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Abstract

We build spaces of q.p. (quasi-periodic) functions and we establish some of their

properties. They are motivated by the Percival approach to q.p. solutions of

Hamiltonian systems. We use this approach to obtain some regularization theo-

rems of weak q.p. solutions of Differential Equations. For a large class of Differ-

ential Equations, the first theorem gives a result of density: a particular form of

perturbated equations have strong solutions. The second theorem gives a condi-

tion which insures that any essentially bounded solution is a strong one.
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Introduction

The question of the existence of a.p. (almost periodic) solutions of ODE
(Ordinary Differential Equations) is a hard problem. On the a.p. solutions
of dissipative systems, a large literature exists [26], but on the a.p. solutions
of Lagrangian Systems (or Hamiltonian systems), the situation is different.
During the last decennies, the methods of Nonlinear Functional Analysis
have provided powerful results to treat the existence of periodic solutions of
Hamiltonian systems [30]. After that, methods of Nonlinear Analysis have
arose to treat the existence of a.p. solutions of Hamiltonian Systems.
In this viewpoint, the question is to define spaces of the a.p. functions, func-
tionals or operators on these functions spaces such that the critical points of
functionals, or the fixed points of operators, coincide with the a.p. solutions
of the considered ODE.
About the spaces of a.p. functions, there exist several constructions.
Denoting by AP 1(IRN) the (Banach) space of the Bohr-a.p. functions which
possess a Bohr-a.p. derivative, we can consider functionals of the form:
J(x) :=M{L(·, x, ẋ)}, whereM{ϕ} = lim

T→∞
1

2T

∫ T
−T ϕ(t)dt and L : IR×IRN×

IRN → IR such that their critical points in AP 1(IRN) are exactly the a.p. so-
lutions of the Euler-Lagrange equation: Lx(t, x(t), ẋ(t)) = d

dt
Lẋ(t, x(t), ẋ(t)).

This approach, called Calculus of Variations in Mean Time, permits to ob-
tain results, essentially when L(t, ·, ·) is convex (or concave), [9].
But AP 1(IRN) does not possess good properties, notably it is not reflexive.
And so, it becomes natural to build Hilbertian spaces of a.p. functions.
B1,2(IRN) is the Hilbert space of the (classes of) Besicovitch-a.p. functions
which possess a Besicovitch-a.p. generalized derivative [10, 13]. Associ-
ated to this space, we have a notion of weak a.p. solution: Lx(·, x, ẋ) ∼2

∇Lẋ(·, x, ẋ), where ∇x denotes the generalized derivative of x, and φ ∼2 ψ
means M{|φ− ψ|2} = 0. This notion of weak a.p. solution means also that
the Fourier-Bohr series of Lx(·, x, ẋ) is equal to the formal derivative of the
Fourier-Bohr series of Lẋ(·, x, ẋ).
This Hilbertian approach have permitted to obtain existence results of weak
a.p. solutions (in B1,2) [12,13] and also resuls of density of strong a.p. solu-
tions [11] in the following sense: when b ∈ AP 0(IRN), for each ε > 0, we can
find bε ∈ AP 0(IRN) such that d(b, bε) < ε and such that there exists a strong
a.p. solution to Lx(t, x(t), ẋ(t))− d

dt
Lẋ(t, x(t), ẋ(t)) = bε(t).
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The use of the space B1,2 can be considered like a step towards the strong a.p.
solutions. Naturally, it motivates the question of the regularization of weak
a.p. solutions into strong a.p. solutions. One of the difficulties in the use of
the space B1,2 is the absence of results like theorem of Sobolev imbeddings.
This is due to the presence of small divisors.
There exists an another viewpoint on the spaces of a.p. functions described
into the works of [4] which consider hilbertian spaces with an additional
restrictive condition on the Fourier-Bohr exponents in order to ensure a the-
orem of Sobolev imbedding. The counterpart of this gain is the unstability
of these spaces for nonlinear operators, that induces a notion of weak a.p.
solution with a correcting term in the ODE.
Some deep contributions to the study of of this type of functions spaces are
due to Avantaggiati and alii [2,3, 25].
In this short list of functions spaces useful to the study of the a.p. solutions
of ODE, we must talk about the spaces BP k(IRN), the spaces of the Bohr-
a.p. functions which possess bounded primitives until order k, introduced
by J. Mawhin [28], [29]. These spaces permit to obtain strong a.p. solu-
tions. Among the a.p. solutions, it is classical to distinguish the classes of
q.p. (quasi-periodic) functions. The q.p. functions are related to the famous
problem of the invariant tori and to the famous KAM method. There exists
perturbative methods to study the q.p. solutions of Lagrangian systems [15].
In a radically different spirit, there exists a variational approach due to Per-
cival [33].

In the present work, we adapt to the q.p. functions the spaces B1,2 and more
generally Bp,2. We give several equivalent constructions to these spaces, and
we establish a process of regularization (of the weak a.p. solutions) special
to the q.p. solutions.

Let ω = (ω1, ω2, ..., ωm) be a list of m ZZ-linearly independent real numbers.
Let F : IR1+Np −→ IRN a Bohr q.p. (quasi-periodic) function depending
uniformly on parameters such that ω is a ZZ-basis of its module of frequencies.
We assume that F satisfies the following Lipschitz condition:

∃c ∈ (0,∞),∀t ∈ IR, ∀(ξi)i ∈ (IRN)p,∀(ζi)i ∈ (IRN)p,
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|F (t, ξ1, ..., ξp)− F (t, ζ1, ..., ζp)| ≤ c
p∑
i=1

|ξi − ζi|. (1)

From it, we formulate the following forced ordinary differential equation:

q(p)(t) = F (t, q(t), ..., q(p−1)(t)). (2)

We seek q.p. solutions of (2) with a module of frequencies generated by ω.

To study this problem, we associate to F a function Φ : IRm+Np −→ IRN

periodic with respect to its m first variables such that Φ(tω, α1, ..., αp) =
F (t, α1, ..., αp), and we seek periodic solutions u : IRm −→ IRN of the follow-
ing partial differential equation:

∂pωu(x) = Φ(x, u(x), ..., ∂p−1
ω u(x)), (3)

where ∂ωu :=
m∑
j=1

ωj
∂u
∂xj

and ∂pωu := ∂p−1
ω (∂ωu) .

We shall use a notion of weak q.p. solution of (2), i.e. a solution of the
following equation:

∇pq ∼2 F (., q, ...,∇p−1q). (4)

in the sense defined in [10] and [13] that we recall in Section 1.

We shall also use a notion of weak periodic solution of (3), i.e. a solution of
the following equation

∂pωu(x) = Φ(x, u(x), ..., ∂p−1
ω u(x)), (5)

which is an equality of distributions whose sense will be precised in Section
2.

The idea to use (3) to study (2) was expressed in [33], but, in this paper,
Percival does not build any existence result by using this idea. In [6, 7],
Berger and Zhang constructed adequate functions spaces and provided some
existence results of weak and strong q.p. solutions of forced second-order
Lagrangian systems (with coercive potentials) by using this way.
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Now we describe the contents of the present paper.

In Section 1, we recall some notations and some notions about the Bohr a.p.
(almost periodic), the Besicovitch a.p. functions, the generalized derivatives
of the Besicovitch a.p. functions, and about various spaces of periodic func-
tions defined on IRm.

In Section 2, we define a notion of generalized Gâteaux variation, denoted
by ∇ω or ∂ω, that we introduce as the infinitesimal generator of a group
of transformations. We prove that this notion of derivative coincides with
a distributional notion and with a notion of generalized derivative like a
Sobolev derivative. And so we can define a space of periodic functions on
IRm which is like a Sobolev space that we denote by H1

ω(TTm, IRN). This
space coincides with a space introduced by Berger and Zhang.

In Section 3, we study the relations between various classes of q.p. functions
defined on IR and various classes of periodic functions defined on IRm.

In Section 4, we extend the relation shown in Section 3 to the case of quasi-
periodic functions depending uniformly on parameters.

In Section 5, given u ∈ H1
ω(TTm, IRN), we study the absolute continuity of

the associated functions t 7−→ u(tω + ξ).

In Section 6, we study the relations between the q.p. solutions of (2) and (3)
and the periodic solutions of (4) and (5).

1 Notations and usual functions spaces

We denote by BC0(IR, IRN) the space of the bounded continuous functions
from IR in IRN , and by ‖.‖∞ the norm of the supremum on this space.
When r ∈ IN ∪ {∞}, BCr(IR, IRN) denotes the space of the functions f ∈
Cr(IR, IRN) such that f and all its derivatives, until order r, belong to
BC0(IR, IRN). Hr

loc(IR, IR
N) = W r,2

loc (IR, IRN) denotes the usual Sobolev space.

Let f ∈ L1
loc(IR, IR

N). The mean value of f (when it exists) is the following
vector of IRN :

M{f} =M{f(t)}t := lim
T→∞

(2T )−1
∫ T

−T
f(t)dt,
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and, when N = 1, the upper mean value of f is the following scalar quantity:

M{f} =M{f(t)}t := lim sup
T→∞

(2T )−1
∫ T

−T
f(t)dt.

When f : IRm −→ IRN and when p ∈ IRm, the translation of f by p is the
following function:

τpf : IRm −→ IRN , τpf(x) := f(x+ p).

We denote by TP (lCN) the space of the trigonometric polynomials with coef-

ficients in lCN , i.e. f ∈ TP (lCN) means that f : IR −→ lCN , f(t) =
n∑
`=0

c`e
iλ`t,

with c` ∈ lCN , and λ` ∈ IR.

The space of the Bohr a.p. functions [8, Chapter I] and [18, Chapter VI]
from IR in IRN is denoted by AP 0(IRN). When r ∈ IN∪{+∞}, AP r(IRN) is
the space of the functions f ∈ Cr(IR, IRN) such that f and all its derivatives,
until order r, belong to AP 0(IRN).

When α ∈ [1,∞), Bα(IRN) denotes the space of the Besicovitch a.p. func-
tions from IR in IRN [8, Chapter II]. We recall that Bα(IRN) is a quotient
space, and when f and g are representants of the same element of Bα(IRN),
we set f ∼α g, that means: M{‖f(t)− g(t)‖α}t = 0.
Following [10, 13], when f ∈ B2(IRN), we denote by ∇f (when it exists) the
following limit in B2(IRN):

∇f = lim
s→0

s−1(τsf − f),

and B1,2(IRN) := {f ∈ B2(IRN) : ∇f exists in B2(IRN)}. We can iterate
this process to define

Br+1,2(IRN) := {f ∈ Br(IRN) : ∇(∇rf) exists in B2(IRN)},

and ∇r+1f := ∇(∇rf).

When f belongs to AP r(IRn) or to B2(IRN), we associate to f its Fourier-
Bohr series [8]:

f(t) ∼2

∑
λ∈IR

a(f ;λ)eiλt,
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where a(f ;λ) := M{f(t)e−iλt}t ∈ lCN , and we define Λ(f) := {λ ∈ IR :
a(f ;λ) 6= 0}, and Mod(f) := ZZ〈Λ(f)〉 the ZZ-module generated by Λ(f) in
IR.

When M is a ZZ-module in IR, we define the following spaces:

AP r(IRN ,M) := {f ∈ AP r(IRN) : Mod(f) ⊂M}

B2(IRN ,M) := {f ∈ B2(IRN) : Mod(f) ⊂M}

Br,2(IRN ,M) := {f ∈ Br,2(IRN) : Mod(f) ⊂M},

and, denoting by ZZ〈ω〉 the ZZ-module generated by {ωj : j = 1, ...,m},

AP r
ω(IRN) := AP r(IRN , ZZ〈ω〉)

B2
ω(IRN) := B2(IRN , ZZ〈ω〉)

Br,2
ω (IRN) := Br,2(IRN , ZZ〈ω〉).

Now, we consider some spaces of functions defined on IRm.
When r ∈ IN ∪ {∞}, Cr

c (IR
m, IR) denotes the space of the functions of

Cr(IRm, IR) whose support is compact. D(IRm) := C∞c (IRm, IR), and the
topological space D(IRm)∗ is the space of the distributions of L. Schwartz on
IRm [36].

P (TTm, lCN) denotes the space of the functions u : IRm −→ lCN in the following
form:

u(x1, ..., xm) =
n1∑
k1=1

...
nm∑
km=1

ck1...kme
ik1x1 ...eikmxm ,

and P (TTm, IRN) := {u ∈ P (TTm, lCN) : u(IRm) ⊂ IRN}.

A vector p ∈ IRm is called a period of a function u : IRm −→ IRN when we
have τpu = u. A function u : IRm −→ IRN is called a periodic function when
it possesses a non zero period. We denote by per(u) the set of the periods of
u. It is well-known that per(u) is a ZZ-module in IRm [14, TG VII 10].
When r ∈ IN ∪ {∞}, we set

Cr(TTm, IRN) := {u ∈ Cr(IRm, IRN) : per(u) ⊃ 2πZZm}.
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Let α ∈ [1,∞). When u ∈ Lαloc(IRm, IRN), we say that p ∈ IRm is a period of
u when τpu = u in Lαloc(IR

m, IRN), and per(u) denotes the set of the periods
of u. We set

Lα(TTm, IRN) := {u ∈ Lαloc(IRm, IRN) : per(u) ⊃ 2πZZm}.
When u ∈ L2(TTm, IRN), we associate to u its Fourier series [37, Chapter
VII]:

u(x) ∼
∑

k∈ZZm

û(k)eik·x,

where k · x :=
m∑
j=1

kjxj and û(k) := (2π)−m
∫
Qm u(x)eik·xdx, with Qm :=

[−π, π]m ⊂ IRm.
We recall that, when u ∈ L1(TTm, IRN), we have∫

TTm
u(x)dx := (2π)−m

∫
Qm

u(x)dx.

We use the abbreviation ”L.a.e.” to say: ”Lebesgue almost everywhere” or ”
Lebesgue almost every”.

About the periodic distributions we refer to [16, Chapter I]. And so, by
taking D(TTm) := C∞(TTm, IR), its topological dual space D(TTm)∗ is the
space of the periodic distributions. It is also possible to define the periodic
distributions as special distributions on IRm like it is made in [38, pp.64-65].
These two constructions are equivalent [38, Chapter CC, Section III ]. The
distributional derivative with respect the j-th variable is denoted by ∂j in
D(TTm)∗ and by Dj in D(IRm)∗.
Since the notation TTm in the above-mentioned sense, we denote the m-
dimensional geometric torus as follows:

Um := {(z1, ..., zm) ∈ lCN : ∀j = 1, ...,m, |zj| = 1}.
And we can assimilate the periodic functions (respectively distributions) de-
fined on IRm and the functions (respectively distributions) defined on Um

[37, p.245] (respectively [36, pp.229-231]).

2 Other functions spaces

We consider the group (T (t))t∈IR defined as follows:

T (t) : L2(TTm, IRN) −→ L2(TTm, IRN), T (t)u := τtωu.
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For each t ∈ IR, T (t) is linear and is an isometry. (T (t))t∈IR is a strongly
continuous group in L(L2(TTm, IRN), L2(TTm, IRN)) in the sense of the theory
of the semi-groups. The infinitesimal generator of (T (t))t∈IR, denoted by ∇ω,
is defined as follows:

∇ωu := lim
t→0

t−1(T (t)u− u) in L2(TTm, IRN). (6)

Definition. The domain of definition of ∇ω in L2(TTm, IRN) is denoted by
H1
ω(TTm, IRN).

By using the general theory of semi-groups [21, Chapter VIII, Section 1], the
following result holds.

Proposition 1. H1
ω(TTm, IRN) is a vector subspace of L2(TTm, IRN), ∇ω :

H1
ω(TTm, IRN) −→ L2(TTm, IRN) is a linear operator, H1

ω(TTm, IRN) is dense
into L2(TTm, IRN), and the graph of ∇ω is closed in L2(TTm, IRN)×L2(TTm, IRN).

When u, v ∈ H1
ω(TTm, IRN), we set:

〈u | v〉ω :=
∫
TTm

u(x) · v(x)dx+
∫
TTm
∇ωu(x) · ∇ωv(x)dx, (7)

and ‖u‖ω denotes its associated norm.

Proposition 2. (H1
ω(TTm, IRN), 〈. | .〉ω) is a Hilbert space.

Proof. The linearity of ∇ω (Proposition 1) permits us to verify that 〈. | .〉ω
is an inner product, and the completedness is a consequence of the closedness
of the graph of ∇ω (Proposition 1).

When u ∈ C0(TTm, IRN), the Gâteaux variation of u at x for the increment
ω (when it exists) is:

Du(x;ω) := lim
t→0

t−1(u(x+ tω)− u(x)). (8)

When Du(x;ω) exists for each x ∈ IRm, we easily verify that per(Du(·;ω)) ⊃
2πZZm. When it exists, we set D2u(x;ω) := D(Du(·;ω))(x;ω).

And so we can define the following functions spaces.

C1
ω(TTm, IRN) := {u ∈ C0(TTm, IRN) : Du(·;ω) ∈ C0(TTm, IRN)} (9)
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C2
ω(TTm, IRN) := {u ∈ C0(TTm, IRN) : D2u(·;ω) ∈ C0(TTm, IRN)}. (10)

It is clear that Cr(TTm, IRN) ⊂ Cr
ω(TTm, IRN), for r = 1, 2. When u ∈

C1(IRm, IRN), we define:

∂ωu(x) := u′(x).ω =
m∑
j=1

ωj
∂u

∂xj
(x) = Du(x;ω). (11)

When T ∈ D(TTm)∗, we define:

∂ωT :=
m∑
j=1

ωj∂jT (12)

and when T ∈ D(IRm)∗, we define:

DωT :=
m∑
j=1

ωjDjT. (13)

Proposition 3. When u ∈ C1
ω(TTm, IRN), then we have u ∈ H1

ω(TTm, IRN),
and ∇ωu = Du(·;ω).

Proof. Since Du(·;ω) is continuous and periodic on IRm, it is uniformly
continuous on IRm. By using the mean value inequality, we obtain:

sup
x∈IRm

|t−1(u(x+ tω)− u(x))−Du(x, ω)| ≤

sup
|s|<t

sup
x∈IRm

‖Du(x+ sω;ω)−Du(x;ω)‖.|ω|

The last term converges to zero when t→ 0 because of the uniform continuity,
and since the uniform norm is greatest than the L2-norm on Qm, we can
conclude.

Now, we study the regularization by convolution in H1
ω(TTm, IRN).

Lemma 1. Let u ∈ H1
ω(TTm, IRN). Then the following assertions hold.

(i) Let % ∈ Cr
c (IR

m, IR), with r ∈ IN ∪ {∞}. Then we have % ∗ u ∈
Cr(TTm, IRN), and ∂ω(% ∗ u) = (∂ω%) ∗ u, when r ≥ 1.
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(ii) Let (%h)h be a sequence of mollifiers (with values in D(IRm)) such that
supp(%h) ⊂ Qm for each h ∈ IN. Then we have

lim
h→∞
‖%h ∗ u− u‖L2(TTm,IRN ) = 0.

Proof.
(i) Since u ∈ L1(TTm, IRN) and % ∈ L1

loc(IR
m, IR), the convolution product

of u and % is well defined on IRm [24, p.17]. Since % ∈ Cr
c (IR

m, IR), we have
%∗u ∈ Cr(IRm, IR) [24, p.17]. If p ∈ 2πZZm, then, for every z ∈ IRm, we have

% ∗ u(z + p) =
∫
IRm

%(x)u(z + p− x)dx =
∫
IRm

%(x)u(z − x)dx = % ∗ u(z).

And so, per(%∗u) ⊃ 2πZZm, and consequently, we have %∗u ∈ Cr(TTm, IRN).
By using a general property of the convolution products [38, p.122], we have

∂

∂xj
(% ∗ u) =

∂%

∂xj
∗ u,

and consequently, we have

∂ω(% ∗ u) =
m∑
j=1

ωj
∂

∂xj
(% ∗ u) =

m∑
j=1

ωj
∂%

∂xj
∗ u = (∂ω%) ∗ u.

(ii) The proof is similar to this one of the usual case [24, pp.17-18] .

Proposition 4. C1(TTm, IRN) is dense in H1
ω(TTm, IRN). Precisely, if (%h)h

is a sequence of mollifiers such that supp(%h) ⊂ Qm for each h ∈ IN, then we
have %h ∗ u ∈ Cr(TTm, IRN) for each h, and lim

h→∞
‖%h ∗ u− u‖ω = 0.

Proof. First, for every h ∈ IN∗, for every t ∈ IR\{0}, and for every z ∈ IRm,
we have:

%h ∗ [t−1(τtωu− u)](z) = [t−1(τtω%h − %h)] ∗ u(z).

Secondly, for every h ∈ IN∗, t ∈ IR \ {0}, z ∈ IRm, we have:

|%h ∗ (τtωu− u)(z)− %h ∗ ∇ωu(z)| ≤

‖%h‖L2(Qm).‖t−1(τtωu− u)−∇ωu‖L2(Qm).
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Therefore, we have:

lim
t→0

%h ∗ [t−1(τtωu− u)](z) = %h ∗ ∇ωu(z).

Thirdly, by using the same reasoning as above, we have:

lim
t→0

[t−1(τtω%h − %h)] ∗ u(z) = (∂ω%h) ∗ u(z).

By using the three previous relations, we obtain:

(∂ω%h) ∗ u = %h ∗ ∇ωu.

By using Lemma 1, we have %h ∗ ∇ωu = ∂ω(%h ∗ u), and

lim
h→∞
‖%h ∗ u− u‖L2 = 0,

lim
h→∞
‖∂ω(%h ∗ u)−∇ωu‖L2 = lim

h→∞
‖%h ∗ ∇ωu−∇ωu‖L2 = 0.

Proposition 5. The three following assertions hold.

(i) ∀f ∈ C1(TTm, IRN),
∫
Tm

∂ωf(x)dx = 0.

(ii) ∀u ∈ H1
ω(TTm, IRN) ,

∫
TTm
∇ωu(x)dx = 0.

(iii) ∀ϕ ∈ C1(TTm, IRN), ∀u ∈ H1
ω(TTm, IRN),

∇ω(ϕ · u) = (∂ωϕ) · u+ ϕ · ∇ωu.

Proof.
(i) We set dxĵ := dx1...dxj−1dxj+1...dxm. By using the Fubini theorem, we
have:

∫
TTm

∂f

∂xj
(x)dx = (2π)−m

∫
Qm−1

{∫ 2π

0

∂f

∂xj
(x)dxj

}
dx̂j = 0,

and consequently, we obtain∫
TTm

∂ωf(x)dx =
m∑
j=1

ωj

∫
TTm

∂f

∂xj
(x)dx = 0.
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(ii) By using Proposition 4, there exists a sequence (un)n with values in
C1(TTm, IRN) such that lim

n→∞
‖u− un‖ω = 0. By using (i), we have:

∣∣∣∣∫
TTm
∇ωu(x)dx

∣∣∣∣ = ‖∇ωu− ∂ωun‖L1 ≤ ‖∇ωu− ∂ωun‖L2

which converges to zero when n→∞.

(iii) Since ϕ′ ∈ C0(TTm,L(IRm, IRN)), ϕ′ is uniformly continuous on IRm, and
so, for every ε > 0, there exists η(ε) > 0 such that, for every ξ, ζ ∈ IRm, we
have

|ξ − ζ| ≤ η(ε) =⇒ ‖ϕ′(ξ)− ϕ′(ζ)‖ ≤ ε.

When |t| ≤ |ω|−1η(ε), we have

|t−1(τtωϕ(x)− ϕ(x)) · u(x+ tω)− ∂ωϕ(x) · u(x+ tω)| ≤(
sup

ξ∈(x,x+tω)

‖ϕ′(ξ)− ϕ′(x)‖.|ω|
)
.|u(x+ tω)| ≤ ε|u(x+ tω)|,

that implies

‖[t−1(τtωϕ− ϕ)− ∂ωϕ] · τtωu‖L2 ≤ ε‖τtωu‖L2 = ε‖u‖L2 ,

and so, we have proven

lim
t→0
‖[t−1(τtωϕ− ϕ)− ∂ωϕ] · τtωu‖L2 = 0. (14)

Since lim
t→0
‖τtωu− u‖L2 = 0, and since

|∂ωϕ(x) · [u(x+ tω)− u(x)]| ≤ |∂ωϕ(x)|.|u(x+ tω)− u(x)|,

we have
‖∂ωϕ · [τtωu− u]‖L2 ≤ ‖∂ωϕ‖L∞ .‖τtωu− u‖L2 ,

and consequently, we have

lim
t→0
‖∂ωϕ · [τtωu− u]‖L2 = 0. (15)

From (14) and (15), and from the following inequalities:

‖t−1(τtωϕ− ϕ) · τtωu− ∂ωϕ · u‖L2 ≤
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‖t−1(τtωϕ− ϕ) · τtωu− ∂ωϕ · τtωu‖L2 + ‖∂ωϕ · τtωu− ∂ωϕ · u‖L2 ,

we obtain:

lim
t→0
‖t−1(τtωϕ− ϕ) · τtωu− ∂ωϕ · u‖L2 = 0. (16)

Since

‖[t−1(τtωu− u)−∇ωu] · ϕ‖L2 ≤ ‖t−1(τtωu− u)−∇ωu‖L2 · ‖ϕ‖L∞ ,

we have

lim
t→0
‖[t−1(τtωu− u)−∇ωu] · ϕ‖L2 = 0. (17)

We note that

‖t−1(τtω[ϕ · u]− ϕ · u)− (∂ωϕ) · u− ϕ · ∇ωu‖L2 ≤

‖t−1(τtωϕ− ϕ) · τtωu− (∂ωϕ) · u‖L2 + ‖t−1(τtωu− u) · ϕ−∇ωu · ϕ‖L2 ,

and then, by using (16) and (17), we obtain the announced result.

Theorem 1. Let u ∈ L2(TTm, IRN). Then the four following assertions are
equivalent.

(i) u ∈ H1
ω(TTm, IRN).

(ii)
∑

k∈ZZm
(k · ω)2|û(k)|2 <∞.

(iii) There exists v ∈ L2(TTm, IRN) such that, for every ϕ ∈ C1(TTm, IRN),
we have ∫

TTm
v(x) · ϕ(x)dx = −

∫
TTm

u(x) · ∂ωϕ(x)dx.

(iv) The distribution ∂ωu belongs to L2(TTm, IRN).

Moreover, when these assertions hold, we have:

∇ωu(x) = v(x) = ∂ωu(x) =
∑

k∈ZZm

i(k · ω)û(k)eik·x.

14



Proof.
(i =⇒ iii) By using Proposition 5, ii, iii, for every ϕ ∈ C1(TTm, IRN), we
have ∫

TTm
∇ωu · ϕ+

∫
TTm

u · ∂ωϕ =
∫
TTm
∇ω(u · ϕ) = 0.

And so we can take v = ∇ωu.

(iii =⇒ ii) For each k ∈ ZZm, we set χk(x) := eik·x. And so, we have
χk ∈ C∞(TTm, lC ), and we verify that ∂ωχk(x) = i(k · ω)χk(x). From (iii), for
every k ∈ ZZm, we have:

v̂(k) =
∫
TTm

χk.v = −
∫
TTm

∂ωχk.u = i(k · ω)
∫
TTm

χk.u = i(k · ω)û(k).

Since v ∈ L2(TTm, IRN), we have [37, p.248]:

(v̂(k))k∈ZZm = (i(k · ω)û(k))k∈ZZm ∈ `2(ZZm, lCN),

and so
∑

k∈ZZm
(k · ω)2|û(k)|2 <∞.

(ii =⇒ i) For each ν ∈ IN, we set Pν(x) :=
∑
|k|≤ν

eik·xû(k). And so, Pν ∈

C∞(TTm, lCN), and we verify that

∇ωPν(x) = ∂ωPν(x) =
∑
|k|≤ν

i(k · ω)eik·xû(k).

From (ii), we have (i(k · ω)û(k))k∈ZZm ∈ `2(ZZm, lCN), and by using the har-
monic synthesis [37, p.248], there exists v ∈ L2(TTm, lC ) such that v̂(k) =
i(k · ω)û(k), for every k ∈ ZZm.
Since u(IRm) ⊂ IRN , we have v̂(−k) = v̂(k), and consequently, we have
v ∈ L2(TTm, IRN).
By using [37, p.248], we have

lim
ν→∞
‖u− Pν‖L2 = 0, lim

ν→∞
‖v −∇ωPν‖L2 = 0,

and since the graph of ∇ω is closed (Proposition 1), we necessarily have
v = ∇ωu, and so u ∈ H1

ω(TTm, IRN).

(iii =⇒ iv) We fix j ∈ {1, 2, ...,m}. For each σ ∈ C∞(TTm, IR), we take
ϕ ∈ C∞(TTm, IRN) defined by ϕj = σ and ϕ` = 0 when j 6= `. Then, from
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(iii), we obtain
∫
TTm vj.σ = −

∫
TTm uj.∂ωσ.

Since the distributional derivative ∂ωuj ∈ D(TTm)∗ satisfies
∫
TTm ∂ωuj.σ =

−
∫
TTm uj.∂ωσ [16, Chapter I, Section 6], we have vj = ∂ωuj, and consequently

∂ωu ∈ L2(TTm, IRN).

(iv =⇒ ii) For each k ∈ ZZm, by using the characterization of the distribu-
tional derivatives and the Fourier transform, we have

(∂ωu)∧(k) =
∫
TTm

e−ik·x∂ωu(x)dx = −
∫
TTm

∂ω(e−ik·x)u(x)dx

= i(k · ω)
∫
TTm

e−ik·xu(x)dx = i(k · ω)û(k).

Since ∂ωu ∈ L2(TTm, IRN), we have ((∂ωu)∧(k))k∈ZZm ∈ `2(ZZm, lCN), therefore
(i(k · ω)û(k))k∈ZZm ∈ `2(ZZm, lCN), and consequently, we have (ii).

Comments. In the previous result, we have proven the equivalence between
the definition of ∇ω = ∂ω as the infinitesimal generator of a semi-group of
transformations, the distributional derivative and the generalized Sobolev
derivative. In [7], the space H1

ω(TTm, IRN) is denoted by P̂ 1,2.

We can iterate the previous construction and define, for r ∈ IN, r ≥ 2, the
following Hilbert spaces:

Hr
ω(TTm, IRN) := {u ∈ Hr−1

ω (TTm, IRN) : ∂ω(∂r−1
ω u) ∈ H1

ω(TTm, IRN)},

and ∂ω(∂r−1
ω ) =: ∂rω.

The inner product of Hr
ω(TTm, IRN) is defined as follows:

(u, v) 7−→ (u | v)L2 +
r∑
j=1

(∂jωu | ∂jωu)L2 .

3 Relations between q.p. functions and peri-

odic functions.

In this section, we study the relations between the q.p. functions defined on
IR and the periodic functions defined on IRm.
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Lemma 2. For x ∈ IRm, we denote by cl(x) the class of equivalence of x in
the quotient space IRm/2πZZm. Then the following assertions hold.

(i) {cl(x) : x ∈ IRm} is dense in IRm/2πZZm.

(ii) For every x ∈ IRm, there exists a sequence (tn)n with values in IR, such
that, for every z ∈ C0(TTm, IRN), we have z(x) = lim

n→∞
z(tnω).

(iii) For every z ∈ C0(TTm, IRN), we have

sup
x∈IRm

|z(x)| = sup
t∈IR
|z(tω)|.

Proof.
(i) We can assimilate IRm/2πZZm and Um [5, pp.60, 82]. Um is endowed
with the induced topology of lCm. And so, the topology of the quotient space
IRm/2πZZm coincides with the topology defined by the following metric:

d(cl(x1, ..., xm), cl(y1, ..., ym)) :=

 m∑
j=1

|eixj − eiyj |2
1/2

.

We fix x = (x1, ..., xm) ∈ IRm. Since ω1, ..., ωm are ZZ-linearly independent,
by using a classical theorem of Kronecker [18, p.163], for every δ > 0, there
exists t ∈ IR such that, for each j = 1, ...,m, we have |tωj −xj| < δ ( modulo
2π). Since s 7→ eis is uniformly continuous from IR in lC , for every ε > 0,
there exists t ∈ IR such that |eixj − eiωj | < εm−1, for each j = 1, ...,m, and
therefore we have d(cl(x), cl(tω)) < ε.

(ii) Since we have [cl(x) = cl(y) =⇒ z(x) = z(y)], the function fact(z) :
IRm/2πZZm −→ IRN defined by fact(z)(cl(x)) := z(x), is continuous [34,
pp.37-38]. We fix x ∈ IRm, and by using (i), there exists a real sequence
(tn)n such that cl(tnω)→ cl(x) when n→∞. Therefore we have

z(tnω) = fact(z)(cl(tnω)) −→ fact(z)(cl(x)) = z(x) (n→∞).

(iii) By using (ii), z(IRm) is included into the closure of z(IRω), and since
we have z(IRω) ⊂ z(IRm), we obtain the announced equality.
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We consider the linear operator

Qω : (IRN)TT
m −→ (IRN)IR, Qω(u)(t) := u(tω). (18)

Theorem 2. The following assertions hold.

(i) Qω(C0(TTm, IRN)) = QP 0
ω(IRN), and for every u ∈ C0(TTm, IRN), we

have ‖Qω(u)‖∞ = ‖u‖∞.

(ii) Let r ∈ IN∗ ∪{∞}. Then we have Qω(Cr
ω(TTm, IRN)) = QP r

ω(IRN), and
for every u ∈ Cr

ω(TTm, IRN), we have Qω(Du(·;ω)) = d
dt
Qω(u).

(iii) Qω(L2(TTm, IRN)) = B2
ω(IRN), and for every u ∈ L2(TTm, IRN), we have

‖Qω(u)‖B2 = ‖u‖L2.

(iv) Qω(H1
ω(TTm, IRN)) = B1,2

ω (IRN), and for every u ∈ H1
ω(TTm, IRN), we

have ‖Qω(u)‖B1,2 = ‖u‖ω and Qω(∂ωu) = ∇(Qω(u)).

(v) Qω(H2
ω(TTm, IRN)) = B2,2

ω (IRN), and for every u ∈ H2
ω(TTm, IRN), we

have Qω(∂2
ωu) = ∇2(Qω(u)).

Proof.
(i) By using the formula (18) we can define Qω : lCTm −→ lC IR. The inclu-
sion Qω(P (TTm, IRN)) ⊂ TP (IRN , ω) is evident, and by using the density of
P (TTm, IRN) in C0(TTm, IRN) [35, p.2], we obtain the inclusion

Qω(C0(TTm, IRN)) ⊂ QP 0
ω(IRN).

Moreover by using Lemma 2, iii, we have, for every u ∈ C0(TTm, IRN), the
equality ‖Qω(u)‖∞ = ‖u‖∞.

If g ∈ TP (lC , ω), g(t) =
L∑
`=1

c`e
ik`·ωt, where c` ∈ lC , and k` ∈ ZZm, and if we

set h(x) :=
L∑
`=1

c`e
ik`·x, then we have h ∈ P (TTm, lC ) and Qω(h) = g.

Now we fix f ∈ QP 0
ω(lC ). By using the Bohr-Weierstrass theorem [8, p.50],

there exists a sequence (fn)n with values in TP (lC , ω) such that lim
n→∞

‖f −
fn‖∞ = 0. Because of the previous remark, for each n ∈ IN, there exists
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un ∈ P (TTm, lC ) such that Qω(un) = fn.
We note that, for every p, q ∈ IN, we have

‖fp − fq‖∞ = ‖Qω(up)−Qω(uq)‖∞ = ‖Qω(up − uq)‖∞ = ‖up − uq‖∞.

Since (fn)n is convergent, it is a Cauchy sequence, and consequently, (un)n
is also a Cauchy sequence with values in the complete space C0(TTm, lC ).
Therefore there exists u ∈ C0(TTm, lC ) such that lim

n→∞
‖un − u‖∞ = 0.

Furthermore, we have

‖Qω(u)− f‖∞ ≤ ‖Qω(u)− fn‖∞ + ‖f − fn‖∞

= ‖Qω(u)−Qω(un)‖∞ + ‖f − fn‖∞ = ‖un − u‖∞ + ‖f − fn‖∞
that converges to zero when n→∞, and therefore we have Qω(u) = f .
That proves the inclusion QP 0

ω(lC ) ⊂ Qω(C0(TTm, lC )). We have proven that
Qω is a linear isomorphism and an isometry between C0(TTm, lC ) and QP 0

ω(lC ).
From this result, we deduce that Qω is a linear isomorphism and an isom-
etry between C0(TTm, IR) and QP 0

ω(IR). After that, by taking the cartesian
products, we obtain the announced result.

(ii) Let u ∈ C1
ω(TTm, IRN). Then for every t ∈ IR, we have ∂ωu(tω) =

d
dt

(Qω(u))(t), i.e. Qω(∂ωu) = d
dt
Qω(u). And so, we have Qω(u) ∈ QP 1

ω(IRN).
Now we reasone with N = 1. The general case is a simple consequence of
the case N = 1.
Conversely, if ρ ∈ QP 1

ω(IR), then we have ρ, ρ̇ ∈ QP 0
ω(IR), and by using (i),

there exists u, v ∈ C0(TTm, IR) such that Qω(u) = ρ and Qω(v) = ρ̇, and for
every t ∈ IR, we have d

dt
u(tω) = v(tω).

We fix x ∈ IRm. By using Lemma 2, ii, there exists a real sequence (tn)n such
that, for every t ∈ IR, u(tnω + tω) → u(x + tω) and u(tnω) → u(x) when
n→∞.
For each n ∈ IN, we have

u(tnω + tω)− u(tnω) =
∫ tn+t

tn
∂ωu(sω)ds =

∫ tn+t

tn
v(sω)ds,

therefore, for each t ∈ IR, there exists γ(t, n) ∈ [0, 1] such that

u(tnω + tω)− u(tnω) = v([(1− γ(t, n))tn + γ(t, n)(tn + t)]ω).t
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= v(tnω + γ(t, n)tω).t.

We fix t ∈ IR. Since (γ(t, n))n takes its values in the compact set [0, 1], there
exists n 7→ jn, a monotonically increasing function from IN in IN, and there
exists Γ(t) ∈ [0, 1] such that γ(t, jn)→ Γ(t) when n→∞. Consequently, we
obtain

u(tjnω + tω)− u(tjnω) = v(tjnω + γ(t, jn)tω).t,

that implies, when n→∞:

u(x+ tω)− u(x) = v(x+ Γ(t)tω).t.

Consequently, we obtain

lim
t→0

t−1(u(x+ tω)− u(x)) = v(x).

And so, for every x ∈ IRm, Du(x;ω) exists and Du(x;ω) = v(x), that implies:
u ∈ C1

ω(TTm, IR).

(iii) Since ω1, ..., ωm are ZZ-linearly independent, the function k 7→ k ·ω is an
isomorphism of ZZ-moduli between ZZm and ZZ〈ω〉. Consequently `2(ZZm, lC )
and `2(ZZ〈ω〉, lC ) are isomorphic and isometric.
By using the harmonic synthesis [37, p.248], the Fourier transform

F : L2(TTm, lCN) −→ `2(ZZm, lCN), F(u) := (û(k))k∈ZZm

is a linear isomorphism and an isometry.
By using the Riesz-Fisher-Besicovitch theorem [8, p.110], the Fourier-Bohr
transform

A : B2
ω(lCN) −→ `2(ZZ〈ω〉, lCN), A(f) := (a(f ;λ))λ∈ZZ〈ω〉

is a linear isomorphism and an isometry.
And so A−1 ◦ F : L2(TTm, lCN) −→ B2

ω(lCN) is a linear isomorphism and an
isometry. To conclude it is sufficient to remark that we have A−1 ◦ F = Qω,
since

A−1 ◦ F(u) = A−1((û(k))k∈ZZm) = [t 7−→
∑

k∈ZZm

û(k)eik·ωt] = Qω(u).
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(iv) Let u ∈ H1
ω(TTm, IRN). Then we have u, ∂ωu ∈ L2(TTm, IRN), and by

using (iii), we know that Qω(u),Qω(∂ωu) ∈ B2
ω(IRN).

We note that, for every t ∈ IR, we have

Qω(τtωu) = τtQω(u). (19)

By using (ii), for every t ∈ IR \ {0}, we have

‖t−1(τtωu− u)− ∂ωu‖L2 = ‖Qω(t−1(τtωu− u)− ∂ωu)‖B2

= ‖t−1(τtQω(u)−Qω(u))−Qω(∂ωu)‖B2 .

And since u ∈ H1
ω(TTm, IRN), we have

lim
t→0
‖t−1(τtQω(u)−Qω(u))−Qω(∂ωu)‖B2 = 0,

i.e. Qω(u) ∈ B1,2(IRN) and ∇Qω(u) = Qω(∂ωu).
Since B1,2

ω (IRN) = B1,2(IRN) ∩B2
ω(IRN), we have Qω(u) ∈ B1,2

ω (IRN).

Conversely, let f ∈ B1,2
ω (IRN). Then we have f,∇f ∈ B2

ω(IRN), and by using
(ii), we can assert that there exists u, v ∈ L2(TTm, IRN) such that Qω(u) = f
and Qω(v) = ∇f .
By using a previous calculation, for every t ∈ IR \ {0}, we have

‖t−1(τtωu− u)− v‖L2 = ‖Qω(t−1(τtωu− u)− v)‖B2

= ‖t−1(Qω(τtωu)−Qω(u))−Qω(v)‖B2

= ‖t−1(τtQω(u)−Qω(u))−Qω(v)‖B2

= ‖t−1(τtt− f)−∇f‖B2 −→ 0 (t→ 0),

therefore, we have v = ∂ωu, and so u ∈ H1
ω(TTm, IRN).

For each u ∈ H1
ω(TTm, IRN), we have

‖u‖2
ω = ‖u‖2

L2 + ‖∂ωu‖2
L2 = ‖Qω(u)‖2

B2 + ‖∇Qω(u)‖2
B2 = ‖Qω(u)‖2

B1,2 .

(v) Let u ∈ H2
ω(TTm, IRN), then we have u, ∂ωu ∈ H1

ω(TTm, IRN), and by using
(iv), we have Qω(u),Qω(∂ωu) ∈ B1,2

ω (IRN). Since ∇Qω(u) = Qω(∂ωu), we
have Qω(u) ∈ B2,2

ω (IRN).

Conversely, let f ∈ B2,2
ω (IRN). Then we have f,∇f ∈ B1,2

ω (IRN), and by
using (iv), we can assert that there exists u, v ∈ H1

ω(TTm, IRN) such that
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Qω(u) = f , Qω(v) = ∇f , Qω(∂ωu) = ∇f , and Qω(∂ωv) = ∇2f . Therefore,
by using (iii), we have v = ∂ωu and consequently u ∈ H2

ω(TTm, IRN).

Comments. The proof of (i) was given to us by [17]. Another way to prove
(i) is provided by adapting the method of [19, Section 7]. Briefly we give
some indications about this way. We consider the spectra of the commuta-
tive algebra QP 0

ω(lC ), denoted by X(QP 0
ω(lC )). This spectra X(QP 0

ω(lC )) is
isomorphic to Um, and the Gelfand transformation [20, p.302]:

G : QP 0
ω(lC ) −→ C0(X(QP 0

ω(lC )), lC ), G(f)(ϕ) = ϕ(f),

is an isomorphism and an isometry (in this special case). We can assimilate
G and Q−1

ω . This method is closed to this one of [32, Chapter I, Section 3].

4 Extension to quasi-periodic functions de-

pending uniformly on parameters

In the following, IE is a Banach space, bIR is the Bohr compactification of IR
and P is a compact subset or an open subset of IRk, for k ≥ 1.
If P is open, let us consider the family:

Kn := {x ∈ P : ‖x‖ ≤ n and d(x;P c) ≥ 1/n}.

All Kn are compact in IRk, P = ∪nKn and Kn ⊂ Int(Kn+1) for all n. It is
known that in general, if the function f : IR × P → IR` is such that f(·, α)
is almost periodic for all α ∈ P , and φ : IR → P is almost periodic, the
function [t 7→ f(t, φ(t))] may not be almost periodic. For this reason, we
usually set the definition of almost periodic functions depending uniformly
on parameters (see [39, p.5-6]). We denote by APU(IR;P ; IE) the subset of
all these functions. If P is compact, APU(IR;P ; IE) is a Banach space with
the norm:

‖f‖APU := sup
(t,α)∈IR×P

‖f(t, α)‖

and if P is open, APU(IR; IE) is a Fréchet space with the family of semi-
norms (pn)n, where: pn(f) := sup(t,α)∈IR×Kn

‖f(t, α)‖.
The space C0(bIR× P ; IE) is endowed with the norm

‖f‖C0(IR×P ;IE) := sup
(t,α)∈IR×P

‖f(t, α)‖
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if P is compact, and with the family (πn)n, where
πn(f) := sup(t,α)∈IR×Kn

‖f(t, α)‖ if P is open.

Proposition 6 There exists an isometrical isomorphism of Fréchet spaces
beetween APU(IR;P ; IE) and C0(bIR; IE).

Proof. It is sufficient to prove it when P is compact. We will set the proof
into three steps.
1. The mapping f 7→ (f(t, ·))t is an isometrical isomorphism of Fréchet
spaces beetween APU(IR;P ; IE) and AP (IR;C0(P ;E)).
Indeed, it is clearly an homomorphism which is isometric, so one-to-one. It
is also onto: if we consider φ ∈ AP (IR;C0(P ;E)), and if we set f such that
f(t, α) := φ(t)(α). One has f ∈ APU(IR;P ; IE) and x is solution of the
problem.
2. There exists an isometrical isomorphism of Fréchet spaces beetween
AP (IR;C0(P ; IE)) and C0(bIR;C0(P ; IE)).
3. There exists an isometrical isomorphism of Fréchet spaces beetween
C0(bIR× P ; IE)) and C0(bIR;C0(P ; IE)). Let us consider f 7−→ [t 7→ f(t, ·)].
It is clearly well defined and an isometrical homomorphism. We next prove
that this homomorphism is onto. Consider λ ∈ C0(bIR;C0(P ; IE)) and
(t0;α0) ∈ bIR× P . If we put f(t, α) := (λ(t))(α), one has:

‖f(t, α)− f(t0, α0)‖ ≤ ‖f(t, α)− f(t0, α)‖+ ‖f(t0, α)− f(t0, α0)‖ ≤

≤ ‖λ(t)− λ(t0)‖C0(P ;IE) + ‖λ(t0)(α)− λ(t0)(α0)‖.

Consider ε > 0. Since λ(t0) ∈ C0(P ; IE), there exists a neighbourhood V2 of
α0 in P such that if α ∈ V2, one has: ‖λ(t0)(α) − λ(t0)(α0)‖ ≤ ε/2. Since
λ ∈ C0(bIR;C0(P ; IE)), there exists a neighbourhood V1 of t0 in P such that
if t ∈ V1, one has ‖λ(t) − λ(t0)‖C0(P ;IE) ≤ ε/2. If (t, α) ∈ V1 × V2, one has:
‖f(t, α)− f(t0, α0)‖ ≤ ε, so f ∈ C0(IR× P ; IE).

Remark. The previous result shows that the condition f ∈ APU(IR;P ; IE)
is also necessary to have (φ ∈ AP 0(P ))⇒ ([t 7→ f(t, φ(t))] ∈ AP 0(IE)).

Now we set:

QPUω(IR, P, IE) := {f ∈ APU(IR, P, IE) : (∀α ∈ P ) f(·, α) ∈ QP 0
ω(IE)}.
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The fact that Theorem 2, i, remains valid with a Banach space in place of
IRN and the same proof as above show that C0(TTm × P ; IE) is canonically
isomorphic to QPUω(IR, P, IE). Moreover, the isomorphism, also denoted by
Qω, is defined by: u 7→ [(t, α) 7→ u(tω, α)].

5 About the absolute continuity

IRm is endowed with its standard inner product. We set b1 := |ω|−1ω, we
consider b2, ..., bm ∈ IRm such that (b1, b2, ..., bm) is an orthonormal basis
of IRm. We denote by (b∗1, b

∗
2, ..., b

∗
m) the dual basis, and we consider the

automorphism β of IRm defined by β(x) := (b∗1(x), b∗2(x), ..., b∗m(x)). β is a
linear isometry since we can consider β as the change of orthonormal bases,
from the canonical basis to the basis (bj)j. We note that

ω⊥ := {y ∈ IRm : y · ω = 0} = span{b2, ..., bm}.

Let u ∈ C1
ω(TTm, IRN). We associate to u the new function v := u ◦ β−1 ∈

C0(IRm, IRN). For every (y1, ..., ym) ∈ IRm, we have:

v(y1, ..., ym) = u

y1|ω|−1ω +
m∑
j=2

yjbj

 . (20)

The function v is periodic and per(v) ⊃ 2πβ(ZZm). The function ∂v
∂y1

is

defined and continuous on IRm, and for every (y1, ..., ym) ∈ IRm, we have:

∂v

∂y1

(y1, ..., ym) = |ω|−1∂ωu

 m∑
j=1

yjbj

 . (21)

To generalize the correspendence described by (18), we need some tools. We
recall that, when ψ ∈ Cr

c (IR
m, IRN), r ∈ IN ∪ {∞}, the periodic transform

[38, pp.61-62] of ψ is:

$(ψ) :=
∑

k∈ZZm

τ2πkψ ∈ Cr(TTm, IRN). (22)

We introduce another operator of periodic transformation.
When ϕ ∈ Cr

c (IR
m, IRN), we set:

$1(ϕ) :=
∑

k∈ZZm

τ2πβ(k)ϕ ∈ Cr(TTm, IRN). (23)
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We denote by 〈., .〉(m) the duality bracket between D(IRm)∗ and D(IRm).
When z ∈ L1

loc(IR
m, IR), Tz ∈ D(IRm)∗ denotes the regular distribution built

on z.

Lemma 3. The following assertions hold.

(i) If u ∈ L2(TTm, IR) and ψ ∈ D(IRm), then we have:

〈DωTu, ψ〉(m) = −
∫
Qm

u(x).$(ψ)(x)dx.

(ii) If v ∈ L2
loc(IR

m, IR) is such that per(v) ⊃ 2πβ(ZZm) and if ϕ ∈ D(IRm),
then we have:

〈DωTv, ϕ〉(m) = −
∫
β(Qm)

v(y).$1(ϕ)(y)dy.

(iii) When ϕ ∈ C1
c (IRm, IR), we have:

∂$1(ϕ)

∂y1

= $1

(
∂ϕ

∂y1

)
, $1(ϕ) ◦ β = $(ϕ ◦ β),

∂$1(ϕ)

∂y1

◦ β = |ω|−1∂ω($(ϕ ◦ β)).

Proof.
(i) We fix j ∈ {1, ...,m}. Since supp(ψ) is compact, there exists a finite list
of distinct numbers, namely λ1, ..., λν ∈ 2πZZm such that

supp

(
∂ψ

∂xj

)
⊂ supp(ψ) ⊂

⋃
1≤`≤ν

(Qm + λ`).

When λ ∈ 2πZZm \ {λ` : ` = 1, ..., ν}, we have τλψ = 0 on IntQm, and so, on
IntQm, we have

$(ψ) =
ν∑
`=1

τλ`ψ, and $

(
∂ψ

∂xj

)
=

ν∑
`=1

τλ`

(
∂ψ

∂xj

)
.
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And so, we have

〈DjTu, ψ〉(m) = −
〈
Tu,

∂ψ

∂xj

〉
(m)

= −
∫
IRm

u(x)
∂ψ

∂xj
(x)dx

= −
ν∑
`=1

∫
Qm+λ`

u(x)
∂ψ

∂xj
(x)dx

= −
ν∑
`=1

∫
Qm

u(x).τλ`

(
∂ψ

∂xj

)
(x)dx

= −
∫
Qm

u(x).$

(
∂ψ

∂xj

)
(x)dx.

Consequently, we obtain:

〈DωTu, ψ〉(m) = −
∫
Qm

u(x)$

(
∂ψ

∂xj

)
(x)dx.

(ii) Since supp(ϕ) is compact, there exists a finite list of distinct numbers,
namely α1, α2, ..., αν ∈ 2πβ(ZZm) such that

supp

(
∂ϕ

∂y1

)
⊂ supp(ϕ) ⊂

⋃
1≤`≤ν

(β(Qm) + α`).

When α ∈ 2πβ(ZZm) \ {α` : ` = 1, ..., ν}, we have ταϕ = 0 on Intβ(Qm) =
β(IntQm) and therefore we have

$1(ϕ) =
ν∑
`=1

τα`
ϕ, and $1

(
∂ϕ

∂y1

)
=

ν∑
`=1

τα`

∂ϕ

∂y1

.

And so, we have:

〈D1Tv, ϕ〉(m) = −
〈
Tv,

∂ϕ

∂y1

〉
(m)

= −
∫
IRm

v(y)
∂ϕ

∂y1

(y)dy

= −
ν∑
`=1

∫
β(Qm)+α`

v(y)
∂ϕ

∂y1

(y)dy = −
ν∑
`=1

∫
β(Qm)

v(y + α`)
∂ϕ

∂y1

(y + α`)dy
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= −
ν∑
`=1

∫
β(Qm)

v(y).τα`

(
∂ϕ

∂y1

)
(y)dy = −

∫
β(Qm)

v(y).$1

(
∂ϕ

∂y1

)
(y)dy.

(iii) By using arguments described in the proof of (ii), we have, on β(IntQm),
the following equalities:

$1

(
∂ϕ

∂y1

)
=

ν∑
`=1

τµ`

(
∂ϕ

∂y1

)
=

ν∑
`=1

∂(τµ`ϕ)

∂y1

=
∂

∂y1

(
ν∑
`=1

τµ`ϕ

)
=
∂$1(ϕ)

∂y1

.

By using the continuity, the previous equality (between the extreme terms)
holds on β(Qm), and by using the periodicity, it is true on IRm. And so the
first equality is proven.

For every x ∈ IRm, we have:

$1(ϕ) ◦ β(x) =
∑

α∈2πβ(ZZm)

ταϕ ◦ β(x) =
∑

α∈2πβ(ZZm)

ϕ(β(x) + α)

=
∑

λ∈2πZZm

ϕ(β(x) + β(λ))

=
∑

λ∈2πZZm

ϕ ◦ β(x+ λ) =
∑

λ∈2πZZm

τλϕ ◦ β(x) = $(ϕ ◦ β)(x).

And so the second equality is proven.

By using successively (21) and the second equality, we have:

∂$1(ϕ)

∂y1

◦ β = |ω|−1∂ω($1(ϕ) ◦ β) = |ω|−1∂ω($(ϕ ◦ β)).

Lemma 4. Let u ∈ H1
ω(TTm, IRN) and v := u ◦ β−1. Then we have ∂v

∂y1
∈

L2
loc(IR

m, IRN) ( ∂v
∂y1

is taken in the distributional sense), v and ∂v
∂y1

are periodic

with per(v) ⊃ 2πβ(ZZm), per( ∂v
∂y1

) ⊃ 2πβ(ZZm), and ∂v
∂y1
◦ β = |ω|−1∂ωu.

Proof. We reason in the case N = 1; the general case is a simple consequence
of this special case by working on the components.
By using Lemma 3, ii, when ϕ ∈ D(IRm), we have:

〈D1Tv, ϕ〉(m) = −
∫
β(Qm)

v(y)
∂$1(ϕ)

∂y1

(y)dy.
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Since β is orthogonal, by using the formula of the change of variable,
we obtain:

〈D1Tv, ϕ〉(m) = −
∫
Qm

v ◦ β(x).
∂$1(ϕ)

∂y1

◦ β(x)dx,

and by using Lemma 3, i, iii, we obtain:

〈Tv, ϕ〉(m) = −
∫
Qm

u(x)|ω|−1∂ω($(ϕ ◦ β))(x)dx = |ω|−1〈DωTu, ϕ ◦ β〉(m)

= |ω|−1〈T∂ωu, ϕ ◦ β〉(m) = |ω|−1
∫
IRm

∂ωu(x).ϕ ◦ β(x)dx

= |ω|−1
∫
IRm

∂ωu ◦ β−1(y).ϕ(y)dy = |ω|−1〈T∂ωu◦β−1 , ϕ〉(m).

Consequently, we obtain the following equality in D(IRm)∗ :

D1Tv = |ω|−1T∂ωu◦β−1 .

Since ∂ωu ◦ β−1 ∈ L2
loc(IR

m, IR), we have:

∂v

∂y1

= D1Tv ∈ L2
loc(IR

m, IR), and
∂v

∂y1

= |ω|−1∂ωu ◦ β−1.

Since per(u) and per(∂ωu) contain 2πZZm, the moduli per(v) and per( ∂v
∂y1

)

contain 2πβ(ZZm).

Theorem 3. Let u ∈ Hp
ω(TTm, IRN). We note that, when ξ ∈ IRm, we have

Qω(τξu) = [t 7→ u(tω + ξ)].
Then the set ω⊥ \ {ξ ∈ ω⊥ : Qω(τξu) ∈ Hp

loc(IR, IR
N)} is Lebesgue negligible

in ω⊥.

Proof.
Following the notations of Lemma 4, we set v := u ◦ β−1. The Lebesgue
measure on IR` is denoted by µ`.

(i) the case p = 1. For each n ∈ IN∗, we set In := (−n, n) ⊂ IR, and for
each p ∈ IN∗, we set Cp := (−p, p)m−1 ⊂ IRm−1. For each (n, p) ∈ IN2

∗, we set
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Ωp,n := In × Cp. Ωp,n is an open bounded subset of IRm. The restrictions of
v and ∂v

∂y1
belong to L2(Ωp,n, IR

N).

By using [31, pp.61-62] we can assert that there exists Ap,n ⊂ Cp such that
µm−1(Ap,n) = µm−1(Cp), and such that for every (y2, ..., ym) ∈ Ap,n, we have

v(·, y2, ..., ym)|In ∈ H
1(In, IR

N).

We set:

Ap := {(y2, ..., ym) ∈ Cp : ∀n ∈ IN∗, v(·, y2, ..., ym)|In ∈ H
1(In, IR

N)}

= {(y2, ..., ym) ∈ Cp : v(·, y2, ..., ym) ∈ H1
loc(IR, IR

N)}.

Then we have Ap =
⋂
n≥1

Ap,n, and:

µm−1(Cp \ Ap) = µm−1

⋃
n≥1

(Cp \ Ap,n)

 ≤ ∞∑
n=1

µm−1(Cp \ Ap,n) = 0.

After that, we set:

A := {(y2, ..., ym) ∈ IRm−1 : v(·, y2, ..., ym) ∈ H1
loc(IR, IR

N)}.

We verify that A =
⋃
p≥1

Ap, and since IRm−1 =
⋃
p≥1

Cp, we have

IRm−1 \ (
⋃
p≥1

Ap) ⊂
⋃
q≥1

(Cq \ Aq)

and therefore

µm−1(IRm−1 \ A) ≤ µm−1

⋃
q≥1

Cq \ Aq)

 ≤ ∞∑
q=1

µm−1(Cq \ Aq) = 0,

and consequently IRm−1 \ A is Lebesgue negligible in IRm−1.
We note that

β−1(0× A) = {ξ ∈ ω⊥ : Qω(τξu) ∈ H1
loc(IR, IR

N)}.

Since β is orthogonal, β preserves the Lebesgue measure, and so, the com-
plement of β−1(0× A) in ω⊥ = β−1(0× IRm) is Lebesgue negligible in ω⊥.
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(ii) The induction argument. We assume the property for 1 and p − 1
(p ≥ 2), and show it for p. We define the following sets:

N1 := {ξ ∈ ω⊥ : Qω(τξu) ∈ H1
loc(IR, IR

N)}

N2 := {ξ ∈ ω⊥ : Qω(τξ(∂
p−1
ω u)) ∈ H1

loc(IR, IR
N)}.

Since u ∈ Hp
ω(TTm, IRN), we have u, ∂p−1

ω u ∈ H1
ω(TTm, IRN), and by induc-

tion, we can say that ω⊥ \ N1 and ω⊥ \ N2 are Lebesgue negligible in ω⊥.
Consequently, ω⊥ \N1 ∩N2 is Lebesgue negligible in ω⊥. But we have

N1 ∩N2 = {ξ ∈ ω⊥ : Qω(τξu) ∈ Hp
loc(IR, IR

N)}

since, from Theorem 1, ii, we have

d

dt
Qω(τξu) = Qω(∂ω(τξu)) = Qω(τξ(∂ωu)).

Theorem 4. If we assume that u ∈ Hp
ω(TTm, IRN) ∩ L∞(TTm, IRN), then the

set: ω⊥ \ {ξ ∈ ω⊥ : Qω(τξu) ∈ Hp
loc(IR, IR

N), sup
t∈IR
|u(tω + ξ)| ≤ ‖u‖L∞} is

Lebesgue negligible in ω⊥.

Proof. We use the notations of the previous proof.
(i) The case p = 1. We set

M := {(y1, y2, ..., ym) ∈ IR× IRm−1 : |v(y1, y2, ..., ym)| ≤ ‖u‖L∞}.

We have µm(M c) = 0. Since µm = µ1 ⊗ µm−1, by using the Fubini theorem
[22, pp.147-148], there exists a subset B1 ⊂ IRm−1 such that IRm−1 \ B1 is
Lebesgue negligible in IRm−1, and such that for every (y2, ..., ym) ∈ B1, the
complement of {y1 ∈ IR : (y1, y2, ..., ym) ∈ M} is Lebesgue negligible in IR.
And so for every (y2, ..., ym) ∈ B1, we have |v(·, y2, ..., ym)| ≤ ‖u‖L∞ L.a.e.
on IR. Therefore the complement of A ∩B1 is Lebesgue negligible in IRm−1.
Furthermore, when (y2, ..., ym) ∈ A∩B1, we have v(·, y2, ..., ym) ∈ C0(IR, IRN),
and therefore for every y1 ∈ IR, we have |v(y1, y2, ..., ym)| ≤ ‖u‖L∞ . Since

β−1(0× (A ∩B1)) =

{ξ ∈ ω⊥ : Qω(τξu) ∈ H1
loc(IR, IR

N), sup
t∈IR
|u(tω + ξ)| ≤ ‖u‖L∞}
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we obtain the announced result.

(ii) By using (i) and Theorem 3, the complement of A ∩ B1 ∩ (N1 ∩ N2) in
IRm−1 is Lebesgue negligible in IRm−1. To conclude, it is sufficient to note
that:

β−1(0× [A ∩B1 ∩ (N1 ∩N2)]) =

{ξ ∈ ω⊥ : Qω(τξu) ∈ Hp
loc(IR, IR

N), sup
t∈IR
|u(tω + ξ)| ≤ ‖u‖L∞}.

6 Relations between (2) and (3).

We assume that F ∈ QPUω(IR, IRpN , IRN). Thus Φ := Q−1
ω (F ) ∈ C0(TTm ×

IR(p+1)N , IRN) and that F satisfies (1). Φ satisfies the same Lipschitz condi-
tion. From this we build two Nemytskii operators:

NF,1 : (B2
ω(IRN))p −→ (IRN)IR, NF,1(q) := [t 7→ F (t, q(t))].

NΦ,2 : (L2(TTm, IRN))p −→ (IRN)TT
m

, NΦ,2(u) := [x 7→ Φ(x, u(x))].

Lemma 5. Under (1), the following assertions hold.

(i) NF,1((B2
ω(IRN))p) ⊂ B2

ω(IRN), and NF,1 ∈ C0((B2
ω(IRN))p, B2

ω(IRN)).

(ii) NΦ,2((L2(TTm, IRN))p) ⊂ L2(TTm, IRN), and
NΦ,2 ∈ C0((L2(TTm, IRN))p), L2(TTm, IRN)).

(iii) We consider Qω : (L2(TTm, IRN))j −→ B2
ω(IRN) for j = 1, p. Then we

have:
Qω ◦ NΦ,2 = NF,1 ◦ Qω.

Proof.
(i) By using [13,Theorem 2], we have NF,1((B2(IRN))p) ⊂ B2(IRN), and
NF,1 ∈ C0((B2(IRN))p, B2(IRN)). Since NF,1((QP 0

ω(IRN))p) ⊂ QP 0
ω(IRN) [9,

Proposition 3], we obtain the announced results.

(ii) cf. [27, Chapter I, Section 2].
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(iii) If u ∈ C0(TTm; IRN)p, we have:

Qω ◦NΦ,2(u) = Qω[x 7→ Φ(x, u(x))] = [t 7→ Φ(tω, u(tω))] = [t 7→ F (t, u(tω))]

and:
NF,1 ◦ Qω(u) = NF,1[t 7→ u(tω)] = [t 7→ F (t, u(tω))]

and so Qω ◦NΦ,2 = NF,1 ◦Qω on C0(TTm; IRN)p. Since C0(TTm; IRN)p is dense
on L2(TTm; IRN)p and since Qω, NΦ,2 and NF,1 are continuous respectively on
L2(TTm; IRN)j (j = 1, p), L2(TTm; IRN)p and B2

ω(IRN), we can conclude.

Proposition 7. Let F ∈ QPUω(IR, IRpN , IRN) and q ∈ QP p
ω(IRN). If q is a

q.p. solution of (2), then u := Q−1
ω (q) ∈ Cp

ω(TTm, IRN) is a periodic solution
of (3).

Proof. Since for every t ∈ IR, we have q(p)(t) = F (t, q(t), ..., q(p−1)(t)), we
also have

dp

dtp
u(tω) = Φ(tω, u(tω), ...,

dp−1

dtp−1
u(tω))

i.e.
∂pωu(tω) = Φ(tω, u(tω), ..., ∂p−1

ω u(tω)).

Since u, ..., ∂pωu and Φ(·, α1, ..., αp) are continuous and periodic on IRm, by us-
ing Lemma 2, we obtain, for every x ∈ IRm, ∂pωu(x) = Φ(x, u(x), ..., ∂p−1

ω u(x)),
i.e. u is a periodic solution of (2).

Proposition 8. Under (1), let q ∈ Bp,2
ω (IRN). If q is a weak q.p. solution of

(2) (i.e. q is a solution of (4)), then u := Q−1
ω (q) ∈ Hp

ω(TTm, IRN) is a weak
periodic solution of (3) (i.e. u is a solution of (5)).

Proof. By using Theorem 2, we can assert that ∇pq ∼2 F (., q, ...,∇p−1q) im-
plies Q−1

ω (∇pq) = Q−1
ω (F (., q, ...,∇p−1q)) in L2(TTm, IRN). Since Q−1

ω (∇pq) =
∂pωu and since Q−1

ω (F (., q, ...,∇p−1q)) = Q−1
ω (NF,1(q, ...,∇p−1q)) = NΦ,2 ◦

Q−1
ω (q, ...,∇p−1q) (Lemma 5, iii), we have ∂pωu = Φ(., u, ..., ∂p−1

ω u).

Proposition 9. Let Φ ∈ C0(TTm × IRpN , IRN) and let u ∈ Cp
ω(TTm, IRN). If

u is a periodic solution of (3), then q = Qω(u) ∈ QP p
ω(IRN) is a q.p. solution

of (2).
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Proof. Necessarily we have, for every t ∈ IR,
∂pωu(tω) = F (tω, u(tω), ..., ∂p−1

ω u(tω)), and consequently we have q(p)(t) =
F (t, q(t), ..., q(p−1)(t)).

Theorem 5. Under (1), let u ∈ Hp
ω(Tm, IRN). We assume that u is a weak

periodic solution of (3) (i.e. u is a solution of (5)). We set q := Qω(u) ∈
Bp,2
ω (IRN). Then the following assertions hold.

(i) q is a weak q.p. solution of (2), i.e. q is a solution of (4).

(ii) There exists a subset Ξ of ω⊥ such that the complement of Ξ in ω⊥ is
Lebesgue negligible in ω⊥, and such that, for every ξ ∈ Ξ, the function

Qω(τξu) = [t 7→ u(tω + ξ)] ∈ Cp(IR, IRN) ∩Bp,2
ω (IRN)

and satisfies, for every t ∈ IR,

dp

dtp
u(tω + ξ) = Φ

(
tω + ξ, u(tω + ξ), ...,

dp−1

dtp−1
u(tω + ξ)

)
.

Proof
(i) Since ∂pωu = Φ(·, u, ..., ∂p−1

ω u) in L2(TTm, IRN), by using Theorem 2, iii,
we have Qω(∂pωu) ∼2 Qω(Φ(·, u, ..., ∂p−1

ω u)). Since Qω(∂pωu) = ∇p(Qωu)
and since Qω(Φ(·, u, ..., ∂p−1

ω u)) = Qω ◦ NΦ,2(u) = NF,1 ◦ Qω(u, ..., ∂p−1
ω u) =

F (q, ...,∇p−1q) (Lemma 5, iii), we obtain ∇pq ∼2 F (q, ....,∇p−1q).

(ii) We define Ψ by the formula:

∀(y, α1, ..., αp) ∈ β(IRm)× IRpN , Ψ(y, α1, ..., αp) := Φ(β−1(y), α1, ..., αp)

and we take v := u ◦ β−1 like in the proof of Theorem 2. We set:

N := {(y2, ..., ym) ∈ IRm−1 : v(·, y2, ..., ym) ∈ Hp
loc(IR, IR

N)}.

By using Theorem 3, IRm−1 \N is Lebesgue negligible in IRm−1.
We know that ∂pv

∂y1
∈ L2

loc(IR
m, IRN) and also thatNΨ,2(v, ..., ∂

pv
∂yp1

) ∈ L2
loc(IR

m, IRN).

Since u is a solution of (5), we have ∂pv
∂yp1

= Ψ(·, v, ..., ∂p−1v

∂yp−1
1

) L.a.e. on IRm.
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By using the Fubini theorem [22, pp.147-148] we can assert that IRm−1 \ E1

is Lebesgue negligible in IRm−1, where

E1 :=

{
(y2, ..., ym) ∈ IRm−1 :

∂pv

∂yp1
(·, y2, ..., ym)) =

Ψ

(
(·, y2, ..., ym), v(·, y2, ..., ym), ...,

∂p−1v

∂yp−1
1

(·, y2, ..., ym)

)
L.a.e. on IR

}
.

By using the transformation β, we obtain that ω⊥ \E is Lebesgue negligible
in ω⊥, where

E := {ξ ∈ ω⊥ : ∂pωu(tω + ξ) = Φ(tω + ξ, u(tω + ξ), ..., ∂p−1
ω u(tω + ξ))

for L.a.e. t ∈ IR},
since β(ω⊥ \ E) = IRm−1 \ E1.
Consequently, ω⊥ \ (E ∩ N) is Lebesgue negligible in ω⊥, and we note that
the assertion ξ ∈ E ∩N means that we have simulteanously:

∂pωu(tω + ξ) = Φ(tω + ξ, u(tω + ξ), ..., ∂p−1
ω u(tω + ξ)) for L.a.e. t ∈ IR,

and
[t 7−→ u(tω + ξ)] ∈ Hp

loc(IR, IR
N),

therefore since Φ is continuous, by applying the usual technic of regularization
of the absolutely continuous solutions of the ordinary differential equations,
we can assert that [t 7−→ u(tω+ ξ)] ∈ Cp(IR, IRN) and that, for every t ∈ IR,
we have

dp

dtp
u(tω + ξ) = Φ

(
tω + ξ, u(tω + ξ), ...,

dp−1

dtp−1
u(tω + ξ)

)
.

And so, it is sufficient to take Ξ := E ∩N.

Comments. This Theorem show that there exists a particular perturbated
form of equation whose solutions are regular.

Theorem 6. We assume the hypothesis on Theorem 5 and we also assume
that u ∈ L∞(TTm, IRN) and that for all compact K ⊂ IRN ,

MK := sup
(t,α1,...,αp)∈IR×K×IR(p−1)N

|F (t, α1, ..., αp)| <∞.
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Then q ∈ BCp(IR, IRN) ∩Bp,2
ω (IRN) and satisfies, for every t ∈ IR,

q(p)(t) = F (t, q(t), ..., q(p−1)(t)).

Proof. We set

Ξ1 := {ξ ∈ Ξ : |u(tω + ξ)| ≤ ‖u‖L∞ for L.a.e. t ∈ IR}.

By using Theorem 5 and Theorem 2 , iv, we can assert that ω⊥ \ Ξ1 is
Lebesgue negligible in ω⊥, as the union of two Lebesgue negligible subsets
of ω⊥. Consequently Ξ1 is dense in ω⊥, and we can choose a sequence (ξn)n
with values in Ξ1 such that ξn → 0 (n→∞). We set qn := Qω(τξnu).
For each n ∈ IN, we have ‖qn‖∞ ≤ ‖u‖L∞ , and since (cf. Theorem 5, ii):

q(p)
n = Φ(·ω + ξn, qn, ..., q

(p−1)
n ),

we have: ∥∥∥q(p)
n

∥∥∥
∞
≤M‖u‖L∞ <∞.

By using [1 p.265, example 2], there exits M > 0 such that for every n ∈ IN
and for every j ∈ {0, ..., p}, we have:∥∥∥q(j)

n

∥∥∥
∞
≤M.

Consequently, by using the Ascoli-Arzela theorem [14, p.X.18], we can tell
that there exists ρ ∈ C1(IR, IRN), and n 7→ jn, a monotonically increasing
function from IN in IN, such that for every j ∈ {0, ..., p−1}, (q(j)

n )n converges
to ρ(j) in the sense of the compact convergence.
Since the compact convergence implies the pointwise convergence, and since
u(tω+ ξn)→ u(tω) when n→∞ for each t ∈ IR, by using the uniqueness of
the limit, we have ρ(j) = q(j) for every j ∈ {0, ..., p− 1}.
Finally, for every s < t in IR, we have:

q
(p−1)
jn (t)− q(p−1)

jn (s) =
∫ t

s
{Φ(σω + ξjn , qjn(σ), ..., q

(p−1)
jn (σ)}dσ,

and when n→∞, we obtain:

q(p−1)(t)− q(p−1)(s) =
∫ t

s
{F (σ, q(σ), ..., q(p−1)(σ))}dσ,

that implies: q(p)(t) = F (t, q(t), ..., q(p−1)(t)).

35



Conclusion

In the quasi-periodic setting, by using the Bp,2 spaces, Theorem 6 ensures
that any weak q.p. solution (obtained for instance by using a variational
method) which is also essentially bounded is in fact a solution in the usual
sense and is also Besicovich q.p. And so, Theorem 6 provides an improvement
to the approach via Bp,2 spaces.
Also, Theorem 5 provides an improvement, specific to the quasi-periodic
setting, to the results, called results in density, cited in introduction: if
for instance L is not depending on t, the bε can be choosen of the form
bε(·) = b(·ω + ξ(ε)), where ξ(ε) ⊥ ω and ξ(ε)→ 0 when ε→ 0.
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Colin, Paris, 1972.

[6] M.S. BERGER, and L. ZHANG, A New Method for Large Quasiperi-
odic Nonlinear Oscillations with Fixed Frequencies for the Nondissipa-
tive Conservative Systems, (I), Communications on Applied Nonlinear
Analysis, 2(2), 1995, pp.79-106.

36



[7] M.S. BERGER, and L. ZHANG, A New Method for Large Quasiperi-
odic Nonlinear Oscillations with Fixed Frequencies for the Nondissipa-
tive Second Order Conservative Systems of Second Type, Communica-
tions on Applied Nonlinear Analysis, 3(1), 1996, pp.25-49.

[8] A.S. BESICOVITCH, ”Almost periodic functions”, Cambridge Univ.
Press, Cambridge, 1932.

[9] J. BLOT, Une approche variationnelle des orbites quasi-périodiques des
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