exists τ ∈ [r, r + `] such that ‖f(z, t + τ) − f(z, t)‖ ≤ ε

3 for all z ∈ K
and for all t ≥ T .
We note that −t1 + T + 1 ≤ τ ≤ −t1 + T + 1 + ` that implies T + 1 ≤
t1 + τ ≤ T + 1 + ` ≤ T + ` + 2, and we also note that t2 + τ ≤
t1 + η + τ ≤ t1 + 1 + τ ≤ T + `+ 2. Then by using (42) we obtain the
following inequality.

(43) ‖f(x1, t1 + τ)− f(x2, t2 + τ)‖ ≤ ε
3 .

By taking into account the role of T , since t1 ≥ T and t2 ≥ T we obtain
the following inequalities.

(44) ‖f(x1, t1 + τ)− f(x1, t1)‖ ≤ ε
3 and ‖f(x2, t2 + τ)− f(x2, t2)‖ ≤ ε

3 .

By using (43) and (44) we have:

‖f(x1, t1)−f(x2, t2)‖ ≤ ‖f(x1, t1)−f(x1, t1+τ)‖+‖f(x1, t1+τ)−f(x2, t2+τ)‖

+‖f(x2, t2 + τ)− f(x2, t2)‖ ≤ 3
ε

3
= ε.
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The previous proof is very similar to the proof of proposition 10,
p.42, in [42].

Lemma 13. Let f ∈ AAPU(X×R+, Y ). Then for all K ∈ Pc(X) and
for all ε > 0 there exists δ = δ(K, ε) > 0 such that, for all x ∈ K and
for all z ∈ X, if ‖x− z‖ ≤ δ then we have ‖f(x, t)− f(z, t)‖ ≤ ε for all
t ∈ R+.

The proof of Lemma 13 is similar to this one of Lemma 6, by
replacing the use of Lemma 1 by the use of Lemma 12.

Lemma 14. Let f ∈ AAPU(X ×R+, Y ) and u ∈ AAP (R+, X). Then
we have [t 7→ f(u(t), t)] ∈ AAP (R+, Y ).

This result is due to Zaidman [28]; it permits us to define the follow-
ing superposition operator

(45) N3
f : AAP (R+, X) → AAP (R+, Y ), N3

f (u) := [t 7→ f(u(t), t)].

Theorem 9. Let f : X×R+ → Y be a mapping. Then the two following
assertions are equivalent.

(i) f ∈ AAPU(X ×R+, Y ).

(ii) The superposition operator N3
f , defined in (45), is continuous from

AAP (R+, X) in AAP (R+, Y ).

Proof. (i =⇒ ii). We fix u ∈ AAP (R+, X) and ε > 0. We set K :=
u(R+). We know that K ∈ Pc(X), [42] Lemma p. 37. Then we consider
δ = δ(K, ε) > 0 provided by Lemma 13. When v ∈ AAP (R+, X) is such
that ‖v − u‖∞ ≤ δ, then by using Lemma 13 we obtain ‖f(v(t), t) −
f(u(t), t)‖ ≤ ε for all t ≥ 0, that means: ‖N3

f (v)−N3
f (u)‖∞ ≤ ε.

(ii =⇒ i). Since N3
f (AAP (R+, X) ⊂ AAP (R+, Y ), when x ∈ X we

define ux(t) := x for all t ≥ 0, and since we have ux ∈ AAP (R+, X), we
obtain that t 7→ f(x, t) = f(ux(t), t) = N3

f (ux)(t) lies to AAP (R+, Y ).
And consequently we obtain the following assertion.

(46) For all x ∈ X, f(x, .) ∈ AAP (R+, Y ).

We consider the operator U : x 7→ ux from X in AAP (R+, X). Since U
is a linear isometry, U is continuous and consequently the composition
N3

f ◦U is continuous fromX inAAP (R+, Y ). Note that (N3
f ◦U(x))(t) =

f(ux(t), t) = f(x, t) and so we have:

(47) The mapping x 7→ f(x, .) is continuous from X in AAP (R+, Y ).

Consequently, when we fix K ∈ Pc(X), x 7→ f(x, .) is uniformly con-
tinuous on K that gives us the following assertion.
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(48) For all K ∈ Pc(X) and for all ε > 0 there exists η = η(K, ε) > 0
such that, for all x, z ∈ K, if ‖x−z‖ ≤ η implies ‖f(x, t)−f(z, t)‖ ≤
ε
3 for all t ∈ R+.

We fixK ∈ Pc(X) and we consider a finite list of elements x1, x2, ..., xn ∈
K such that K ⊂

⋃n
i=12B(xi, η) where η is provided by (48). After

(46) we know that f(xi, .) ∈ AAP (R+, Y ) fro all i = 1, ..., n. It is
easy to see that (0, ..., 0, f(xi, .), 0, ..., 0) ∈ AAP (R+, Y

n), and since
a finite sum of asymptotically almost periodic functions is asymptoti-
cally almost periodic, we obtain that (f(x1, .), ..., f(xi, .), ...f(xn, .)) =∑n

i=1(0, ..., 0, f(xi, .), 0, ..., 0) ∈ AAP (R+, Y
n), and so we have the fol-

lowing assertion.

(49) For all ε > 0 there exist ` > 0 and T ≥ 0 such that, for all r ∈ R,
there exists τ ∈ [r, r+ τ ] satisfying ‖f(xi, t+ τ)− f(xi, t)‖ ≤ ε

3 for
all t ≥ T and for all i = 1, .., n.

Let x ∈ K. We choose j between 1 and n such that ‖x−xj‖ ≤ η. Then
when t ≥ T , by using (48) and (49) we obtain the following inequalities:

‖f(x, t+τ)−f(x, t)‖ ≤ ‖f(x, t+τ)−f(xj , t+τ)‖+‖f(xj , t+τ)−f(xj , t)‖

+‖f(xj , t)− f(x, t)‖ ≤ 3
ε

3
= ε,

that provides the following assertion

(50) For all K ∈ Pc(X) and for all ε > 0 there exist ` > 0 and T ≥
0 such that, for all r ∈ R, there exists τ ∈ [r, r + τ ] satisfying
‖f(x, t+ τ)− f(x, t)‖ ≤ ε

3 for all t ≥ T and for all x ∈ K.

Note that (50) is the second condition on f to belong to AAPU(X ×
R+, Y ). Now it suffices to prove that f is continuous on X × R. Let
((xn, tn))n be a sequence of elements of X×R+ which converges toward
(x∗, t∗). For all n ∈ N, we have

‖f(xn, tn)−f(x∗, t∗)‖ ≤ ‖f(xn, tn)−f(x∗, tn)‖+‖f(x∗, tn)−f(x∗, t∗)‖

≤ ‖f(xn, .)− f(x∗, .)‖∞ + ‖f(x∗, tn)− f(x∗, t∗)‖.

By using (47) we have limn→∞ ‖f(xn, .)− f(x∗, .)‖∞ = 0, and by using
(46) we know that f(x∗, .) is continuous and so we have limn→∞ ‖f(x∗, tn)−
f(x∗, t∗)‖ = 0. Then by using the last previous inequalities we obtain
limn→∞ f(xn, tn) = f(x∗, t∗) that proves the continuity of f.

We note that the previous proof of (i =⇒ ii) is similar to the second
proof of Theorem 1 given in Section 3.
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Theorem 10. Let f ∈ AAPU(X×R+, Y ) such that the partial Fréchet-
differential Dxf(x, t) exists for all (x, t) ∈ X×R+ and such that Dxf ∈
AAPU(X ×R+,L(X,Y )).
Then the superposition operator N3

f , defined in (45), is continuously
Fréchet-differentiable from AAP (R+, X) in AAP (R+, Y ), and we have
DN3

f (u).v = [t 7→ Dxf(u(t), t).v(t)] for all u, v ∈ AAP (R+, X).

The proof of Theorem 10 is similar to this one of Theorem 4 by re-
placing the use of Theorem 1 by the use of Theorem 9, and by replacing
the use of Lemma 4 by the use of Lemma 14.

9. Almost Automorphic Functions

In this section, X is a complete metric space and Y is a Banach space.

Lemma 15. Let Ω be a subset of X. If φ ∈ C0(Ω, Y ) and if v ∈
AA(R, X) is such that v(R) is contained in Ω, then we have φ ◦ v ∈
AA(R, Y ).

Lemma 15 is Theorem 2.1.5, p. 14 in [33].

Lemma 16. Let f ∈ AAU(X × R, Y ), K ∈ Pc(X), and n ∈ N∗.
Then there exist Nn ∈ N∗, cnj ∈ C0(K,R) and an

j ∈ AA(R, Y ) for all
j = 1, ..., Nn such that the following approximation holds.

(51) ‖
Nn∑
j=1

cnj (x)an
j (t)− f(x, t)‖ ≤ 1

n for all x ∈ K and for all t ∈ R.

Proof. By using Remark 2, we have Φ ∈ C0(X,AA(R, Y )) where
Φ(x) := [t 7→ f(x, t)]. Consequently, Φ(K) is a compact subset of
AA(R, Y ). Then by using the Schauder’s approximation theorem, cf.
Remarque 1, p. 90, in [18] or p. 116-117 in [26], we can assert that there
exists Φn : K → Y , Φn(x) :=

∑Nn
j=1 c

n
j (x)an

j , where cnj ∈ C0(K,R) and
an

j ∈ AA(R, Y ) for all j = 1, ..., Nn, such that ‖Φ(x) − Φn(x)‖∞ ≤ 1
n

for all x ∈ K, that proves the lemma.

Remark 10. The converse of Lemma 16 is obviously true, but we will
not use it.

Lemma 17. Let f ∈ AAU(X × R, Y ) and u ∈ AA(R, X). Then we
have [t 7→ f(u(t), t)] ∈ AA(R, Y ).

Proof. We set K := u(R) which is compact [33], Theorem 2.1.3 (v) p.
12. Let c ∈ C0(K,R) and a ∈ AA(R, Y ). We denote by p : R × Y →
Y the bilinear continuous mapping p(t, y) := ty, and we define the
function v : R → R × Y by setting v(t) := (c(u(t)), a(t)). By using
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Lemma 15 we know that c ◦ u is almost automorphic, and by using the
definition of the almost automorphy, we see that v ∈ AA(R,R × Y ).
Since c(u(t))a(t) = p ◦ v(t) for all t ∈ R, we have proven the following
assertion.

(52) [t 7→ c(u(t))a(t)] ∈ AA(R, Y ) when c ∈ C0(K,R) and a ∈
AA(R, Y ).

We consider the mapping fn(x, t) :=
∑Nn

j=1 c
n
j (x)an

j (t) provided by Lemma
16. Since a finite sum of almost automorphic functions is almost auto-
morphic too ([33] Theorem 2.1.3 p. 12), by using (52) we obtain that
[t 7→ fn(u(t), t)] ∈ AA(R, Y ). By using (51) we obtain that ‖fn(u(t), t)−
f(u(t), t)‖ ≤ 1

n for all t ∈ R, and consequently [t 7→ f(u(t), t)] is almost
automorphic as a uniform limit of a sequence of almost automorphic
functions, [33] Theorem 2.1.10.

When f ∈ AAU(X × R, Y ) Lemma 17 permits us to define the
following superposition operator.

(53) N4
f : AA(R, X) → AA(R, Y ), N4

f (u) := [t 7→ f(u(t), t)].

Lemma 18. Let f ∈ AAU(X × R, Y ). Then for all K ∈ Pc(X) and
for all ε > 0, there exists δ = δ(K, ε) > 0 such that, for all x ∈ K and
for all z ∈ X, if d(x, z) ≤ δ then we have d(f(x, t), f(z, t)) ≤ ε for all
t ∈ R.

The proof of Lemma 18 is similar to this one of Lemma 6 by obtaining
(8) from (2).

Theorem 11. Let f : X×R → Y be a mapping. Then the two following
assertions are equivalent.

(i) f ∈ AAU(X ×R, Y ).

(ii) The superposition operator N4
f , defined in (53), is continuous from

AA(R, X) in AA(R, Y ).

Proof. (i =⇒ ii). The proof of this implication is similar to the second
proof of Theorem 1 by replacing the use of Lemma 6 by this one of
Lemma 18.
(ii =⇒ i). For all x ∈ X, we consider the constant function ux :
R → X defined by ux(t) := x. Then we have ux ∈ AA(R, X), and
since N4

f (AA(R, X)) ⊂ AA(R, Y ), we obtain that f(x, .) = N4
f (ux) ∈

AA(R, Y ), and so (1) is satisfied. Since the mapping U : X → AA(R, X),
defined by U(x) := ux, is continuous, and since N4

f is continuous, the
composition N4

f ◦ U is also continuous on X. Then by using the Heine
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theorem, for all K ∈ Pc(X), the mapping [x 7→ f(x, .) = N4
f ◦ U(x)]

is uniformly continuous on K, that is exactly (2). And so we have
f ∈ AAU(X ×R, Y ).

Theorem 12. We assume that X and Y are Banach spaces. Let f ∈
AAU(X ×R, Y ) such that the partial Fréchet-differential Dxf(x, t) ex-
ists for all (x, t) ∈ X×R, and such that Dxf ∈ AAU(X×R,L(X,Y )).
Then the superposition operator N4

f , defined in (53), is continuously
Fréchet-differentiable from AA(R, X) in AA(R, Y ), and we have
DN4

f (u).v = [t 7→ Dxf(u(t), t).v(t)] for all u, v ∈ AA(R, X).

The proof of Theorem 12 is similar to this one of Theorem 4 by
replacing the use of Theorem 1 by this one of Theorem 11, and the use
of Lemma 4 by this one of contidion (2).
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